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Often it is desirable to formulate certain decision problems without specifying a 
cut-off date and terminal conditions (which are sometimes felt to be arbitrary). This 
paper examines the duality theory that goes along with the kind of open-ended convex 
programming models frequently encountered in mathematical economics and opera- 
tions research. Under a set of general axioms, duality conditions necessary and suf- 
ficient for infinite horizon optimality are derived. The proof emphasizes the close 
connection between duality theory for infinite horizon convex models and dynamic 
programming. Dual prices with the required properties are inductively constructed in 
each period as supports to the state evaluation function. 

1. Introduction 

An important subclass of convex programming models of special interest to mathe- 
matical economists and operations researchers can be characterized by the following 
Markovian property: the choice of options available at any particular time depends 
only on the values of the state variables at that time. In other words, all of the in- 
fluence of past history on the present is summarized by current state variable levels. 

With such programming models, it is often not clear how to appropriately fashion 
an "end" to the underlying economic process. For concreteness, this dilemma is il- 
lustrated by means of the standard model of optimal economic growthl (although all 
remarks could be given a more general character). To maximize "utility" ( "gain") on 
an arbitrary finite interval one must first be able to evaluate the capital stock (state 
variables) at the end of that interval. Since the worth of capital is defined by the 
utility of consumption to which it gives rise, precise evaluation of this sort must await 
the solution of an analogous problem on a second interval. Repeated application of this 
reasoning leads to an infinite regress. The only way out of this regress would seem to be 
in recognizing that the future does not have a definite and forseeable end, and con- 
sequently optimization must be undertaken over an infinite horizon. 

Paradoxically, it is often easier to analytically solve an optimization problem modeled 
on an infinite interval of time than on a finite interval with arbitrary end conditions. 
In the infinite interval case some sort of a turnpike theorem describing limiting steady 
state behavior can often be demonstrated. This is typically of considerable aid in 
characterizing an optimal solution. 

Unfortunately, infinite horizon convex programming models with a free endpoint 
introduce some new difficulties which are not present in their finite-dimensional 
counterparts. For example, the very notion of an "optimal solution" for the infinite 
horizon case is somewhat vague and must be carefully defined. For this purpose we 
use a "classical" generalization of the usual finite-dimensional criterion, based on com- 
paring convergent infinite sums. The main difficulty in the infinite horizon case con- 
cerns the existence and form of strong (necessary and sufficient) duality relations. 
Duality is of course extremely useful, even essential, for characterizing an optimal 
solution. For finite-dimensional convex programming models, as is well known, strong 

* R-eceived March 1972; revised May 1972. 
1 See for example [1]-[6]. 
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duality relations can be derived. Expressed with the aid of efficiency prices, the duality 
theorem in the finite Markovian case takes the form of an intertemporal profit maximi- 
zation condition between periods plus a specific type of transversality condition on 
stocks left over after the last period. As we shall see, analogous necessary and sufficient 
conditions can be derived for the infinite-horizon case, with a transversality condition 
in the limit at infinity playing a key role.2 

Our proof of the existence of dual prices with the required characteristics is by induc- 
tion, using the functional equation approach of dynamic programming. The argument 
is direct and relatively simple. It is based on the key property of efficiency prices that 
in any period they form a supporting hyperplane to that period's state evaluation 
function. 

2. Definitions and Assumptions 

In what follows the index t, a positive integer, will denote the period of time from 
instant t - 1 to t. The phase vector xti, is an n-component vector denoting the state 
of the system during period t. At the beginning, x0 is considered given and denoted 
by 0o . In many economic applications, xti, is understood as a vector whose ith com- 
ponent represents the amount of capital of type i available for use at time t - 1 and 
throughout the tth period. The "gain" in period t is denoted ut . By "gain" might be 
understood "utility," "profit," "income," etc. depending on the specific features of the 
problem under consideration. Gains in each period are expressed in comparable units. 
In other words, all gains are measured as payout values discounted back to the first 
period. This is important because economic performance will be evaluated by the sum 
of single period gains. 

The amount of gain ut attainable in period t naturally depends on the initial and 
terminal states for that period, xti and xt . The 2n + 1-dimensional set of "transition 
possibilities" for period t, denoted Qt , consists of all realizable triples of the form 
(Xti , Ut, Xt). In other words a transition which yields gain ut can be made from state 
xti, at the beginning of period t to state xt at the end of that period if and only if 

(1) (xt-1 ,ut ,xt) E Qt . 

A program {ut, xt} is called feasible if for each t it satisfies (1) and 

(2) x0 = xo. 

It is supposed that for all t the set Qt obeys the following stipulations.3 
?1 If (x, u, y) E Qt, then x _ 0, y 0. 
?2 If (x, u, y) E Qt and if x > x, then (x, u, y) E Qt . 

2 Roughly speaking, it has been more or less well known that intertemporal profit maximization 
plus the transversality condition at infinity are sufficient for an optimum. It is also more or less 
well known that intertemporal profit maximization is a necessary condition, but not sufficient by 
itself. At the time this paper was written I thought it contained the first rigorous proof of the 
necessity of the transversality condition at infinity under fairly general conditions. Professor 
Menahem Yaari subsequently pointed out to me that B. Peleg had obtained essentially the same 
result in [3]. The proofs are very different. Peleg applies the Hahn-Banach theorem directly to an 
ingeniously constructed sequence of infinite programs, deriving in the limit a representation for 
the separating linear functional which allows the interpretation of a price system with the re- 
quired properties. In the present paper dual prices are inductively constructed in each period using 
a straightforward argument based on dynamic programming and the theory of convex sets. 

3 The standard vector notation is employed whereby x > y means that each component of x is 
> each component of y, x _ y means that each component of x is _ each component of y, and 
x > y means x _ y and x # y. 
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?3 If (x, u, y) E Qt and (x', u', y') E Qt, then (Xx + (1 -X)x', Xu + (1 -X)u', 
Xy + (1-X)y') E Qt for allX, O < X < 1. 

04 (0, 0, 0) E Qt* 
These four conditions are reasonably standard. The first requires that the state 

variables (capital) be nonnegative. The second is a free disposal type proposition. 
Condition 03 is the usual convexity assumption. The fourth condition is a "nothing 
ventured nothing gained" statement that it is possible to start with no capital, do noth- 
ing, gain nothing, and end up once again with no capital.4 Note that from 02 and 04 it 
follows that (x, 0, 0) E Qt for all x > 0. 

A fifth condition will guarantee that a strictly positive state vector is always "reach- 
able" at any time.5 This kind of a productivity stipulation is needed as a means of 
insuring sufficient "nonemptiness" in the production sets so that meaningful dual 
prices can be formed. 

05 For each t there exists an 't > 0 with corresponding {x, U}i?r?t satisfying 

(xt , U7t, xt) E Qt 1 < r < t, xo = xo, X Xt Xt 

Let S be the class of all summable infinite sequences ({ st} E S iff Et=1st converges). 
A program {ut, xt} is said to be allowable if it is feasible (satisfies (1), (2)) and if 
{ut} E S. The effect of limiting attention to programs with summable gains is to intro- 
duce a complete preference ordering on programs. A program {ut*, Xt*} is called 
optimal if it is allowable and if for any other allowable program { ut, ,t}, 

00 * 0 - Zt=l Ut >j =l Ut. 

It is typically more difficult to prove that in theory an optimal program must exist 
for an infinite-horizon model then it is for its finite horizon counterpart.6 Nevertheless, 
it seems to be empirically true that the definition of optimality used here isbroad enough 
so that optimal programs turn up for a great many infinite-horizon models of interest. 

3. Duality Theory 

Under the five axioms listed in the last section, the following duality theorem holds. 

THEOREM. For the allowable program {ut, xt*} to be optimal, it is necessary and 
sufficient that there exists a sequence of nonnegative n-dimensional price row vectors {pt} 
satisfying 

10 for t = 1, 

U1* + P1X1 U + PY {u, y/(xo, u, y) E Qi}, 
20 fort ? 2, 

Ut + ptXt -Pt-lXt-i > U + ptY - Pt-lX {x, u, y/(x, u, y) E Qt}, 

30 for t = oo, 
lim t-oo ptXt = 0. 

In cases where the level of gain is arbitrary, condition 04 amounts to a normalization conven- 
tion under which zero gain is always attainable. For the utility function in the theory of optimal 
growth, this means shifting its level so that zero utility is an absolute floor. 

5 Actually 05 could be replaced by slightly weaker conditions. But the resulting trivial gain in 
generality would not be worth the cost of increased notational complexity. 

6 Roughly speaking, the inherent discount rate used to discount (undiscounted) payouts into 
(discounted) gains must be at least as high as the inherent potential growth rate of (undiscounted) 
payouts. Otherwise the sum of one-period gains (each one of -which is normalized so that zero gain 
is always attainable in any state) may not converge. 
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Conditions 01 and 02 have the obvious interpretation that an optimal transition 
maximizes imputed profits.7 The transversality condition 03 is a special feature of in- 
finite-horizon programming models with a free endpoint. It can be interpreted as saying 
that in an optimal program the present value of "left over" capital must eventuallv 
go to zero. This limitation on the rate at which capital ought to be accumulated can be 
very important in problem solving applications. It prevents the kind of nonoptimality 
which results from piling up too much capital in the limit as time goes to infinity. 

4. Proof of the Duality Theorem 

Sufficiency 

Let {Iit, Xt} be any allowable program. Using 01 and 02, 

E t=1 Ut E t=1 Ut 

= (U1* + P1X1*) - (U1 + P1X1) + Zt=2 [(Ut* + PtXt - Pt-lXt-1) 

- (t + PtXt - pt-lxt-1 )] + PT(XT - XT) 

> P T (;XT XT) 

Passing to the limit as T o-o, from 03 and the fact that PTXT > 0 it follows that 

zt=1 U ? Z t=l it . 

Necessity 

We first demonstrate the following basic separation lemma of convex programming 
theory. 

LEMMA 1. Let v represent an i-dimensional vector and w an m-dimensional vector. 
Suppose M is an (1 + m) -dimensional convex set with the property that 

(3) (v, w) E M=*w _ 0. 

Assume that there exist vector pairs (v, 0) E M and (v, w) E M with w > 0. Let f(w) 
be a concave nondecreasing function of w defined for all w ? 0 and let c be an i-dimensional 
row vector. Suppose there is a pair (v*, w*) E M satisfying 

(4) cv* + f(w*) = max(., w)EM [CV + f(w)]. 

Then there exists an m-dimensional price row vector 7r > 0 satisfying 

(5) cv + 7rw* = max(v, w)EM [CV + irW], 

(6) f(w*)- w* = maxw>O Vf(w) - Nw]. 

PROOF. Introducing the variable z, in the (1 + 1 + m) -dimensional space define 
sets A and B as follows: 

(7) A {(z, v, w)/(v, w) E M, z > z*J, 

(8) B {(z, v, w)/w _ 0, z < cv + f(w)}, 

where 

z*-cv* + f(w*). 

7There are various other equivalent ways of writing the optimality conditions 10, 20. For 
example, they could be expressed as a discrete version of the so-called "maximum principle" [6]. 
The present formulation is chosen because it seems the simplest. 
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Using the concavity of f(w), the convexity of M, and (4), it is easily verified that 
the sets A and B are convex and disjoint. Applying the separation theorem, there is a 
nonzero row vector (X, 0, A) and a scalar y such that 

(9) (z, v, w) E A Xz + Ov + &w _ y, 

(10) (z, v, w) G B Xz + Ov + &w _ y. 

Since (z, v*, w*) G A for all z > z* and (z*, v*, w*) G B, (9) and (10) yield 

(11) ,y = Xz* + 0v* + w* 

It follows from (8) that (10) cannot hold unless X < 0, 0 = -Xc, and, by mono- 
tonicity of f(w), i/ 2 0. 

Suppose that X = 0, implying 0 = 0. From the nontriviality of (X, 0, A), + s 0. 
From (7)-(10) and (3), 

(v, w) E M => /w =. 

Alternatively substituting (v, wD) and (v, 0) in the above condition yields a contradic- 
tion with st > 0, forcing the conclusion X < 0. 

Dividing (9), (10), (11) by -X > 0 and defining 7r -O/X, 

(12) (z, v, w) C A =-z + cv + rw < -z* + cv* + rw*, 

(13) (z,v,w) C B=-z+cv+7rw> -z*+cv*+ 7rw*. 

Checking the definitions of A and B in (7), (8), conditions (12), (13) become 

(14) (v,w) C M=>cv+ 7rw < cv*+ rw*, 

(15) w > 0 => -f(w) + 7rw ? -f(w*) + 7r*W*. 

Since (14) is equivalent to (5), and (15) to (6), the lemma has been proved. 
Proceeding with the main body of the proof, consider for each t the following im- 

proper function which maps the n-dimensional nonnegative orthant E+n into the 
extended real halfline [0, + X ]: 

(16) (Pt(x) sup .=z+1 u,, 

subject to 

(17) {urlr?e+i C SI 

(18) (x,_1, u,, xI,) C Q,, T _ t+ 1, 

(19) Xt = X. 

For each x C E+', (Pt(x) is well defined and nonnegative (although it might be 
infinite) because from 02 and 04 the following is a solution of (17)-(19): 

Xt =x, x, = 0, u, = 0 for T >- t + 1. 

The function (Pt(x) is sometimes called a "state valuation function" because it gives 
the value of an optimal program starting at time t with initial endowment x. 

LEMMA 2. For all t, f t(X) is a nonnegative concave function, nondecreasing in x and 
satisfying for each x ? 0 the following functional equation of dynamic programming 

(20) (pI(X) = supUU,Y/(X,U,Y)EQt+l [u + ('P+?(y)]. 
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PROOF. That jot(x) is nonnegative has already been noted. We now show that 
$ot(x) is a proper (finite) function defined on E+n. 

If x e E+, y E E+, and ft (x) = oo, then t(Xx + (1-X)y) oo forall X E (0,1). 
This follows directly from the definition of pt(x) (16)-(19), from nonnegativity of 
'Pe(y), and from the convexity of production possibilities ?3. 

Suppose there is an x E E+ with st(x) = oo. Since xt > 0, there exists 
a ,u, 0 < ,u < 1, such that xdt ?> Ax. Then j = Ax + (1 - p)y, where 
y (t- A)/(lx-) ) > 0. From the remarks of the previous paragraph PtQ ) = X. 
Since xk is attainable in period t (cf. 05), the above equation contradicts optimality of 
the program {ut*, xt*. Thus sot(x) < oo for all x _ 0. 

That sot(x) must be a concave function is easy to verify using 30 and the definition 
(16)-(19). From 02, .,t(x) is nondecreasing in x > 0. 

The state valuation functions {Ipt(x)} must satisfy (20) for all x > 0 because other- 
wise there would be an immediate contradiction with the definition (16)-(19). This 
concludes the proof of Lemma 2. 

For t 1 the definition of an optimal program and of spl(x) implies 

(21) u1* + ('l(xl*) > u + sol(Y) {u, y/(xo, u, y) E Ql1. 

Apply Lemma 1, taking 1 = 1, m = n, v u, w y, M {(u, y)/ Go, u, y) E Ql}, 
w--b 1, f(w) -- (y), c 1, and noting from (21) that (4) is satisfied. There must 
exist a nonnegative price row vector pi (= ir) satisfying 

(22) U1* + plxl* > u + PiY {u, y/(xO, u, y) E Ql}, 

(23) (1l(xl*) - Plxl > sp(x) - p1x {x/x _ 01. 

Now let t be an arbitrary positive integer. Suppose there is a price vector Pt > 0 
supporting 'pt(x) at x = xt i.e., 

(24) (ot(xt*) -ptt > Vot(x) - px {x/x > 01. 

For the induction step it will be necessary to prove that there exists a dual price 
vector pt+l > 0 simultaneously satisfying 

(25) ut+1 + pt+xt+i - ptxt* > u + pt+iY - ptx {x, U, y/(x, u, y) E Qt+11, 

(26) (t+l(x*t+) - pt+lXt+i ? ft+1(x) -pt+ix {x/X > 01. 

From (23), condition (24) holds for t = 1. Since (22) has already been demon- 
strated, 10, 20 will have been proved if for arbitrary t we can show (using (24)) how 
to construct a vector pt+l > 0 with the desired properties (25), (26). 

By (20) we know that for any x ? 0 

(27) pt(x) ?> u + (Pt+,(y) Iu, y/(x, u, y) C Qt+?1. 

From the definition of an optimal program and of sot(x) it is clear that 

(28) fot(xt*) ut+l + Vt+l(x*t+l). 

Substituting from (27) and (28) into (24), 

(29) Ut+l + Vt+1(x*t+) - ptt > u + Vt+1(y) - pix {x, u, y/(x, u, y) C Qt+l. 

Once again apply Lemma 1, this time taking 1 = n + 1, m = n, v (x, u), w y, 
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M Qt+1, wB t+ ,f(w) -pt+i(y), c (-pt, 1) and identifying (29) with (4). 
Conditions (25), (26) drop out immediately after setting pt+l = 7r > 0. This com- 
pletes the induction step and proves 10, 20. 

To verify the transversality condition, set x = 0 in (24), yielding 

'Ot(Xt*) - vo(O) > ptt. 

From Ipt(xi*) > (t(O) > 0, and ptxt* > 0 and 

limt'O Spt(Xt*) = limt- Tt+ UT* = 0, 

condition 30 directly follows. This concludes the proof of the theorem. 
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