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Abstract. The point of departure for this paper is the familiar prototype fisheries model where a
fictitious sole owner harvests a fish population to maximize present discounted profits. The paper
answers analytically the following question. “What happens to a policy when the sole owner also
values biodiversity, as well as profits?” It turns out that the size of the steady-state stock and the
number of species preserved are both higher, when species diversity is positively valued. This paper
provides a sharp characterization of the optimal policy in terms of the usual economic parameters
and an exogenously introduced willingness-to-pay function for species preservation.
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1. Introduction

In this paper we take a fresh look at the trade-off between harvesting and biodiver-
sity. Stressing the Aristotelian principle, today referred to as Occam’s Razor, that
“entities must not be multiplied beyond what is necessary”,2 we strive to keep the
discussion as simple and intuitive as possible. The core analysis is conducted in
three steps. We start by introducing the classical linear harvesting problem. We then
introduce completely symmetric species, which each have a preservation value.
Typically, species loss is irreversible, but to understand better the irreversible case,
we solve a hypothetical problem where species loss is assumed to be reversible,
and where the creation of new species is costless.

Both the classical linear harvesting problem and the augmented linear
harvesting problem have a solution which involves a most rapid approach (MRA)
towards a steady state. Introducing irreversible species loss in the third step is
shown to imply a solution, which, depending on the initial number of species,
resembles either the linear harvesting problem, its augmented version, or a combi-
nation of the two. The intuition behind the solution is procured with the help of a
simple diagram. The formal proof of the main theorem is relegated to the appendix.
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In the final section of the paper, we show that the structure of the optimal policy
is robust with respect to the introduction of uncertainty about the minimum viable
population level.

2. The Model

THE CLASSICAL LINEAR HARVESTING PROBLEM

A classical economic resource management problem is the optimal harvest of a
renewable resource, say a fish population. A simple and well-defined solution to
this problem emerges when the Hamiltonian of the optimization problem is linear
in the harvest (the control variable). To derive the first best solution, it is convenient
to adopt the fiction of a “sole owner”, who has the complete rights to the exploita-
tion of a given fish population. He is assumed to act to maximize profit, subject to
the initial stock of the fish population and its growth dynamics. To be more specific,
the optimal management problem is characterized as the following:

Max
∫ ∞

0
B(x(t))h(t)e−δtdt (1)

{h(t)}

subject to

ẋ = F(x(t)) − h(t) x(0) = x0

hmin ≤ h(t) ≤ hmax

whereδ is the discount rate, andB(x) is the averagenet benefit function, i.e. the
price minus average harvesting cost. In other words, the social planner maximizes
the present value of the harvest,h(t), subject to the growth functionF(x(t)) and
the initial conditionx(0) = x0. The harvest level is constrained by lower and
upper limits,hmin andhmax, respectively. The average net benefit function,B(x),
is assumed to be twice continuously differentiable, strictly concave, and non-
decreasing inx. The growth functionF(x) is twice continuously differentiable
with F(0) = 0,F′(0) =∞, F′′(x) ≤ 0, andF(x) ≥ 0 for 0≤ x ≤ κ, whereκ is the
carrying capacity of the environment withF(κ) = 0.

Note that both the net benefit function and the growth function are autonomous,
i.e. they do not explicitly depend on the time variablet. Then, following Clark
(1990), it is straightforward to show that the singular path is a steady state defined
by a real number̂xc satisfying the following equation:

φ(x̂c; δ) = F ′(x̂c)+ B ′(x̂c)F (x̂c)[B(x̂c)]−1 − δ = 0. (2)

This equation indicates that, in the steady state, the marginal productivity of the
resource stock plus the capital gain of an increase in the resource stock is equal
to the discount rate. It is easily shown that the assumptions aboutF(x) andB(x)



HARVESTING VERSUS BIODIVERSITY 357

guarantee the existence of a steady state, since limx→κφ(x; δ) < 0 < limx→0φ(x;
δ), andφ(x; δ) is continuous.

If φ′(x̂c; δ) < 0 at any steady state, then the steady state is unique as a direct
consequence of the fact that the number of steady states is odd. This is true ifx̂c >

x̄, wherex̄ is the golden rule resource stock defined byF′(x̄) = 0, and generally
true if the productB(x)F(x) is strictly concave inx. Under uniqueness, the steady
state stock will be a decreasing function of the discount rate.

From standard optimal control theory (cf. Clark 1990), we also know that the
optimal path towards the steady state is a most rapid approach (MRA), i.e.,

h∗(t) =
 hmax wheneverx > x̂c
F (x̂c) wheneverx = x̂c
hmin wheneverx < x̂c.

(3)

THE AUGMENTED LINEAR HARVESTING PROBLEM

We are now ready to reinterpret the augmented linear harvesting model in terms
of an optimal trade-off between harvesting and biodiversity preservation. Letn(t)
denote the number of species3 andx(t) the total resource stock (biomass) at timet.
To highlight the structural aspects of the trade-off, we assume extreme symmetry,
such that the resource stock of each species is determined byxi(t) = x(t)/n(t),
wherexi(t) is the total biomass of speciesi. Each species is also assumed to have a
common minimum viable population ofk0.

Now letw(n), withw′(n) < 0, be the willingness to pay for preserving a species
whenn species exist. It may be thought of as an answer to an “as if” question in an
ideal contingent valuation study. We now define

W(n) =
∫ n

0
w(s)ds. (4)

Hence,W(n) is the total willingness to pay for preservingn species. The function
is strictly concave, twice differentiable, and increasing inn. Note thatW′(n) =w(n)
> 0, andW′′(n) = w′(n) < 0.

It is most reasonable to treat the loss of species as irreversible, but let us for
the sake of argument assume that species are perfectly, and costlessly reversible.
In such a world, since the marginal species has a positive value, along an optimal
program, one will always choose

n(t) = x(t)/k0, (5)

i.e. any given total biomass will be used to create the maximum number of viable
species. To get most easily to the essence of the problem, we will assume that all
species are completely symmetric in everything, including reproductive dynamics.
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This means that we can, provided that each species is as large as the minimum
viable population, work with an aggregate macro form of the biomass equation,4

i.e.,

ẋ = nẋi = ng(xi)− nhi = F(x)− h. (6)

In other words, the growth dynamics equationẋ = F(x) – h can be given a reduced
form macro interpretation. Each symmetric species has a constant return to scale-
like mini-version of it, which can be aggregated by multiplication with the number
of species. When the species is completely reversible, the continuously differenti-
able relationship betweenx andn given by equation (5) determines the dynamics
of n as soon as the dynamics ofx is given.

Now, the optimization problem can be written in the following manner:

Max
∫ ∞

0
[B(x(t))h(t)+W(x(t)/k0)]e−δt dt (7)

{h(t)}

subject to

ẋ = F(x(t)) − h(t) x(0) = x0

hmin ≤ h(t) ≤ hmax. (8)

The harvesting versus biodiversity problem is now formulated in a manner
which, again, implies that the singular solution, is a steady state,x̂a, determined
by the following condition:

8(x̂a; δ) = F ′(x̂a)+ B
′(x̂a)
B(x̂a)

F (x̂a)+ W
′(x̂a/k0)

k0B(x̂a)
− δ = 0. (9)

The interpretation is that in the steady state the marginal productivity of the
resource stock plus the capital gain of an increase in the resource stock plus the
“marginal benefit” from the resource stockper seis equal to the discount rate. The
optimal policy is a MRA to the steady statex̂a.

It is straightforward to show that the steady state stock is higher when there is
a preservation value involved, i.e.x̂a > x̂c. Under assumptions analogous to those
introduced in connection with the classical linear harvesting problem, the steady
state stock and the number of species will be unique and it is a decreasing function
of the discount rate. An exogenous negative shift in the marginal preservation value
of speciesW′(x̂a/k0) has the same qualitative effect on the steady state as the change
in the discount rateδ. This is also reflected in the relationship between the two
steady state stockŝxc and x̂a, the former implying a marginal preservation value
equal to zero. It is also a simple exercise to show that an increase in the minimum
viable population,k0, decreases the steady state biomass as well as the number of
species.
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THE LINEAR HARVESTING PROBLEMUNDER IRREVERSIBLESPECIES LOSS

If species loss is irreversible, we will have to modify the setup slightly, and the new
setup will change the optimal solution. As we will show, however, the solution can
be related to the two steady states above, in a rather simple manner.

The most important change in relation to the reversible case, is that the number
of species will now be determined by the following condition:

n(t) = min[x(t)/k0, n(0)]. (10)

This means that the number of species is bounded from above by the initial number
of species, provided that this entity is less than the maximum number of viable
species at timet. In other words, it is expliticly assumed that one cannot create new
species. If the initial number of species is greater than the maximum number of
viable species at timet, the latter determines the existing number of species. Using
equation (10), we can define the preservation value function as:

U(x(t)) ≡ W {min[x(t)/k0, n(0)]} (11)

which has the following properties:

If x(t)/k0 < n(0), thenU ′(x) = U ′+(x) = U ′−(x) = W ′(x/k0)/k0

If x(t)/k0 > n(0), thenU ′(x) = U ′+(x) = U ′−(x) = 0 (12)

If x(t)/k0 = n(0), thenU ′+(x) = 0, andU ′−(x) = W ′(x/k0)/k0.

In other words, the preservation value function has a kink atx(t) = k0n(0). The
optimization problem can now, in its reduced form macro version, be rewritten as:

Max
∫ ∞

0
[B(x(t))h(t)+ U(x(t))]e−δtdt (13)

{h(t)}

subject to the growth dynamics equation and the harvest constraint in Equation (8).
The optimal policy will now, in a very natural way, depend on the initial number
of species. To understand the intuition, it is worthwhile presenting the reasoning
behind the optimal policy with the help of a simple diagram (Figure 1).

In the diagram, the main relationship is a one between the number of species and
the stock of the total biomass,n(t) = x(t)/k0, which will hold true at each instant of
time when species loss is reversible and the creation of new species is costless. This
is the line OA shown in Figure 1. The steady state in the classical linear harvesting
problem, x̂c, as well as the steady state of the augmented reversible harvesting
problem,x̂a, and their corresponding steady state number of species have their loci
on this diagonal.
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Figure 1. An illustration of the optimal harvest policy.

For starting points above the “OA-line”, we haven(0) > x(0)/k0. The symmetry
assumption implies that all species would have a lower stock level than the
minimum viable population level withx(0)/n(0) < k0 and thereby would become
extinct. In other words, no harvesting policy can be sustainable in the non-
applicable (NA) region within the region above the OA-line. Thus, in the following
analysis, we will focus on the case below the OA-line withn(0) < x(0)/k0.

We have split up the vertical axis into three regions, HISS (heavy initial shortage
of species), SISS (slight initial shortage of species), and IES (initial excess of
species). These are related to the steady state number of species that is implied by
the previous two linear harvesting problems. To be more specific, all equilibrium
resting points lie on the heavy shaded kinked line segments in Figure 1, which
represent a sort of “combination” of the two simple cases considered previously.
Based on the equilibrium number of speciesn̂c = x̂c/k0 andn̂a = x̂a/k0 for the two
typical cases, we define the regions by the following inequalities:

n(0) < n̂c HISS

n̂c ≤ n(0) ≤ n̂a SISS (14)

n̂a < n(0) IES.

For feasiblen(0) in SISS region, it is true thatU′(x) = 0, and it is costless in terms
of preservation value to decrease the biomass while keeping the number of species
intact. Hence, from the linearity of the Hamiltonian in the harvest, it is optimal to
approach the OA-line by a MRA. Once on the OA-line, it would be desirable to
move to (̂xa, n̂a), but this is not feasible when species loss is irreversible. The best
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one can do is to remain on the OA-line by harvesting the growth of each species.
In the IES case it is feasible, and also optimal, to follow the same policy as in the
reversible case and approach the steady state (x̂a, n̂a) by a MRA policy. This is
achieved by the extinction of species along OA down to the steady state. Note that,
since the number of species as such is valued, and the rate of interest is positive, it
is not optimal to start harvesting by depleting species. It is always better to deplete
the biomass of existing species.

For n(0) in the HISS region there are two cases. The total biomass is either
larger or smaller than̂xc. In the former case the optimal policy is MRA withh
= hmax, without depleting a single species. When the biomass is equal tox̂c, the
harvest is put equal to growth and the system remains at (x̂c, n(0)).

In the latter case, for starting points to the left ofx̂c, and below OA, the biomass
is below the optimal steady state stock of the linear harvesting problem. In this
situation, it is feasible and optimal to move to its steady state as quickly as possible,
by increasing the biomass of each existing species as fast as possible by settingh
= hmin.

We can sum up the above intuitive discussion of the optimal solution in the
following theorem:

THEOREM: if n(0) > n̂a (IES), the optimal policy is MRA ofx(t) to x̂a, with
extinction ofn(0) − x̂a/k0 species. There are two potential optimal ways to do
this. If, x(0)/k0 = n(0), the population of ecah species is the minimum viable by
definition, and the number of species is reduced ton̂a. If n(0) < x(0)/k0, each
species is harvested by MRA down to its minimum viable population, thereafter
species are harvested until the number equalsn̂a.

If n0 ≤ n̂c (HISS), the optimal policy is MRA ofx(t) to x̂c with all species
preserved.

If n̂c ≤ n(0) ≤ n̂a (SISS), the optimal policy is MRA ofx(t) to n(0)k0, with all
species preserved.

Proof: The optimality of the most rapid approach for all starting points follows
from a slightly modified proof of Proposition 3 in Spence and Starrett (1975). The
details are available in the appendix.

Clearly, the steady state harvests in the three possible cases areh = F(x̂a), h =
F(x̂c) andh = F(n(0)k0), respectively.

In the HISS case, the steady state stockx̂c cannot be reached by keeping
the stock of individual species at their minimum viable levels, due to the heavy
shortage of species withn(0) < n̂c. the best that can be done is to compensate for
the lack of species by raising the stock of each species over the minimum viable
level. In the SISS case, once on the OA line, one “would like to follow” the optimal
policy under reversible species, and move to (x̂a, n̂a). This is no longer feasible, and
the best thing to do is to stop atx = k0n(0) with all initial species preserved. The IES
case involves too many species, and depending on whether one starts above or at
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the minimum viable population, one either brings the stock down to the minimum
viable level, and then decreases the number of species or, in the latter case, the
abundance of species is harvested from the start.

The reason why the populations, in the former case, are brought down to their
minimum viable levels, is that it is possible in this manner, to temporarily enjoy
the same level of harvest together with a larger number of species, than under any
other program that takes the system to the steady state at maximum speed.

While the HISS case is most akin to the classical linear harvesting problem, the
IES case resembles the augmented linear problem with starting points above the
optimal stock. The SISS case has the MRA property from both the classical and
augmented linear harvesting problems. It has, however, a special property, which
it shares with the HISS case, in that the initial number of species determines its
steady state stock of each species.

3. The Basic Model Extended to Uncertainty

Note that the basic model presented above has a steady state stock per species at
the knife edge which is the minimum viable population level. It may be argued
that a small negative perturbation from such a solution would drive the ecosystem
to become functionally unstable. In this section, we extend the basic model by
taking into account an uncertainty measure associated with the minimum viable
population level, and show that the structure of the solution to the basic model
remains relevant.

Assume that the social planner does not know the exact size of the minimum
viable population, and thus treats such a threshold as a random variablez. Let the
probability density of this variable beω(z) with z ∈ [a, b], then the probability
for the actual stock per species over the threshold can be described by the c.d.f
�(x/n) = ∫ x/n

a
ω(z)dz, wherex is the total resource stock andn the number

of species. In case the actual stock per species falls down below the threshold,
we assume a loss of instantaneous utilityC < 0. With these assumptions, the
optimization problem (cf. Cropper 1976) becomes

max
{h(t),n(t)}

∫ ∞
0
[�(x(t)/n(t))(B(x(t))h(t)+ U(n(t)))
+(1−�(x(t)/n(t)))C]e−δtdt (15)

subject to the resource dynamics and harvest constraints in Equation (8).
In the case of reversible species stocks, a straightforward application of the

maximum principle leads to a singular path (the steady state solution)(x̂, n̂), and
the optimal path would be a MRA to the steady state. With irreversible species loss,
if n0 > n̂ (IES), then the optimal policy would be to deplete then0 − n̂ redundant
species by the MRA, whereas, ifn0 < n̂, the number of species is constrained by the
initial number. In the latter case, the solution is similar to the HISS case described
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in the previous section. Note that under endogenous risk, we obtain an isolated
steady state, and the SISS case disappears.

It can be readily shown that the steady state stock per speciesx̂/n̂ increases with
the lossC, meaning that an increase in the penalty of functional instability induces
a higher steady state level of resource stock per species. This is intuitively clear
and consistent with the basic result derived by Cropper (1976).

4. Concluding Comments

Every resource economist is familiar with the standard model of optimal fish-
eries management. This simple model of renewable-resource harvesting begins by
postulating a fictitious “sole owner,” who can be envisioned as either a private
company or a government agency. The sole owner possesses complete property
rights over the exploitation of a given fish population, and the aim is to determine a
harvesting policy that maximizes present discounted profits. As is also well known
in this model, under the standard assumptions the optimal harvesting policy is
simple and intuitive, taking the form of a most-rapid-approach to the profit maxi-
mizing steady state. Simple as it is, the standard model is evidently considered to
be useful overall, for in practice it is employed as a starting point for most articles
and books on the optimal management of renewable resources. We propose also
to use the standard model here as a point of departure. Like others who build
upon this model, we are trying to understand what happens when the model is
tweaked in a particular direction. The direction in which we are interested to tweak
the model is toward understanding analytically what happens to an optimal policy
when society, in the form of the sole owner, values biodiversity per se, as well as
profits.

Naturally, the answer to the question of “what happens” depends uponhow
much is biodiversity valued relative to profits. Our method for capturing this
aspect of the problem is by way of introducing exogenously a “willingness-to-
pay-for-species-diversity” function. The enhanced model yields a relatively sharp
solution that indicates clearly how willingness to pay for species diversity interacts
with the more usual economic profitability considerations to determine an optimal
policy.

The analysis shows that when biodiversity is positively valued, for whatever
reason, then the message of the standard fisheries model changes somewhat. In the
standard model, the fish population is harvested to the level where the marginal
economic rate of return on investment in the fish stock equals the prevailing real
interest rate. Now, when biodiversity is valued along with profits, an interior solu-
tion corresponds to the fish population being harvested at the level where the
economic rate of return equals the prevailing interest rateminusthe willingness
to pay for preserving the marginally threatened species, expressed as a fraction of
economic benefits. Additionally, there exists here a conceptually interesting corner
solution, caused essentially by the fact that species extinction is irreversible. It
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is quite possible to be “stuck” in an initial corner situation where the relevant
factor limiting harvests is the unwillingness to have another species become extinct,
which predominates over narrow economic profitability considerations (the HISS
and SISS regions). This paper explains and interprets the exact connection between
initial conditions and the emergence of an interior or a corner solution.

Some features of the model will, of course, disappear in a more general setting,
such as the MRA towards the steady state. However, it is our feeling that this basic
insight of the model will survive the introduction of a more realistic framework.5

Notes

1. The authors would like to thank the two anonymous referees for valuable comments and
suggestions.

2. In Latin: “Non sunt multiplicanda entia praeter necessitatem”. William of Ockham (1284–1349)
was an English philosopher and theologian.

3. For convenience we treat the number of species as a continuous variable, but everything goes
through for an integer-valuedn. In the latter case, the relevant value will be either the integer
just-above or just-below the value ofn we use here.

4. This can be rigorously done by assuming that each species has a constant return to scale growth
function ẋi = g(xi , κi ), wherexi = x/n, andκi = κ /n are, respectively, the stock of speciesi and
speciesi’s share of the total carrying capacityκ . From this we obtainng(xi , κi ) = G(x, κ) = F(x).
As one referee pointed out, there is a body of literature that argues that biodiversity is important
because of its impact on productivity over a range of environmental conditions (see Holling et
al. 1995). To reflect these resilience arguments the growth function would have to be written as
F = F(x, n). This represents a seemingly trivial extension of the model, but it introduces a much
more complicated dynamics.

5. For a comparison with corresponding result in a more elaborated framework the reader is referred
to a recent paper by Li and Löfgren (1998).

Appendix: Proof of Theorem

In this appendix we give a formal proof of our main result. The proof relies on a general
result in Spence and Starrett (1975).

Proof: DefineM(x)≡ U(x) + B(x)F(x) and N(x) =−B(x). Our problem equations (7)–(8)
can now be translated into:

Max
∫ ∞

0
[M(x)+N(x)ẋ]e−δt dt

subject to

hmin ≤ h ≤ hmax

x(0) = x0.
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Now define

S(x) =
∫ x

0
N(z) dz

V (x) = M(x)+ δS(x)
Intergrating the objective function by parts, using the above definitions, translates it
into:

Max
∫ ∞

0
V (x)e−δt dt .

Our underlying assumption assures thatV (x) is concave and everywhere differentiable
except at the pointx = n(0)k0, where the following left and right hand derivatives apply:

V ′−(n(0)k0) = W ′(n(0)k0)+ B ′(n(0)k0)F (n(0)k0)+
B(n(0)k0)F

′(n(0)k0)− rB(n(0)k0)

V ′+(n(0)k0) = B ′(n(0)k0)F (n(0)k0)+ B(n(0)k0)F
′(n(0)k0)− rB(n(0)k0)

It is also easily confirmed that: limx→∞ V′(x) > 0, andlimx→∞ V′(x) < 0.
The above conditions guarantee thatV(x) has a unique maximum,x∗, on (0,∞). Our

problem now satisfies all the conditions of Proposition 3 in Spence and Starrett (1975).
This means that the optimal policy is a MRA tox∗.

It remains to characterizex∗. There are three possible cases to consider.

Case 1: n(0)k0 < x̂c HISS

In this case it is easily confirmed thatV ′+(n(0)k0) > V ′(x̂c) = 0, and hence that the
optimal steady statex∗1 > n(0)k0. Thus, the relevant first order condition isV

′
+(x∗1) = 0,

which yieldsx∗1 = x̂c.

Case 2: n(0)k0 > x̂a IES

Here it holds thatV′−(n(0)k0) < V′(x̂a) = 0 and hence thatx∗2 < n(0)k0. Thus, the relevant
first order condition isV′−(x∗2) = 0 andx∗2 = x̂a.

Case 3: x̂c ≤ n(0)k0 ≤ x̂a SISS

In this case we haveV′+(n(0)k0) ≤ 0≤ V′−(n(0)k0), andx∗3 = n(0)k0.
The rest of the proof follows directly from the definition of a MRA policy, as applied

to the above three cases.

Q.E.D.
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