CHAPTER 1

e
Diversity functions

Martin L. Weitzman

1.1 Introduction

“Loss of diversity” is a much lamented condition nowadays. One sees such
a phrase applied loosely in a variety of contexts, including the realms of
biological species, landmark buildings, historic sites, languages, artifacts,
habitats, even ways of life. Often there is an implicit injunction to preserve
diversity because it represents a higher value than other things, which by
comparison are “only money”. Yet the laws of economics apply to diver-
sity also. We cannot preserve everything. There are no free lunches for
diversity. Given our limited resources, preservation of diversity in one con-
text can only be accomplished at some real opportunity cost in terms of
well-being forgone in other spheres of life, including, possibly, a loss of
diversity somewhere else in the system.

Actual implementation of any injunction to “preserve diversity” is
hampered by the lack of an operational framework or objective function.
We need a more-or-less consistent and usable measure of the value of
diversity that can tell us how to trade off one form of diversity against an-
other.

It would be naive to expect that resolution of real-world conservation
choices will reduce to some mechanical application of diversity functions.

et, I would argue, it is still useful to think in terms of a model that might
Serve as a paradigm for guiding and informing conservation decisions,
even if the model must be at a high level of abstraction. When diversity
Cam}Ot be defined even under ideal circumstances, the concept itself is
Suspicious. For this reason alone, it behooves us to specify a diversity
Unction at least for some “ideal” case.

If a valye of diversity function can be meaningfully postulated, then it
N, at least in principle, be made commensurate with other benefits and
Costs, and the general form of the resource allocation problem is in prin-
Iple well defined. There are presumably some limits on the feasible ac-
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tions that can be taken, represented by budget constraints or other limita-
tions. Each feasible action induces a probability distribution for what
survives, and for how long (there is, perhaps, a significant amount of cor-
relation involved). The optimal conservation policy may be defined as the
feasible action that yields the highest present discounted expected value
of diversity (plus whatever other net benefits are attributed to various
components). This is in the form of a classical constrained optimisation
problem. Since the constraint set is in principle well defined, the major
unresolved conceptual issue involves defining a meaningful value-of-
diversity objective function. The remainder of the paper concentrates on
this critical aspect of the problem.

1.2 The nature of the problem

There is an immediate issue of defining the proper unit of analysis for the
collection whose diversity is to be determined. It is not transparently clear
in all conservation settings at what level the diversity problem should be
attacked. In principle, diversity could be measured at the individual level,
the species level, the community level, the ecosystem level, or even some
other levels. (The Nature Conservancy usually takes its “mapping units”
or “elements” to be species or communities.) I do not have a good resolu-
tion to the problem of which level is the most appropriate for performing
diversity analysis. In principle, any level might be chosen so long as the
methodology is consistently followed at that leve].

The abstract form of the general problem can now be stated. The “ele-
ments” are basic units that it is desired be preserved in the name of diver-
sity. (There could also be some direct net benefits from some elements.)
There is some notion of the Joint probabilities of extinction of the various
elements if no action is taken. Next, there are preservation “actions” that
can influence the various probabilities of extinction at some cost. For ex-
ample, projects might consist of buying up and preserving various specific
sites. Some “diversity function” evaluates the diversity of any given deter-
ministic collection of elements, Conceptually, the diversity function, on
which this paper concentrates, is the most difficult part of the problem. If
a diversity function is well defined, and probabilities of extinction are
known, an expected diversity function can be defined. An expected diver-
sity function is basically the sum of the deterministic diversity function of
various collections of species weighted by the existence probabilities of
the various collections. The basic aim might be taken to maximise ex-
pected present discounted diversity (plus any net direct values of the ele-
ments), subject to conservation budget constraints. The set-up is analo-
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gous to a capital budgeting problem, except that the objective containg
expected diversity.

For convenience and consistency, in what follows I will largely employ
biological metaphors. However, the mathematical essence of the problem
applies to a broader setting and is perhaps more appropriately understood
at a higher level of abstraction. The basic underlying unit will be cgl_led a
“species.” A “species” could stand for a genuine species in th'e tradlponal
biological sense of being a reproductively isolated group having a history
of strict genetic divergence from other groups; or it could stand for an
individual, a subspecies, a specimen, an object, a community, or almost
anything else — depending on the context. .

Actually, one of the most useful interpretations is that a “spemes” cor-
responds to a “library” Conceptualising the basic problem in terms of
preservation priorities among “libraries” is useful for at least two reasons,
First of all, a library, at least in the abstract, tends to be a more or less
neutral object that does not conjure up such strong emotional images as
some other metaphors. Second, and more significantly, concentrating on
libraries and the books they contain can help us to focus more sharply on
the issue of what should be meant by a diversity function.

In what follows, then, the word “species” may be interpreted as some
generalisation of the word “library” The reader whp wants a specific im-
age may find it useful to think of a species as standing for a hbra.ry.

Suppose, then, there is some set S containing member species (orn
libraries). The basic question is how to measure the diversity of S. The
appropriate diversity function will be denoted in this paper I./(S).

It is important to realise that there is unlikely to be a universally best
definition of diversity. This is just common sense reasoning by analogy.
There is not in statistics a universally best definition of central tende;qcy,
or of dispersion. Nor is there in economics a universally best dpﬁmﬂon
of income inequality, or of welfare, or of industrial concentration. The
appropriate definition depends upon the assumptions behind .the specific
intended application. However, Jjust as in statistics or economics the field
tends in practice to narrow down to only a few good candldaFes, so too I
will try to argue, it is not so easy to find many good candldates. for a
diversity function. I will try to explain and Justify my own formulatlon_ of
a diversity function. Although I have not yet come across a formulation

that satisfies me as much as the one I present here, the field is young and
it is not to be excluded that some fresh approach might yield new insights.

What should one mean by a “good” definition of a diversity functiop?
Lthink, as with the quantification of any concept, there are two general cri-
teria.

First of all, the definition should be a priori sensible in that it embodies



24 M. L. Weitzman

an intuitively plausible formulation that does not immediately admit of
seriously damaging counterexamples to the basic underlying idea. Obvi-
ously, this criterion contains a subjective element. Second, and perhaps
more critically, there should be some special case, hopefully a sensible spe-
cial case, forming the central paradigm, for which the particular formula-
tion is exactly the right answer to a rigorously well-posed problem. The
definition in the general case then becomes seen as an appropriate abstrac-
tion of the basic concept to a situation where the problem is less rigorously
stated than it is in the central paradigm.

The approach described above is consistent with standard statistical
methodology. Basically, there is a rigorous model, which works exactly for
an idealised situation that is not excessively bizarre even though it may
not precisely characterise the real world. Additionally, the model itself
seems sensible on heuristic grounds for the general case. I cannot here test
the robustness of the model itself, because that would require a more gen-
eral meta-model with a more general meta-definition of diversity, which I
do not have. The most that can be said at this stage is that my definition
of diversity works exactly for a nonbizarre central case, it has some nice
properties and makes heuristic sense in the general case, and it might be
hoped to have some robustness properties if one knew how to formulate
them properly,

I want to start with the rigorous model of a nonbizarre special case.
That is, I want to lay out a particular model of an idealised situation where
it is really fairly clear what we should mean by a diversity function. The
particular model is what I will call the “bead model” of an evolutionary
branching process.

1.3 The bead model of an evolutionary branching process

Consider a treelike branching process such as depicted in Figure 1.1. The
“species” 1 through 6 are depicted as twig tips at the end of the tree.
Species evolve by descent with modification via an evolutionary branching
process, which is described as follows.

Any species consists of the same very large number M of tiny beads
strung together on a string. If the primary interpretation of a “species” is
a “library,” then the “beads” stand for “books” A species is essentially
identified with its string of beads, Just as a library is identified with its
collection of books. The beads are accumulated over time by being drawn
from an infinitely large sample pot of different beads. At each unit of time,
for each species existing at that time, exactly one bead is independently
drawn from the infinitely large sample of different beads and attached to
the head of the string. Simultaneously, exactly one bead is dropped from
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Figure 1.1. The maximum-likelihood tree representation.

t}.le tail of the string. (Other descriptions are possible, but this one is the
Simplest.)

. At time f,, Just one prototype ancestor species exists. From time 7, to
time !, exactly ¢, ~ 1, different new beads are accumulated at the head of
the string, while the same number of old beads are discarded from the tail.

hen at time 1,, a bifurcation into two ancestor species occurs. One of

€se is the common ancestor of {5, 6}. The other is the common ancestor
of {1, 2, 3, 4}. Each of these two ancestor species, which are thought of
38 separate, now begins independently to accumulate different new beads
at the head of the string, one per unit time, while simultaneously dis-
“arding one bead per unit time from the tail of the string. The next bifur-
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cation occurs at time 7,. At that time, the ancestor species of {5, 6} and
of {1,2, 3,4} differ by exactly ¢, — t, beads, which they have independently
acquired during the time duration ¢, - 7.

At time ¢,, the common ancestor of {1, 2, 3, 4} bifurcates into two
species. One of these is the common ancestor of {4}. The other species is
the common ancestor of {1, 2, 3}. From time ¢, to t,, each of the three
ancestor species {5, 6}, {4}, and {1, 2, 3} is independently accumulating
different new beads at the head of their strings, one per unit time, while
simultaneously discarding one bead per unit time from the tails of their
strings. This phase ends at time ¢, when ancestor species {1, 2, 3} bifur-
cates into ancestor species {1} and ancestor species {2, 3}. At that time
t,, ancestor species {1, 2, 3} differs from ancestor species {4} by ¢, — ¢,
beads, while ancestor species {1, 2, 3} and ancestor species {4} both differ
from ancestor species {5, 6} by ¢, — ¢, beads.

The evolutionary branching process described above ends at the present
time with the six currently existing species shown in Figure 1. 1. The last
bifurcation that occurred was at time ¢, when ancestor species {5, 6} split
into ancestor species {5} and ancestor species {6}.

The model of an evolutionary branching process described above is of
course an idealisation. Actual evolution differs in many important ways.
Nevertheless, as an abstraction, the bead model captures the essential idea
of descent with independent modification along reproductively isolated
lineages. Supposing for the sake of argument that the model is a true de-
scription of how the species evolved, what does it tell us about the appro-
priate definition of diversity?

Each of the species 1 through 6 consists of a long string of beads of
identical length. It seems natural to define the difference or distance be-
tween any two species as the number of beads that are different between
them. With this definition, the distance between any two species can be
read from the corresponding genealogical tree of Figure 1.1 as the time
back to their nearest common ancestor. The number of beads by which
two species differ is equal to the time elapsed from their most recent com-
mon ancestor because that is exactly the time period over which the
different beads have been independently accumulated by the two species.

One possible definition of diversity in the present context is the total
number of different beads contained in the collection. Some reflection
should reveal that, in the present model, diversity under this definition
equals the length of the associated taxonomic tree. By the length of an
evolutionary tree, I mean the total lengths of all its vertical branches, in-
cluding the branch of the common ancestor of the entire family back to
some unspecified outgroup. The reader should confirm that the number
of different beads represented by the six existing species of Figure 1.1 is
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indeed equal to the total length of the associated tree under the bead
model of an evolutionary branching process being assumed. Thus, under
extreme simplifying assumptions about the nature of the underlying evolu-
tionary process, if the diversity of a collection of species is defined to be
the total number of different subunit-beads, then diversity equals the total
pranch length of the associated taxonomic tree.

There is an equivalent way of describing diversity in the above structure
that is useful because part of it generalises. Without trying to be overly
formal here, think heuristically of the operation of the bead process as a
kind of “creation machine” Then the diversity of a collection is the num-
ber of “operations” required of the “creation machine” to make the collec-
tion. Later it will be shown how a more rigorous definition of the technol-
ogy of a creation machine and its operations can be used to define
diversity in the general case as the work required by the creation machine
to make the diverse collection.

The preceding definition of diversity can be rephrased in terms of a
“hierarchical search” procedure. In this context, think of a bead as a book.
Then each species is like a library of M books. Any two libraries may
contain certain books in common, and some that are different. Suppose
every book embodied in the collection of species must periodically be
searched to find, e.g., the appearance of a certain phrase. What is the best
catalogue hierarchy for organising such periodic searches through all the
books in the collection?

Some reflection reveals that the optimal hierarchical search structure is
exactly the genealogical structure arising from the bead model that gener-
ates the evolutionary branching process. The highest level catalogue con-
tains all books commonly held by every library {1, 2, 3, 4, 5, 6}. The next
lf}ve%)of cata?ogue contains all books held in common by libraries {1, 2, 3,
o ,{lu; n;t in {5} and {6}. The next catalogue after that contains books

» 2,3} but not {4}. Then {1, 2} but not {3}, then {1} or {2} but not
both, then {5} or {6} but not both.
theT}l:'e }i)ptimal way to search every bgok is to first search the books in
thot ;g est catalogue, _then the next‘hlghest, then the next highest after
> and so forth, until every book is searched. This hierarchical search
plrocedure Fakes minimal time among all the alternatives because it com-
gi?ft:rly avplds 'the redundancy of searching the same book twice in two
book:n't 11brar1es'or catalogues..The tota'l time required to examine all the
length 11} al? optlmgl search hlergrchy is here exactly the total branch
differen(: bt ekassomated genealog}cal treeﬁequal to the. toFal num})gr of
time g 00 s).lThu53 an altgrnanve deﬁmtfon of d'n'/er51.ty is the minimal
ito a comp etg hlerarchlca'l §earch. This definition is useful because
an form the basis for generalising the concept of diversity to a situation
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where the species, or libraries, do not conform to the bead model of an
evolutionary branching process.

There is also a probabilistic interpretation, that can be motivated by a
somewhat more operational criterion, but which yields the same essential
identification of diversity with the total branch length of the associated
taxonomic tree.

Suppose that we are looking for some desirable property, like a new
source of food or medicine. Each collection of species can be viewed as a
kind of natural portfolio of future options for the desirable property. Sup-
pose that if the desirable property exists in a species, then it will be found
in one or more of the beads out of which that species is composed. (Or, if
the desirable property exists in a library, it will be found in at least one of
the library’s books.) Suppose that the probability of any particular bead
having the desirable property is independent of any other bead having
the desirable property and is equal to some small positive number . The
probability that any bead does nof contain the desirable property is then
A=1~—¢.

Now we can calculate the probability that the entire collection of spe-
cies does not contain the desirable property. Let L be the number of
different beads in the collection of species, equal, as we have seen, to the
total branch length of the corresponding taxonomic tree. Then the proba-
bility that the entire collection does not contain the desirable property is
P = AL, A not unreasonable definition of the diversity of a collection of
species might be the negative logarithm of the probability that the collec-
tion does not contain the desirable property. By this definition, diversity
is kL, where k = —log\ is a positive constant. Thus, either concept of
diversity yields essentially the same construct — namely diversity equals
the total branch length of the associated taxonomic tree.

The above reasoning gives a powerful way of thinking about the loss of
diversity that accompanies extinction events, at least for the bead model
of an evolutionary branching process that has been presented.

When any species becomes extinct, the loss of diversity equals the spe-
cies’ distance from its closest relative, and this myopic formula can be
repeated indefinitely over any éxtinction pattern, because any subevolu-
tionary tree of an evolutionary tree is also an evolutionary tree. When a
species becomes extinct, the loss of diversity is calculated as if its evolu-
tionary branch were snapped off the rest of the tree and discarded. This
sharp mental image, properly used, permits a quick, exact visualisation of
the effects of various combinations of species losses on diversity in the
special case of perfect taxonomy based on the bead model of an evolution-

ary branching process.
A simple example may help to illustrate the basic issues. In Figure 1.1 is
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depicted a family tree representing the evolutionary history of six existing
species. The two most closely related species are 5 and 6, so that the small-
est loss from extinction of a single species occurs if one of these two van-
ishes. However, an _analytical preservationist must be careful here. If, after
species 5 goes extinct, species 6 also goes extinct, then the overail loss
could be catastrophic since a whole evolutionary line will have been wiped
out. While the diversity loss of 5 or of 6 is lower than that of any other
single species in the collection, the diversity loss of the pair (5, 6) is greater
than the diversity loss of any other pair in the set. Hence, an optimal
conservation strategy might be to concentrate relatively few resources on
saving species 5, if species 6 is reasonably safe, or it might involve concen-
trating relatively large resources on saving species 5, if species 6 has a high
danger of extinction. I hope this kind of example, which could be repeated
over a wide variety of different situations, illustrates the power of using
the simple geometric interpretation of diversity as a conceptual aid for
analysing policy options concerning preservation of diversity.

The previous reasoning can be pursued further to yield some not so
obvious insights about conservation policy. Just to emphasise the abstract
nature of the problem, suppose here we are talking about libraries. We
have already mentioned how an expected diversity function can be defined
when there is uncertainty. An expected diversity function is basically the
sum of the deterministic diversity function of various collections of librar-
tes, weighted by the existence probabilities of the various collections. As-
sume, as a simplification, that all survival probabilities are independent.
Suppose the aim is to maximise expected diversity.

Consider the following numerical example. The numbers have been
chosen to make the point sharply, but the point itself is quite general.

Referring again to Figure 1.1, let the survival probability of library 5
b? P, = .98. Suppose the survival probability of library 6 is P, = .02.
]lerary 5 might be called a relatively “safe” library, while library 6 is rela-
tively “endangered.”

“ Suppose“noyv :ve consider 'the possibil‘it'y of changigg un.derlying re-
urces to “shift” .01 of survival probability between libraries 5 and 6.

vwerhiih')Of the following three alternatives yields the highest expected di-
sity?

Alternative P P

! Status quo 98 02

§~ Endangered library more endangered .99 :01
- Endangered library less endangered .97 03

I think it is fair to guess that most conservation-minded people would

f; . . .
avour 3, the option that increases the survival probability of the endan-
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gered library at the expense of the safe library. Actually, expected diversity
is minimised by alternative 3, while it is maximised by alternative 2.

The reason for this counterintuitive result can be explained as follows.
For simplicity I just compare situations 2 and 3. The probability that both
libraries survive is (.99)(.01) = .0099 in situation 2, while it is (.97)(.03) =
.0291 in situation 3. This would seem to turn the calculation in favour of
3 and is probably what accounts for the intuition that 3 yields higher
expected diversity than 2.

However, the probability that both libraries become extinct is
(.01)(.99) = .0099 in situation 2, while it is (.03)(.97) = .0291 in situation
3, which is an exact reversal of the previous calculation.

Now it would, of course, be good for diversity to have both libraries 5
and 6 survive. But it would be a significant disaster for diversity if both
libraries 5 and 6 went extinct, because a whole lineage of unique books
would then have been extinguished. Therefore, other things being equal,
the analytical preservationist favours making the safe library safer at the
expense of making the endangered library more endangered, because a
whole line may therefore be made safer — if a one to one tradeoff of sur-
vival probabilities is possible. Although this example rests upon specific
assumptions, I believe it offers some relevant insights into -conservation
policy that could not easily be made outside the diversity function
framework.

The perfect taxonomy structure induced by the bead model of an evolu-
tionary branching process allows yet other powerful insights into the form
of an optimal conservation policy. Consider, for example, the following
idealised situation involving sharply posed preservation issues in such a
context. This might be called the “Noah’s ark problem.”

Let the set S consist of n species denoted by i = 1, 2, ..., n. Let the
(independent) probability that species i survives be denoted x,. Each col-
umn n-vector X = (x,) of survival probabilities defines an expected diver-

sity function

Ulx) = E(V)
Suppose the objective function is of the form
&(X) = BX + U(X)

where b, is the direct net benefit of species i and B = () is the row n-
vector of direct net benefit coefficients.

Suppose the cost of preserving species i with probability x, is equal to
¢x,. (In the Noah'’s ark interpretation, c, is the room in the ark taken up
by the pair of species i.} Let the row n-vector of cost coefficients be C =
{¢)). Let the total preservation budget be 4. (4 is the size of the ark.)
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The simplest form of a constrained ex et ..
; pected diversity ma i
problem might be formulated as: Yy maximising

maximise ¢ (X)
subject to:

CX =4
0=x=1 fori=1,2, ... n

The .previous constrained optimisation problem is well-defined but it
looks like a combinatoric nightmare. Actually, in the case of th; bead
model a simple myopic algorithm is available for solving the problem. It
is here stated without proof. ‘

The algorithm proceeds by eliminating the least valuable species, one
species at a time, until the budget constraint is just met. ’

. Suppose at some iteration the subset Q C S of species exists with proba-
bility one, while the subset S\Q of species is extinct or exists with probabil-

ity zero. (S\Q stands for the set S minus the set Q.) Suppose that the budget
constraint 1s not being met:

Z ex, > A
ieQ)
The next step is to find the relatively 1 i i is i
t ste y least desirable species of Q. This is
the species j(Q) € Q that satisfies the condition ¢

brduoy) _ (M:.Q.\_’?)

CJ i«Q Ci

}g)elstt}?ncg a(j, Q) from'point J to set @ is understood in the usual sense to
e dlstancc? from J to the element of Q closest to J
Zer"(l)’h;n;;rlob_aglhty x, is then brought fiown continuously from one towards
o il either the budget constraint is met or species j is eliminated,
whi ver occurs first. In. the latte'r case, a new species set Q is defined
cedure1§ equal to the previous species set Q‘minus the species j.! The pro-
the o (I)S {;pea;ed until the budget constraint is just met, at which point
thet fgr rtlh Ilt: as converged. The'relevant theorem (not proved here) is
rith ielde ead rpodel of" evplutlonary branching such a myopic algo-
isationy Z ;m optimal policy in thc? sense pf satisfying the original optim-
eneﬁt-grot em. The t.he.orem Justifies using at each iteration a myopic
cont 0st ratio consisting of the traditional ratio of direct benefits to
§ pl}ls the diversity loss per preservation dollar.,
€ import of this approach consists in giving a rigorous global sig-

t
N L
Ote that this will change some of the remaining {d(i, O\i)} coefficients.
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nificance to the strictly local decision-making index of species diversity
loss per unit of conservation resources. Comparing “expected diversity
loss per preservation dollar” among species thus turns out to be a legiti-
mate extension of cost-benefit analysis.

I hope I have been able to present a fairly convincing argument that for
the special bead model of an evolutionary branching process there is a
moderately compelling case for identifying the diversity of a collection of
species with the length of the associated genealogical tree. Unfortunately,
the bead model is an extreme abstraction of an idealised evolutionary pro-
cess. It provides a useful construct within which it really is fairly clear
what we should mean by a diversity function. The difficult question, to
which I next turn, is what to call a diversity function for a situation where
the bead model is not strictly applicable.

Remember that the “distance” d(i,j) between libraries i and j is the num-
ber of books different between i and j. In the bead model, all distances are
“ultrametric,” meaning that for any three libraries i, j, k,

max {d(i,)), d@ik), d(j.k)} = mid {dG,)), di,k), d(j,k)}

Ultrametric distances have the enormously attractive property that
they can be completely represented by a tree structure. Conversely, any
(rooted, directed) tree defines a set of distances that are ultrametric.

This can be seen readily from Figure 1.1. The “distance” between any
two species is represented in Figure 1.1 as the time back to the most recent
common ancestor. Equivalently, this distance represents the collection of
beads or books that are different between the two species or libraries.

I have tried to argue in this section that when distances are ultrametric,
the leading candidate for a diversity function really should be fairly clear.
With ultrametric distances, diversity is the total branch length of the asso-
ciated tree. A variety of approaches or views support this interpretation.
Furthermore, when distances are ultrametric a rather powerful theory
can be developed to give insight into the nature of strategies that would
maximise expected diversity. At this point we must address the issue of
defining a diversity function in the more general case when distances are
not ultrametric. We will proceed by attempting to generalise from the ul-
trametric case.

14 Diversity in the general case

Suppose we continue to think of a species as a collection of M beads on
a string or M books in a library. Only now, the collection is not necessarily
derived from the bead model of an evolutionary branching process, or
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distances are not necessarily ultrametric. How are we then to define the
diversity of a group of species?

As before, the distance between species i and j is the number of beads
or books that are different between them. Here the distances {di))} are
taken as given data. As is traditional, the distance d(j, Q) from the point J
to the set Q is equal to the distance from j to the element of Q closest to j.

It is only rarely that distances are ultrametric. Far more frequently,
distances are not exactly as if they are derived from the bead mode]. Wé
are typically confronted initially with a situation where the given pairwise
symmetric dissimilarity-distance measures are not ultrametric and are
therefore not consistent with the bead model of an evolutionary
branching process.

In the general case of arbitrary distances, the diversity function (S) is
inductively defined to be the solution of the recursion

M(S) = max {¥(S\i) + d(S\)} (1-H
ieS

The dynamic programming Equation (1-1) is the centrepiece of the
present approach to diversity. The solution of Equation (1-1) is unique
once the initial conditions

Vi) = d, Vi (1-2)

are specified for any d,. Depending upon the particular application, it is
typically most convenient to normalise d,, by setting it equal either to zero
or to some large constant.

' There are several possible axiomatic approaches that can be used to
Justify the diversity function of Equation (1-1). These axiomatic treat-
mnents are suggestively motivating, as I hope to indicate. However, the real
argument for the diversity measure being proposed here is that it “works”
fairly well - in the sense of creating a useful and consistent conceptual
fr.arnework, while other measures “do not work” — in the sense that they
Violate one or more essential properties that a plausible diversity function
should possess. The following condition seems like a basic axiom that is
T€asonable to impose on any diversity function.

Monotonicity in Species. If species j is added to collection O, then

MQUN=MQ) +d(j,Q) VO VjeQ (1-3)

Where d(j, Q) is the familiar (minimal) distance from point j to set Q.
desirl;% lm%notonicity in spgcies Conditioq (1-3) expresses the intuitively
ineres e dl ea t‘hat the addition of any species to a group of species should
st relsi' versity by at least the dl.s51'm11ar1ty of that species from its clos-
mone ta Ive among th? already existing group of species. Or, conversely,
onicity in species means that the extinction of any species of an
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ensemble causes a decline in diversity by no less than the distance of the
extinguished species from its nearest neighbour in the ensemble.

Monotonicity in species is a “loose” property in the sense that it does
not at all define a unique function because many diversity measures can
be made to satisfy the Inequality (1-3). There are at least two ways to add
a supplementary condition that would make the Inequality (1-3) hold so
“tight” that it yields, in effect, the dynamic programming Equation (1-1).

The first approach is the most direct. View Condition (1-3) as a poten-
tially very large set of constraints that must hold for a// Q and for all .
Impose the uniform initialising Condition (1-2). Then simply define the
diversity of S to be the minimum possible V(S) that satisfies Equations
(1-3), (1-2).

The reason this direct approach yields the dynamic programming re-
cursion (1-1) is as follows. Suppose, by induction, the diversity functions
{ V(S\i)} have been defined for all i belonging to S. Then the smallest pos-
sible value for the diversity of S that would be consistent with Condition
(1-3) must satisfy the condition:

V(S) = minimum V (1-4)
subject to:
V = V(S\) + d(i,S\) VieS (1-5)

It is straightforward to confirm that the solution of Equations (1-4),
(1-5) is Equation (1-1), which both proves the assertion and continues
the induction argument to the next stage.

The problem of finding the smallest possible diversity function consis-
tent with Equation (1-3) can be recast as an insightful evolutionary met-
aphor.

In this interpretation, the distance d(i,j) stands for the number of (possi-
bly weighted) character-state differences between i and j. For any set Q of
existing species, ¥(Q) here stands for the evolutionary length of Q, mean-
ing the total number of character-state changes required to explain the
evolution of Q under some rooted directed branching representation of
the evolutionary process. For each species, the length from root to twig
tip in this branching process is the same number M. Suppose that species
J & O is added to Q to form the new set QUj of existing species. The
number of extra character-state changes required to explain the evolution
of j is at least the difference in character-state changes between j and its
closest relative in Q, which is d(j, Q). If j is added to Q, then at least d(j, Q)
additional character-state changes need to be explained. Therefore, any
properly scaled feasible measure of evolutionary distance should simulta-
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peously satisfy, for all @ and for all j, the basic consistency conditions of
Bquation (1-3). _

It seems natural to define the diversity of S, denoted ¥(S), to be the
jength of the tightest or most parsimonious feasible reconstruction of S,
in the sense of being the minimal number of character-state changes re-
quired to account for the evolution of §. By the same argument as before,
¥(S) so defined must satisfy Equations (1-4), (1-5), and, by extension,
Equation (1-1). Thus, Equation (1-1) has the interpretation of describing
the number of steps required to generate the most parsimonious “minimal
evolution” branching structure that gives rise to the species of S,

This evolutionary metaphor can be recast as an insightful story about
the cost of “making” diversity. Suppose the n objects each consist of M
spaces or positions. Every position is filled with a particular colour, letter,
flavour, codon, symbol, or whatever, depending on the context. Each ob-
ject is in effect a mosaic of symbols. The “distance” d(i,j) between objects
i and j is the number of positions of i and j which have different symbols
in them. -

Think of a symbol in a particular position as being produced by a
“stamping” or “punching” operation like a train conductor’s hand
puncher. When the tickets are lined up properly, it is just as easy to punch
two or more tickets with the same symbol in the same position as it is to
punch one ticket with that symbol.

More formally, symbols are stamped in place by a “creation machine” —
some generalisation of the conductor’s hand punching machine. At any
intermediate stage of its manufacture, an object consists of completed
stamped and uncompleted unstamped positions. The creation machine
exhibits perfect economies of scale when identical stamping operations
are performed on the same unstamped position of identical objects. Each
identical operation on identical objects counts as only one operation. The
appropriate image is that identical objects can be costlessly aligned so that
the identical symbol may be punched in the same uncompleted position
It one operation.

However, if the creation machine performs different operations on the
Same object or the same operation on different objects, no economies of
Scale are allowed and production is linear. In such cases the objects cannot

€ properly stacked up and more than one punching operation is required.
€ same operation performed on two different objects counts as two
OPerations, just as do two different operations performed on two identi-
cal objects.
h Now iF seems natural to define diversity as the minimum cost of making
€ n objects different, as measured by the minimum total number of
Stamping or punching operations required by the creation machine. Essen-
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tially, diversity is the amount of work that the creation machine must do
to create the different objects.

In the case of ultrametric distances, it is easy to see that diversity equals
the total branch length of the corresponding tree. In the more general
case, it is possible to derive a lower bound.

The bound is derived as follows. Suppose that Q (CS) is any set of
species. Let the minimum number of operations required by the creation
machine to make the collection Q be denoted ¥(Q). Let j be a species in
S but not in Q. Some reflection will reveal that the Inequality (1-3) must
hold. Suppose that i is the species of Q that is closest to j. If species j is
added to the collection @, the very luckiest we might be in terms of mini-
mising the number of operations on the creation machine is if all the posi-
tions of 7 that have different symbols from j happen to occur at the very
end of the manufacturing sequence on the creation machine that made the
collection @, which includes i In this fortuitous case, Equation (1-3)
would hold with full equality. In the more general case, Equation (1-3)
would hold as the stated inequality condition.

Now, the most optimistic number of operations of the creation machine
required to make the collection S, consistent with the given distance data,
must satisfy Equation (1-1). Thus, the function defined by Equation (1-1)
has the interpretation of representing the minimal number of operations
needed to create the diversity of the collection S.

There is yet another way of restating the evolutionary metaphor in
terms of a bound on the search time for an optimal hierarchy. Here, think
of each species as a library containing M books. The distance d(ij) is the
number of books in library i but not in library j, or vice versa. Regularly,
say once a week, every book must be searched to see if it contains some
particular message, phrase, reference, formula, or whatever. It takes the
same amount of time to search each book. Some books are common to
two or more libraries, and the director wants to minimise the redundancy
involved in searching the same book more than once. Suppose that search
must be hierarchical, meaning that the catalogue must have a tree struc-
ture analogous to what is depicted in Figure 1.1. The highest level cata-
logue contains books held by every library. Then a bifurcation occurs
which partitions the set of all libraries into two mutually exclusive subsets.
The next level of (two) catalogues contains books held by all the libraries
of one subset, but not by all the libraries of the other subset. Then further
bifurcations occur which divide a subset of libraries into two mutually
exclusive sub-subsets. Each sub-subset contains books held by all the li-
braries of one of the sub-subsets, but not by all the libraries of the other
bifurcated sub-subset. This hierarchical catalogue process continues until
all books in all libraries have been included.
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In the bead model, the optimal hierarchical search procedure is identi-
cal to the genealogical tree, and it is perfectly effective in the sense that it
completely avoids any redundancy of searching the same book twice in
two different libraries or catalogues. When the bead model does not hold,
some redundancy in hierarchical search is unavoidable. The question then
pecomes: what is the most economical search hierarchy in the sense of
minimising total search time. Intuitively, one wants to group together li-
praries having a relatively large number of books in common to avoid
redundant search.

When posed in full generality, it is impossible to find an optimal hierar-
chy without detailed information about which books are contained in ev-
ery library. However, relying only on distance information does allow a
theoretical lower bound on search time. This theoretical lower bound on
total search time in an optimal hierarchy is what we will call the diversity
of the collection of libraries.

The bound is derived as follows. Suppose that O (CS) is any set of
libraries. Let the optimal hierarchical search time for the collection 0 be
denoted F(Q) and the optimal search tree for Q be denoted T(Q). Letj be
a library in S but not in Q. Some reflection will reveal that the Inequality
(1-3) must hold. Suppose that i is the library of Q that is closest to jIf
library j is added to the collection Q, the very luckiest we might be in
terms of minimising hierarchical search time is if all the books of i that
are different from ;j happen to occur at the very end of the part of the
search tree 7(Q) that involves library i Then the optimal search tree
T(QU)) would look just like the optimal search tree 7(Q) except that
an extra branch of length d(j), which contains library j as an end twig,
has been appended to the branch containing library i as an end twig.
In this fortuitous case, Equation (1-3) would hold with full equality.
.In the more general case, Equation (1-3) would hold as the stated
Inequality condition.

Now, following the previous logic, the most optimistic hierarchical
search time consistent with the given distance data must satisfy Equation
(I-1). Thus, the diversity function of this paper has the interpretation of
Tepresenting the minimal amount of time needed to perform an optimal
hierarchijcal search of all the volumes contained in a given collection of
Species-libraries.

_ Another route to forcing the Inequality (1-3) to hold so “tight” that it
Yields the dynamic programming Equation (1-1) is to add an extra axiom
to Equation (1-3) called the “link property” This new condition can be
Stated as follows.

" l:fnk Proper{y: For all S, there exists at least one species j(S) € S, called
€ “link” species, that satisfies
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V(S) = d(j.SV) + V(SY) (1-6)
As was shown in the last section, an especially appealing theoretical struc-
ture emerges in the case of bead model distances, where, in effect, Equa-
tion (1-6) holds for all j € S. Unfortunately, it is mathematically impossible
that Equation (1-6) can be true for all j € S in the general case of non-
ultrametric distances. But from the link property it will at least be true
always that the elimination of some species j(S) will reduce diversity by
exactly the distance of that species from its closest relative. The link prop-
erty provides at least one tight natural connection between the derived
value of diversity measure for any set and the primary distance data on
which it is based.

That Conditions (1-3) and (1-6) imply Condition (1-1) is a fairly
straightforward argument. There is also a probabilistic way of motivating
the basic dynamic programming recursion of Equation (1-1) that deserves
to be treated here. One of the most commonly cited reasons for maximis-
ing expected biodiversity is to maintain a kind of natural “portfolio diver-
sification” of future options for finding new sources of food, medicine, and
so forth. We will show that, under a not too bizarre model, the concept of
diversity as “portfolio diversification” is really the same as the concept of
diversity embodied by the diversity function previously defined.

Suppose, for concreteness, we are speaking of finding a pharmacologi-
cal cure for some disease. If a species contains a cure, it will only become
revealed over time, in the future. Thus, when a species becomes extinct
the chance is lost forever that the species may be of later help in providing
a medicine for treating the discase. What should we be preserving in such
a context?

In this interpretation, let

P@j) (1-7)

stand for an upper bound on the probability that species i does not contain
a cure for the disease given that species j does not contain a cure. The data
represented by Equation (1-7) are the basic, given, reduced-form primi-
tives of the model.

It is assumed that the given conditional probability coefficients of
Equation (1-7) are symmetric; for all ; and j belonging to S,

PGj) = P(ji)

Suppose the 7 species of S are produced by a process of “descent with
modification” down an evolutionary tree, only we do not necessarily know
the structure of the evolutionary tree.

In what follows, assume any particular evolutionary branching tree
structure 7" out of all possible rooted directed trees that yield the species
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of S as labelled twig tip end-nodes of the evolutionary process. Each pos-
sible tree T defines a set of ancestor interior-nodes 4,(S), ¢ — 1 of them
in the bifurcating case) located within the branching structure.

Think of evolution as a branching process that results in the accretion
of many tiny boxes. When two new species bifurcate from an ancestor
pode, they keep all the same tiny boxes they shared in common to that
point, but henceforth they begin independently accreting different tiny
poxes. If there is a pharmacological treatment for the disease, it will be
found in one of the tiny boxes that has been accumulated along the evolu-
tionary tree. In this model, the key structural assumption is that once a
cure is contained in a parent node, then it is fixed or locked into all of the
subsequent offspring nodes.

All statements that follow are with respect to the particular branching
structure T being assumed. In other words, for convenience we are drop-
ping the subscript T from the notation that follows, understanding that it
is implicitly there.

Let Q and j satisfy Equations (1-4), (1-5). Let P(;1Q) be the conditional
probability that species j does not contain a cure given that each species
of the set O does not contain a cure. Let A(Q) represent the set of all
ancestor nodes of the set of species Q. Then,

P(j1Q) = PLNA(Q)] (1-8)

The only way that the fact that Q does not contain a cure transmits infor-
mation relevant to whether or not j contains a cure is through the knowl-
edge that the ancestor nodes 4(Q) could not have contained a cure.
Let a(j, Q) stand for the most immediate ancestor of j in the set 4(Q).
en,

PA(Q) = P(jla(j. Q) (1-9)

The entire relevance for the probability that j does not contain a cure given

that 4(Q) does not contain a cure is summarised by the information that

a(j,Q), the most recent ancestor of j in A(Q), does not contain a cure.
Applying basic probability theory to this special structure,

P(l) = P(jla(j,Q)) - P@(, Qi)  Vie Q (1-10)
T.all(ing the maximum of both sides of Expression (1-10) over all i € Q
Yields
max P(jli) = P(jla(j,Q)) - maxPla(j, Q) (1-11)
i€eQ €
Now a(j, Q) (e A(Q)) must be an ancestor node for some (at least one)
€ Q. implying that
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Pa(,Q)k) =1 for some ke Q (1-12)
But then Equation (1-12) implies
maxP@a(j,Ol)) = 1 (1-13)
€Q

Combining Equation (1-13) with (1-11) with (1-9) with (1-8), and using
Definition (1-7) yields

P(IQ) = P(.Q) (1-14)
where
P(j, Q) = max P(j,i) (1-15)
eQ
By definition
_ PQu) 1-16
P(IQ) P(O) (1-16)

where P(Q) stands for the probability that none of the species of ¢ contain
a cure for the disease. Combining Equation (1-14) with (1-16) yields

PQUH=KQ)-P(GQ VQCS VjeS\Q (1-17)

Let TI(S) stand for the maximum value of P(S) under the set of con-

straints signified by Equation (1-17):

I1(S) == max P(S)
If TI(S\i) were known for all i S, then Equation (1-17) (with j =i, Q0 =
S\i) implies that TI(S) defined by Equation (1-18) must satisfy the dynamic
programming recursion

II{S) = min {II(S\i) - PG, SP(@ S\i)} (1-19)

€8

subject to Equation (1-17) (1-18)

It is convenient to transform (1-19) into an equivalent dynamic pro-
gramming equation that is additive in distances by taking negative loga-
rithms of all probabilities. Let

M(S) = ~log I(S) (1-20)

dij) = —log P(j) (1-21)
Combining Equation (1-15) with (1-6) with (1-21) yields

di,S\i) = ~log P(;,S\i) (1-22)

Using Equations (1-20), (1-21), (1-22), Equation (1-19) becomes trans-
formed into the equivalent dynamic programming Equation (1-1).
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From the isomorphism of Equation (1-19) with (1-1), the following im-
portant conclusion emerges. When the diversity function defined by (1-1)
is being maximised, there is a well defined sense in which the worst-case
probability of not being able to find a cure for the disease is simultaneously
peing minimised. Thus, provided that the distances are appropriately de-
fined, maximising diversity is equivalent to minimising the worst-case risk
of not being able to avoid some bad outcome in a portfolio choice prob-
lem. In other words, there is a not extremely bizarre model in which the
two concepts of diversity are really two different sides of the same coin.

1.5 A possible application to Nature Conservancy rankings

The Nature Conservancy is a private nonprofit U.S. organisation dedi-
cated to preserving rare or endangered species or natural communities
by land acquisition programmes. In carrying out such a programme, the
organisation requires operational criteria for determining site priorities.

Without going into full details, the Nature Conservancy approach to
ranking the biodiversity potential of sites is very roughly the following.
In Nature Conservancy methodology, the underlying “mapping units” or
“elements” (species or communities) are ranked by how rare they are as
measured by numbers of site occurrences: from Gl = critically important
(5 or fewer occurrences) to G5 = demonstrably secure (over 100 occur-
rences). Then individual sites containing an element are graded by the
likelihood that the element would survive on that preserved site: from A =
highly likely to D = very unlikely. These two factors are then combined
by prescribed guidelines to yield an overall biodiversity ranking of sites —
from BI = outstanding significance (e.g., presence of an A-ranked G1
element) to B4 = moderate significance (e.g., presence of a C-ranked G3
elémqnt). This ranking system is then used by the Nature Conservancy to
Prioritise the desirability of acquiring various sites.

The following question arises naturally. What is the relationship, if any,
between the Nature Conservancy methodology and the diversity function
approach described in this paper?

‘ U}lder a number of simplifying assumptions, the Nature Conservancy
E:dlversity rgnk ofa §ite can be interpreted as a rough approximation of
€xpected increase in biodiversity if the site were preserved. This may
¢ shown as follows.

y Suppose, for the sake of argument, t_he “elements” are species. Assume
.fthe_r that the distance from any species to any other species is one. (The

Iversity loss of each species is the same.)
or €Xt, suppose a spgf:ies i occurs on 1 sites. If any of these » sites is not
Otected, the probability of species i becoming extinct on that one site is
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g. Assuming independence, the probability of species i becoming extinct
in general (with loss of diversity one) is g”.

Now suppose that one of the sites can be protected. Suppose this pro-
tection lowers the probability of extinction of species i on that site from ¢4
to p (< g). Then the probability that species i goes extinct in general be-
comes

p q n—1

Defining
d=q-p

the increase in expected diversity from protecting site i is
AD = §qm!

In this special case, then, the change in expected diversity can be written
as some function

S, n)

where f'is an increasing function of 8 and a decreasing function of ». In
the above formula, 3 is a measure of the change in site-specific survival
probability or the degree of additional protection that would be given to
the survival of species 7 on the site under consideration if that site were to
be preserved.

The formula above provides a very rough justification of the Nature
Conservancy ranking system. A site obtains a higher biodiversity ranking
if it contains a more endangered species (n is smaller) and/or if the survival
probability of the endangered species on that site is more greatly improved
when the site is preserved (3 is bigger). The Nature Conservancy biodiver-
sity ranking system corresponds very roughly to identifying sites whose
preservation would cause a relatively large change in expected diversity.
The Nature Conservancy methodology and the theory of diversity func-
tions described in this paper thus dovetail quite nicely - at least under the
greatly simplifying “special case” assumptions described above.

1.6 Summary and conclusions

In this paper I have tried to argue that if we are to get a handle on the
conceptually very difficult problem of maximising diversity, we must be
prepared to define a diversity function. Attempts to define diversity func-
tions are in a beginning stage. I have tried to indicate one philosophy and
one approach to defining diversity functions. This is not the place to de-
velop fully the mathematical properties or the possible applications of the
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diversity function bping proposed.z_ Nor is there sufficient space to make
a complete comparison between this approach and others that have been

rOposed in the ht.era.lture.3 Howeve:r, .the reader should come away with at
jeast some appremahqn of the basic issues involved in defining appropri-
ately a diversity function, and some sense of how such a definition might
be constructed.

2 To some extent these tasks have been attempted in my two other papers on this subject,
Weitzman (1992, 1993).

3 For some examples of other approaches to diversity, see the appropriate papers cited as ref-
erences.



