
ON DIVERSITY* 

MARTIN L. WEITZMAN 

An oft-repeated goal in many contexts is the "preservation of diversity." But 
what is the diversity function to be optimized? This paper shows how a reasonable 
measure of the "value of diversity" of a collection of objects can be recursively 
generated from more fundamental information about the dissimilarity-distance 
between any pair of objects in the set. The diversity function is shown to satisfy a 
basic dynamic programming equation, which in a well-defined sense generates an 
optimal classification scheme. A surprisingly rich theory of diversity emerges, 
having ramifications for several disciplines. Implications and applications are 
discussed. 

I. INTRODUCTION 

"Loss of diversity" is a much-lamented condition nowadays. 
One sees such a phrase applied loosely in a variety of contexts, 
including the realms of biological species, landmark buildings, 
historic sites, languages, artifacts, habitats, even ways of life. Often 
there is an implicit injunction to preserve diversity because it 
represents a higher value than other things, which by comparison 
are "only money." Yet the laws of economics apply to diversity also. 
We cannot preserve everything. There are no free lunches for 
diversity. Given our limited resources, preservation of diversity in 
one context can only be accomplished at some real opportunity cost 
in terms of well-being forgone in other spheres of life, including, 
possibly, a loss of diversity somewhere else in the system. 

Actual implementation of any injunction to "preserve diversity" 
is hampered by the lack of an operational framework or objective 
function. We badly need a more-or-less consistent conceptual 
framework and a more-or-less usable measure of the value of 
diversity that can tell us how to trade off one form of diversity 
against another. The aim of this paper is to provide such a 
framework and such a measure. 

If a value of diversity function can be meaningfully postulated, 
then it can, at least in principle, be made commensurate with other 
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benefits and costs, and the general form of the resource allocation 
problem is in principle well defined. There are presumably some 
limits on the feasible preservation actions that can be taken, 
represented by budget constraints or other limitations. Each 
feasible action induces a probability distribution for what survives, 
for how long. (There is, perhaps, a significant amount of correla- 
tion in survival functions among some species.) The optimal 
preservation policy may be defined as the feasible action that yields 
the highest present discounted expected value of diversity (plus 
whatever other net benefits are attributed to various species). This 
is in the form of a classical constrained optimization problem. Since 
the constraint set is in principle well defined, the major unresolved 
conceptual issue involves defining a meaningful value-of-diversity 
objective function. The remainder of the paper concentrates on this 
critical aspect of the problem. 

II. THE NATURE OF THE PROBLEM 

For convenience and consistency, in what follows I shall 
employ largely biological metaphors. However, as was pointed out, 
the mathematical essence of the problem applies to a broader 
setting and is perhaps more appropriately understood at a higher 
level of abstraction. The basic underlying unit will be called a 
"species." A "species" could stand for a genuine species in the 
traditional biological sense of being a reproductively isolated group 
having a history of strict genetic divergence from other groups; or, 
"species" could mean an individual, a subspecies, a specimen, an 
object, or almost anything else depending on the context. In this 
paper a species corresponds to what is sometimes called an 
operational taxonomic unit (OTU), broadly defined. 

Assume that there is given some very big universe S contain- 
ing a very large number h of potential species. Of more immediate 
interest to the decision maker is some set S C S containing n 
member species (written as S I = n). Assume that if i and j are 
members of S, then some distance or dissimilarity measure 
between them d(i,j) is given. 

The crucial starting point essentially takes as given a cardinal 
measure of the degree of dissimilarity or difference between any 
pair of species (i,j), called their distance d(i,j), which satisfies' 

(1) d(ij) > 0O 

1. Note that I am not assuming the triangle inequality holds, so that in 
principle the formulation covers nonmetric distances. 
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(2) d(ii) = 0, 

(3) d(i,j) = d(j,i). 

The exact origin of the distance measure (1)-(3) is not directly 
relevant to the purposes of this paper. What matters is that for any 
pair of species belonging to S there is a nonnegative, symmetric 
distance measure that meaningfully expresses the difference or 
dissimilarity between the pair. If I S I = n, then altogether there are 
n(n - 1)/2 such pairwise symmetric distance-dissimilarity coeffi- 
cients, which form the given primitives for the problem of quantify- 
ing the diversity of S. 

The distance between two species might be derived as a 
hedonic weighted sum of distances between more fundamental 
micro-characteristics, so that conceptually d(i,j) represents the 
weighted number of observable "character-state differences" be- 
tween species i and j. For architectural examples the micro- 
characteristics might involve the period of the building, its style, 
distinguishing features, location, and so forth. In the biological 
case it might be appropriate to use some aggregate measure of 
genetic distance based on molecular properties, or, perhaps more 
ideally for some purposes, time back to the most recent common 
ancestor. Dissimilarity between two languages might be measured 
by the fraction of noncognate words. Yet other constructs are 
possible in other areas. 

For the same collection of objects, it might be appropriate to 
use different distance measures in different contexts depending on 
the purpose. In other words, the nature of the problem should 
determine the appropriate distance-dissimilarity measure. Dis- 
tance is such an absolutely fundamental concept in the measure- 
ment of dissimilarity that it must play an essential role in any 
meaningful theory of diversity or classification. Therefore, it seems 
to me, the focus of theoretical discussion must be about whether or 
not a particular set of distances is appropriate for the measurement 
of pairwise dissimilarity in a particular context, not about whether 
or not such distances exist in the first place. 

The point is not that such pairwise distance-dissimilarity 
measures as have been described above are unambiguously defined 
or that they are easy to obtain. The point is rather that if 
dissimilarity cannot be defined for a pair of objects, then it is 

2. The widespread availability of genetic distance data has given the issues 
treated in this paper a current actuality. For an account of various measures of 
genetic distance, see Nei [1987]. 
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difficult to imagine how collective dissimilarity can be defined for a 
collection of more than two objects. Thus, it seems to me that if 
there is to be any hope at all of measuring meaningfully the 
diversity of a set, and therefore of solving constrained optimization 
problems involving diversity, it must first be possible to measure 
the diversity between any two members of the set. (Even then, as 
we shall see, it is far from trivial to build up from pairwise 
comparisons to n-tuple comparisons.) In this paper, then, I start 
from the premise that a meaningful dissimilarity measure (1)-(3) 
is given for all pairwise comparisons of interest. 

The fundamental task of the paper can now be stated in broad 
terms. Let the value of diversity as a function of set S be denoted 
V(S). 

The basic problem is to construct an appropriate measure of the 
diversity of a set S, denoted V(S), out of given distance- 
dissimilarity measures {d(i,)J between all pairs of members i E S, 
JES. 

There is not really much literature to cite that is directly 
relevant to the problem at hand,3 although, because the solution 
will touch upon many disciplines, there is an enormous literature 
on related themes. For example, there is an extensive literature on 
reconstructing evolutionary trees out of more primitive informa- 
tion on genetic distances.4 In principle, there could be some 
systematic connections between topological characteristics of clas- 
sificatory trees, pairwise distances, and diversity. This is actually a 
major theme of the current paper that will be rigorously explored 
presently.5 

3. The most directly relevant antecedent to the present paper is Solow, 
Polasky, and Broadus [1991]. In this pioneering work the authors give a convincing 
critique of some simple proposals that have been made for measuring biodiversity 
and go on to present their own candidate, called a "preservation measure," which 
they use to analyze a number of conservation issues. In its scope and style, and in 
the themes and applications it highlights, the approach of Solow et al. served as an 
inspiration for the present paper. What I think distinguishes this paper from theirs 
is primarily more emphasis on the theoretical development of an alternative, and in 
my opinion generally more appropriate, diversity function. 

4. For literature on inferring phylogenetic relationships from molecular data, 
see, e.g., the comprehensive survey of Swofford and Olsen [1990] and the further 
references they cite. Felsenstein [1988] is another complete source. Li and Grauer 
[1991] constitutes an excellent overview of the basic issues of molecular evolution 
and molecular systemics. 

5. Thus far, I think it is fair to say that the biological literature has just 
tentatively begun to grapple with these connections. See Erwin [1991], Krajewski 
[1991], May [1990], Vane-Wright et al. [1991], and the references cited in these 
works. 
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III. DIVERSITY IN A "PERFECT TAXONOMY" 

In order to motivate the definition of diversity in the general 
case, and also because it is of importance in its own right, the 
diversity function will first be defined for the special case of a 
"perfect taxonomy." 

Let Q be any non-empty proper subset of S: 

(4) 0CQCS. 

Letj be any element belonging to S but not to Q: 

(5) j E S\Q. 

The standard definition of the distance from the pointj to the 
set Q is 

(6) d(jQ) =min d(j,i). 
ie-Q 

The distance d(j,Q) defined by (6) is a measure of the 
difference, dissimilarity, or diversity between species j and collec- 
tion Q because it is equal to the difference, dissimilarity, or 
diversity between j and its "nearest neighbor" or "closest relative" 
in Q. When d(j,Q) is small, only a little diversity should be added 
by appending species j to the collection Q. because j is already 
closely related to at least one of the species in Q. Conversely, when 
d(j,Q) is big, then a lot of diversity should be added by combining j 
with Q because species j is only distantly related to any species 
currently in Q. 

Heuristically speaking, d(j,Q) should act somewhat like a 
derivative or first difference of the diversity function V(-) with 
respect to j, evaluated at Q. A way of formalizing this intuition 
might be to study the solution of the following analogue of a 
differential or first-difference equation: 

(7) V(Q Uj) - V(Q) = d(jQ). 

Suppose that the analogy with calculus is stretched a bit 
further. If there exists a function V(-) fulfilling the condition (7) for 
all Q and for allj, then it would seem altogether fitting and natural 
to call this function a diversity function. Furthermore, if such a 
function is unique (up to an additive constant of integration), it 
seems legitimate to call V(-) the diversity function (up to the 
additive constant). 

Unfortunately, it turns out that (7) cannot hold in the general 
case for all j and Q satisfying (4), (5). The most that can be hoped 
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TABLE I 
MATRIX OF ULTRAMETRIC DISTANCES 

1 2 3 4 5 6 

1 0 159 250 357 532 532 
2 159 0 250 357 532 532 
3 250 250 0 357 532 532 
4 357 357 357 0 532 532 
5 532 532 532 532 0 126 
6 532 532 532 532 126 0 

for in the general case is that (7) should be "close" to holding in 
some sense. 

There is an interesting and important special case in which (7) 
does hold for allj and Q satisfying (4), (5). This is the special case 
where all (pairwise) distances are ultrametric. 

Points belonging to S have ultrametric distances if for any 
triple {i,j,k} E S: 

(8) max {d(i,j),d(j,k),d(i,k)} = mid {d(iJ ),d(j,k),d(i,k)}. 

Condition (8) means that for the three possible pairwise 
distances between any three points, the two greatest distances are 
equal. 

A numerical example of ultrametric distances among six 
species is given in Table I. Just to make things interesting, it 
happens to be the case that the numbers in Table I are based on 
real-world data about six major species of higher primates, one of 
which is the humans.6 The names of the six hominoid species are 
given in Table II.7 

Now it turns out that ultrametric distances have a very 
important geometric property. All of the information they contain 
can be represented graphically by a hierarchical or taxonomic tree. 
Such a tree is drawn in Figure I for the distances that correspond to 
Table I. (Technically speaking, what is depicted in Figure I is a 
rooted directed tree, but I shall refer to it here simply as a tree.) 

6. Where it is appropriate, I shall later indicate how the distances are formed. I 
have omitted the pygmy chimpanzee (Pan paniscus) because its inclusion would 
muddy some theoretical points I want to make clearly in the example, and also 
because the genetic difference between common chimps and pygmy chimps is no 
greater than between different subspecies of, e.g., orangutans. 

7. Actually, the identity of the six species is intended only as an attention- 
grabbing ploy to sharpen the reader's possible interest in what is essentially a 
numerical example; in the paper no further reference will be made to the 
significance of the numbers themselves. 
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TABLE II 
SPECIES LIST FOR THE EXAMPLE 

Number Common name Scientific name 

1 human Homo sapiens 
2 common chimpanzee Pan troglodytes 
3 gorilla Gorilla gorilla 
4 orangutan Pongo pygmaeus 
5 common gibbon Hylobates lar 
6 siamang gibbon Hylobates syndactylus 

The six existing species are depicted as six twig-tip terminal nodes. 
There are five interior ancestor nodes. The distance between any 
two species of a tree is depicted as the vertical distance back to their 
nearest common ancestor node. 

The fact that ultrametric distances can be represented as a 
tree and that any tree defines ultrametric distances will be taken 
here as a mathematical truth.8 Ultrametric distances are identified 
with a "perfect taxonomy" for the following reason. 

Essentially, it is being assumed that there exists a perfectly 
complete genealogical tree, as represented by a diagram like Figure 
I, showing how the existing species of today evolved from a 
common ancestor. It is as if the fossil record is completely 
preserved and accurately dated: all times of branching and first 
appearances of relevant species are known exactly. 

A "clade" is a subgroup of species that each share a particular 
common ancestor.9 For the tree of Figure I the species sets (1,21, 
(1,2,31, (1,2,3,41, and (5,61 are clades. Within a perfect taxonomy the 
evolutionary tree forms a series of perfectly nested clades. In this 
context of the paleontologist's dream phylogeny, it is natural to 
define the distance between any two species as the time ago when 
they diverged from a common ancestor. This natural, and for some 
situations ideal, distance measure-time removed from the most 
recent common ancestor-possesses some remarkable, intuitively 
very satisfying, properties deriving from ultrametricity. 

It is not difficult to show that in a perfect taxonomy, and only 

8. Actually, it is difficult for me to find in the literature a mathematically 
rigorous, comprehensive treatment of the relationship between ultrametric dis- 
tances and rooted directed trees. 

9. In terminology that may be more familiar to economists, think of an 
evolutionary tree as a game tree. A clade corresponds exactly to all the terminal 
nodes of some proper subgame of the full game. I am indebted to Avinash Dixit for 
pointing out this analogy. 
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5 6 4 1 2 3 

FIGURE I 
The Maximum Likelihood Tree Representation 

in a perfect taxonomy, condition (7) holds for all j and all Q 
satisfying (4), (5). Furthermore, there is a strikingly simple 
geometric interpretation of the diversity function in this special 
case. 

Let the length of an evolutionary tree, like what is depicted in 
Figure I, be defined to be the total lengths of all its vertical 
branches (including the branch of the common ancestor of the 
entire family back to some unspecified outgroup). Then, up to an 
arbitrary additive constant, the diversity function defined by (7) 
(holding for all j and all Q satisfying (4), (5)) is equal to the 
summed total branch length of the perfect taxonomy tree. Essen- 
tially, with ultrametric distances, the diversity function is the 
length of the associated taxonomic tree. 

This important statement should be intuitively plausible upon 
reflection. A rigorous proof is not difficult, but is surprisingly 
lengthy and symbol-laden, primarily because it requires some 
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not-inconsiderable setup effort to define rigorously in abstract 
mathematical notation certain technical properties of rooted di- 
rected tree structures and subtree structures.10 Here only a sketch 
of the proof of this basic proposition is provided. 

The theorem to be proved is the following. 
Let S be any set of species possessing the ultrametric distance 

property (8). Strictly for normalization purposes, suppose that 
there exists some, possibly hypothetical, zeroth species, called an 
outgroup species, having the normalization property, 

d(iO) dog Vi E S, 

where, for convenience, 

do>d(ij), ViES, VjES. 

Let Q be any subset of S (Q satisfies (4)). Then it is immediate 
that the species of Q also possess the ultrametric distance property 
(8). Let TQ represent the perfect taxonomy tree associated with Q. 
Let the total (vertical) branch length of the tree TQ (including the 
,branch back to the ancestor of the outgroup species zero) be 
denoted 

L(Q). 

THEOREM. With ultrametric distances there exists a function V(Q) 
consistently fulfilling the condition (7) for all j and all Q 
satisfying (4), (5). The function V(Q) can be expressed as 

(9) V(Q) = L(Q) + K, 

where K is any constant. 

Proof. For the reasons cited above, I present here only an 
outline of the proof. The interested reader should not have much 
trouble filling in the details, although, as indicated, they are time- 
and space-consuming. 

The heart of the proof proceeds by induction on the size of S. 
Suppose that the theorem holds for all S with ISI = n. (This is 
readily confirmed for n = 2.) Now let S be any set with I S I = n + 1. 

Let Q be any subset of S. For IQ I < n, the theorem is holding 
by induction. We now show constructively how to extend the V(Q) 
function defined by the induction assumption for I Q ? < n to define 
V(S) consistent with the statement of the theorem. 

10. See Weitzman [199la] for a sense of what is involved. 
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Because ultrametric distances can be represented as a tree 
(which we are taking as a mathematical fact), and because any 
subtree of a tree is also a tree (again taken as a mathematical fact), 
we have 

(10) 
L(Q Uj) - L(Q) = d(jQ ), VQ C S, j E S\Q. 

From the induction assumption (9) applied to Q S\i, we have 

(11) V(S\i) = L(S\i) + K, Vi E S, 

where K is chosen to be the same arbitrary constant for each i 
belonging to S. 

Combining (11) with the induction assumption, we have 

(12) V(Q) = L(Q) +K, K VQ C S. 

Now define V(S) as follows: 

(13) V(S) _L(S) + K. 

Combining (10), (12), and (13), we have 

(14) V(Q Uj) - V(Q) = d(jQ), /Q C S) , j VE S\Q, 

(15) V(Q) = L(Q) + K, VQ 5 S. 

Conditions (14), (15) complete the induction argument.I 
The above result shows that ultrametric distances provide 

something akin to an integrability condition, allowing, in this 
special case, some analogue of the fundamental theorem of calculus 
to hold for all existing species. When any species becomes extinct, 
the loss of diversity equals the species' distance from its closest 
relative, and this myopic formula can be repeated indefinitely over 
any extinction pattern, because any sub-evolutionary tree of an 
evolutionary tree is also an evolutionary tree. When a species 
becomes extinct, the loss of diversity is calculated as if its evolution- 
ary branch were snapped off the rest of the tree and discarded. This 
sharp mental image, properly used, permits a quick, exact visualiza- 
tion of the effects of various combinations of species losses on 
diversity in the special case of perfect taxonomy. 

A simple example may help to illustrate the basic issues. In 
Figure I is depicted a family tree representing the evolutionary 
history of six existing species. The two most closely related species 
are 5 and 6, so that the smallest loss from extinction of a single 
species occurs if one of these two vanish. However, an analytical 
preservationist must be careful here. If, after species 5 goes extinct, 
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species 6 also goes extinct, then the overall loss could be cata- 
strophic since a whole evolutionary line will have been wiped out. 
While the diversity loss of 5 or of 6 is lower than that of any other 
single species in the collection, the diversity loss of the pair (5,6) is 
greater than the diversity loss of any other pair in the set. Hence, 
an optimal conservation strategy might be to concentrate relatively 
few resources on saving species 5, if species 6 is reasonably safe, or 
it might involve concentrating relatively large resources on saving 
species 5, if species 6 has a high danger of extinction. I hope this 
kind of example, which could be repeated over a wide variety of 
different situations, illustrates the power of using the simple 
geometric interpretation of (14), (15) as a conceptual aid for 
analyzing policy options concerning preservation of diversity. 

The perfect taxonomy structure induced by ultrametric dis- 
tances allows some other powerful insights into the form of an 
optimal conservation policy. Consider, for example, the following 
idealized situation involving sharply posed preservation issues in a 
context of ultrametric distances. 

Let the set S consist of n species denoted by i = 1, 2, . . . , n. Let 
the (independent) probability that species i survives be denoted xi. 
Each column n-vector X (xi) of survival probabilities defines an 
expected diversity function: 

U(X) Ex(V). 

Suppose that the objective function is of the form, 

?(X) = BX + U(X), 

where bi is the direct net benefit of species i and B (bi) is the row 
n-vector of direct net benefit coefficients. 

Suppose that the cost of preserving species i with probability xi 
is equal to cixi. Let the row n-vector of cost coefficients be C (ci). 
Let the total preservation budget be M. 

The simplest form of a constrained expected diversity- 
maximizing problem might be formulated as 

(16) maximize 4?(X) 

subject to 

(17) CX < M, 

(18) 0 < xi < 1, for i = 1,2, . . ., n. 

The above constrained optimization problem is well defined, 
but it looks like a combinatoric nightmare. Actually, in the case of 
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ultrametric distances a simple myopic algorithm is available for 
solving (16)-(18). It is here stated without proof. 

The algorithm proceeds by eliminating the least valuable 
species, one species at a time, until the budget constraint is just 
met. 

Suppose that at some iteration the subset Q 5 S of species 
exists with probability one, while the subset S\Q of species is 
extinct (exists with probability zero). Suppose that the budget 
constraint is not being met: 

ECixi > M. 
ieQ 

The next step is to find the relatively least desirable species of 
Q. This is the species j(Q) E Q that satisfies the condition, 

bj + d(jQ\j) - mm Tbi + d(iQ\i) 
Cj ic-Q I ci 

The probability x; is then brought down continuously from one 
toward zero until either the budget constraint is met or speciesj is 
eliminated, whichever occurs first. In the latter case, a new species 
set Q is defined which is equal to the previous species set Q minus 
the species j. (Note: this will change some of the remaining 
{d(i,Q\i)} coefficients.) The procedure is repeated until the budget 
constraint is just met, at which point the algorithm has converged. 
The relevant theorem (not proved here) is that in the case of 
ultrametric distances such a myopic algorithm yields an optimal 
policy in the sense of satisfying (16)-(18). The theorem justifies 
using at each iteration a myopic benefit-cost ratio consisting of the 
traditional ratio of direct benefits to costs plus the diversity loss per 
preservation dollar. 

The import of this approach consists in giving a rigorous global 
significance to the strictly local decision-making index of species 
diversity loss per unit of conservation resources. Comparing 
"expected diversity loss per preservation dollar" among species 
thus turns out to be a legitimate extension of cost-benefit 
analysis." 

We turn now to the main theme of this paper, which is the 
meaning and significance of diversity in the extremely general 
situation where no conditions other than (1), (2), and (3) are placed 

11. This theme is generalized and applied to an actual numerical example 
(drawn from crane data) in Weitzman [1991lb]. 
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on the pairwise primitives of dissimilarity-distance. It is important 
to have a general theory of diversity because, as I have argued, the 
nature and context of the problem should determine the appropri- 
ate dissimilarity concept, which leaves a wide scope for possible 
distance measures. 

IV. DIVERSITY IN THE GENERAL CASE 

It is only rarely that distances come in ultrametric form as 
shown in the example of Table I. Far more frequently, distances are 
not ultrametric. For example, distances might be given as shown in 
Table III, which displays the actual raw data that was transformed 
into the numbers of Table I.12 How the transformation from the 
non-ultrametric distances of Table III to the "as if' ultrametric 
distances of Table I occurred will be explained presently, for this 
actually represents a central theme of the present paper. In any 
event we are typically confronted initially with a situation where 
the given pairwise symmetric dissimilarity-distance measures are 
not ultrametric. 

In the general case of arbitrary distances, the diversity func- 
tion V(S) is inductively defined to be the solution of the recursion: 

(19) V(S) = max {V(S\i) + d(iS\i)}. 

The dynamic programming equation (19) is the centerpiece of 
the present paper.13 The solution of (19) is unique once the initial 
conditions, 

(20) V(i) dog Vi, 

are specified for any do. (Depending upon the particular applica- 
tion, it is typically most convenient to normalize do by setting it 
equal either to zero or to some large constant.) 

There are several possible axiomatic approaches that can be 
used to justify the diversity function (19). These axiomatic treat- 
ments are suggestively motivating, as I hope to indicate. However, 

12. The numbers in Table III come straight out of Table 4 in Caccone and 
Powell [1989]. I have omitted the nonhominoid baboon and the almost conspecific 
pygmy chimpanzee primarily to be able to illustrate some theoretical points more 
crisply. 

13. The genesis of the present paper really began with equation (19). I am 
grateful to Sergiu Hart for starting me going in this direction by proposing the 
length of the minimal spanning tree as a measure of diversity. Focusing on what was 
wrong with the minimal spanning tree as a diversity indicator led me to invent the 
dynamic programming function (19) as a solution concept, from which the rest of 
the ideas developed. 
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TABLE III 
MATRIX OF GIVEN DISTANCES 

1 2 3 4 5 6 

1 0 159 250 349 495 513 
2 159 0 234 328 448 448 
3 250 234 0 357 532 498 
4 349 328 357 0 477 488 
5 495 448 532 477 0 126 
6 513 448 498 488 126 0 

the real argument for the diversity measure being proposed here is 
that it "works"-in the sense of creating a useful and consistent 
conceptual framework, while other measures "do not work"-in 
the sense that they violate one or more essential properties that a 
plausible diversity function should possess. The force of this point 
can only be appreciated by actually trying out some other candi- 
dates for a value of diversity function and seeing at first hand 
where they fail to make sense.14 

We are faced, in the general case, with a situation where (7) 
does not hold for all Q and for allj defined by (4), (5). The natural 
instinct is to try to make (7) hold as nearly as possible under the 
circumstances. 

The following condition seems like a basic axiom that is 
reasonable to impose on any diversity function. 

MONOTONICITY IN SPECIES. If species j is added to collection Q, 
then 

(21) V(Q Uj) > V(Q) + d(jQ), VQ, Vi 0 Q. 

where d(j,Q) is the familiar (minimal) distance from pointj to 
set Q defined by (6). 

The monotonicity in species condition (21) expresses the 
intuitively desirable idea that the addition of any species to a group 
of species should increase diversity by at least the dissimilarity of 
that species from its closest relative among the already existing 

14. There is simply not enough space in this article to go through the many 
other seemingly reasonable definitions of diversity to show, in a series of convincing 
examples, where they are seriously flawed, even though, in the end, superiority over 
the alternatives is the most telling argument in favor of selecting (19) as a diversity 
function. The reader seriously interested in the subject should definitely try this 
exercise. 
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group of species. Or, conversely, monotonicity in species means 
that the extinction of any species of an ensemble causes a decline in 
diversity by no less than the distance of the extinguished species 
from its nearest neighbor in the ensemble. 

Monotonicity in species is a "loose" property in the sense that 
it does not at all define a unique function because many diversity 
measures can be made to satisfy the inequality (21). There are at 
least two ways to add a supplementary condition that would make 
the inequality (21) hold so "tight" that it yields, in effect, the 
dynamic programming equation (19). 

The first approach is the most direct. View condition (21) as a 
(potentially very large) set of constraints that must hold for all Q 
and for all j. Impose the uniform initializing condition (20). Then 
simply define the diversity of S to be the minimum possible V(S) 
that satisfies (21), (20). 

The reason that this direct approach yields the dynamic 
programming recursion (19) is as follows. Suppose, by induction, 
that the diversity functions {V(S\i)J have been defined for all i 
belonging to S. Then the smallest possible value for the diversity of 
S that would be consistent with (21) must satisfy the condition, 

(22) V(S) minimumV, 

subject to 

(23) V ? V(S\i) + d(iS\i), Vi E S. 

It is straightforward to confirm that the solution of (22), (23) is 
(19), which both proves the assertion and continues the induction 
argument to the next stage. 

The problem of finding the smallest possible diversity function 
consistent with (21) can be recast as an insightful evolutionary 
metaphor. 

In this interpretation the distance d(ij) stands for the number 
of (possibly weighted) character-state differences between i andj. 
For any set Q of existing species, V(Q) here stands for the 
evolutionary length of Q. meaning the total number of character- 
state changes required to explain the evolution of Q under some 
branching representation of the evolutionary process. Suppose 
that speciesj 0 Q is added to Q to form the new set Q Uj of existing 
species. The number of extra character-state changes required to 
explain the evolution of j is at least the difference in character- 
state changes betweenj and its closest relative in Q. which by (6) is 
d(jQ). If j is added to Q. then at least d(j,Q) additional 
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character-state changes need to be explained. Therefore, any 
properly scaled feasible measure of evolutionary distance should 
simultaneously satisfy, for all Q and for allj, the basic consistency 
conditions (21). 

It seems natural to define the diversity of S, denoted V(S), to 
be the length of the tightest or most parsimonious feasible 
reconstruction of S, in the sense of being the minimal number of 
character-state changes required to account for the evolution of S. 
By the same argument as before, V(S) so defined must satisfy (22), 
(23), and, by extension, (19). Thus, equation (19) has the interpre- 
tation of generating the most parsimonious "minimal evolution" 
branching structure that gives rise to the species of S. 

A second way of forcing the inequality (21) to hold so "tight" 
that it yields the dynamic programming equation (19) is to add an 
extra axiom to (21) called the "link property." This new condition 
can be stated as follows. 

LINK PROPERTY. For all S, I S I ? 2, there exists at least one species 
j(S) E S, called the "link" species, that satisfies 

(24) V(S) = d(j,S\j) + V(S\j). 

As was shown in the last section, an especially appealing 
theoretical structure emerges in the case of ultrametric distances, 
where, in effect, (24) holds for all j E S. Unfortunately, it is 
mathematically impossible that (24) can be true for allj E S in the 
general case. But from the link property it will at least always be 
true that the elimination of some speciesj(S) will reduce diversity 
by exactly the distance of that species from its closest relative. The 
link property provides at least one tight natural connection be- 
tween the derived value of diversity measure for any set and the 
primary distance data on which it is based. 

That conditions (21) and (24) imply condition (19) is a fairly 
straightforward argument. 

There is also a probabilistic way of motivating the basic 
dynamic programming recursion (19) that deserves to be treated 
here. 

One of the most commonly cited reasons for maximizing 
expected biodiversity is to maintain a kind of natural "portfolio 
diversification" of future options for finding new sources of food, 
medicine, and so forth.15 

15. For some background motivation see Oldfield [1984]. 
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Suppose, for concreteness, that we are speaking of finding a 
pharmacological cure for some disease. If a species contains a cure, 
it will only become revealed over time, in the future. Thus, when a 
species becomes extinct, the chance is lost forever that the species 
may be of later help in providing a medicine for treating the 
disease. What should we be preserving in such a context? 

In this interpretation let 

(25) P(ij) 

stand for an upper bound on the probability that species i does not 
contain a cure for the disease, given that speciesj does not contain a 
cure. 

The data represented by (25) are the basic, given, reduced- 
form primitives of the model. 

It is assumed that the given conditional probability coefficients 
(25) are symmetric;16 for all i and j belonging to S, 

P(ij) = P ji). 

In what follows, assume any particular evolutionary branch- 
ing tree structure T out of all possible rooted directed trees that 
yield the species of S as labeled twig-tip end-nodes of the evolution- 
ary process. Each possible tree T defines a set of ancestor interior- 
nodes AT(S) (n - 1 of them in the bifurcating case), located within 
the branching structure. 

Think of evolution as a branching process that results in the 
accretion of many tiny boxes. When two new species bifurcate from 
an ancestor node, they keep all the same tiny boxes they shared in 
common to that point, but henceforth they begin independently 
accreting different tiny boxes. If there is a pharmacological treat- 
ment for the disease, it will be found in one of the tiny boxes that 
have been accumulated along the evolutionary tree. In this model 
the key structural assumption is that once a cure is contained in a 
parent node, then it is fixed or locked into all of the subsequent 
offspring nodes. 

All statements that follow are with respect to the particular 
branching structure T being assumed. In other words, for conve- 
nience we are dropping the subscript T from the notation that 
follows, understanding that it is implicitly there. 

16. Symmetry of the conditional probability coefficients (25) is equivalent to 
postulating that the unconditional probabilities P(i) and P(j) are equal, which 
seems like an appropriate symmetry assumption for species at the same general 
level of complexity. 
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Let Q andj satisfy (4), (5). Let 

P(jIQ) 

be the conditional probability that species j does not contain a cure 
given that each species of the set Q does not contain a cure. 

Let 

A(Q) 

represent the set of all ancestor nodes of the set of species Q. 
Then, 

(26) P(j IQ) = P(jlA(Q)). 

(The only way that the fact that Q does not contain a cure 
transmits information relevant to whether or notj contains a cure 
is through the knowledge that the ancestor nodes A(Q) could not 
have contained a cure.) 

Let 

a(j,Q) 

stand for the most immediate ancestor of j in the set A(Q). 
Then, 

(27) P(jlA(Q)) = P(jla(j,Q)). 

(The entire relevance for the probability thatj does not contain a 
cure given that A(Q) does not contain a cure is summarized by the 
information that a(j,Q), the most recent ancestor of j in A(Q), 
does not contain a cure.) 

Applying basic probability theory to this special structure, 

(28) P(j I i) = P(j I a(j,Q)) * P(a(j,Q) Ii) Vi E Q. 

Taking the maximum of both sides of expression (28) over all 
i E Q yields 

(29) max P(j I i) = P(j a(j,Q)) max P(a(j,Q) i). 
ieQ ieQ 

Now a(j,Q) (&A(Q)) must be an ancestor node for some (at 
least one) k E Q, implying that 

(30) P(a(j,Q) Ik) = 1 for some k E Q. 

But then (30) implies that 

(31) max P(a( j,Q) I i) = 1. 
icQ 
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Combining (31) with (29) with (27) with (26), and using 
definition (25) yields 

(32) P(jIQ) ? P(jQ), 

where 

(33) P(jQ) maxPji). 
ieQ 

By definition 

(34) P(jIQ) P(Q Uj)IP(Q), 

where P(Q) stands for the probability that none of the species of Q 
contain a cure for the disease. 

Combining (32) with (34) yields 

(35) P(Q Uj) < P(Q)' P(jQ) VQ C S, Vj E S\Q. 

Let H(S) stand for the maximum value of P(S) under the set 
of constraints signified by (35): 

(36) fl(S) max P(S), subject to (35). 

If H(S\i) were known for all i E S, then (35) (withj - i, Q 
S\i) implies that 11(S) defined by (36) must satisfy the dynamic 
programming recursion, 

(37) LI(S) = mimn {LI(S\i) * P(iS\i)J. 
icS 

It is convenient to transform (37) into an equivalent dynamic 
programming equation that is additive in distances by taking 
negative logarithms of all probabilities. 

Let 

(38) V(S) -log Il(S), 

(39) d(ij) -log P(ij). 

Combining (33) with (6) with (39) yields 

(40) d(iS\i) = -log P(iS\i). 

Using (38), (39), and (40), equation (37) becomes transformed 
into the equivalent dynamic programming equation (19). 

From the isomorphism of (37) with (19), the following impor- 
tant conclusion emerges. When the diversity function defined by 
(19) is being maximized, there is a well-defined sense in which the 
worst-case probability of not being able to find a cure for the 
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disease is simultaneously being minimized. Thus, provided that the 
distances are appropriately defined, maximizing diversity is equiva- 
lent to minimizing the worst-case risk of not being able to avoid 
some bad outcome in a portfolio choice problem. 

It is worthwhile reviewing the essential abstract structure of 
the argument just completed, because it can be used to motivate 
another probabilistic interpretation of the fundamental dynamic 
programming equation (19)-as a condition defining the most 
likely branching structure that might explain the evolution of the 
species of S from a common ancestor. 

Basically, it has been assumed that there is some property 
(e.g., the property of not containing a cure for a particular disease) 
with the following essential feature: if the child-node in an 
evolutionary tree has the property, then the parent-node also has 
the property. 

Now the structural property referenced in the above state- 
ment can be given several possible interpretations, of which the 
examples of a (lack of a) pharmacological cure for a disease or a 
(lack of a) new source of food were just particular applications. 
Next, suppose that the "structural property" is the property of 
evolutionary existence itself. A child species-node can exist in an 
evolutionary tree only if the parent species-node also exists. 

Under this interpretation, P(i, j) stands for the a priori 
probability that species i exists given that species j exists. The 
symmetric conditional probability coefficients {P(i, j)J are taken as 
given primitives of the problem related to time-distances {d (i,j )J by 
the transformation (39). (The transformation (39) could be given a 
rigorous basis when all species survival probabilities are exponen- 
tially distributed with the same mortality parameter.) In slightly 
different words, P(i, j) is an a priori estimate of the probability that 
species i successfully "made it" through the hazardous maze of the 
evolutionary process to exist at the current time, given the 
information that speciesj successfully "made it." Of course, both i 
and j are actually alive today, but the whole point of the maximum 
likelihood exercise is to find the branching topology that would 
explain the fact that all species of S survived-which did not have 
to be-with higher probability than any other branching 
topology.'7 

17. As n = |S I becomes large, the number of possible rooted trees whose twig 
tips are the members of S becomes truly enormous, being essentially proportional to 
nn in the limit. (See Felsenstein [1978].) There are about 1024 possible trees for just 
twenty species. Numbers like these typically doom attempts to find the maximum 
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In this "maximum evolutionary likelihood" interpretation, 
the "property" under discussion is "evolutionary existence." P(Q) 
stands for the probability that Q exists (meaning that all the 
species of Q successfully evolved). P(j IQ) stands for the probabil- 
ity that j exists (successfully evolved) given that Q exists. 

Now the problem of finding the branching topology that would 
explain the successful evolution of S with higher probability than 
any other branching topology has exactly the same mathematical 
structure as the problem previously treated. Picking up the strand 
of argument at equation (37), we continue it under the "maximum 
evolutionary likelihood" interpretation as follows. 

Note that although, in the course of the derivation, we 
implicitly assumed a particular branching structure T, the argu- 
ment yielded a general sufficient condition (37) seemingly indepen- 
dent of T. Let 

PT(S) 

stand for the probability that none of the n species of S became 
extinct under T; i.e., all of S "made it" to current existence through 
the Markov evolutionary maze represented by the particular 
rooted directed tree T. Then we know from the definition (36) of 
W(S) that 

W(S) ? PT(S). 

Therefore, if we can constructively exhibit a rooted directed 
tree T * with the property that 

PT*(S) = W(S), 

then T* is the maximum likelihood evolutionary tree of S. The 
formal statement is that such a T * would be the evolutionary 
branching structure that has the highest probability of causing all 
the species of S to be alive today, out of every possible directed 
Markovian evolutionary branching structure consistent with (32), 
(33) holding for all Q and allj. 

It turns out that the maximum likelihood tree of S, here 
denoted T*(S), is automatically generated by the solution of the 
dynamic programming equation (37), which is equivalent to (19). 
This statement is a variant of what is called the "fundamental 
representation theorem," to which we turn next. 

likelihood tree with even moderately sized species sets. The approach presented in 
this paper typically calculates the global maximum likelihood tree for twenty species 
in just a few seconds of running time on a good quality personal computer. 
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To summarize this last line of thought, the basic dynamic 
programming equation (19) can be interpreted as generating a 
rooted directed tree. The particular tree that (19) generates can be 
given a rigorous interpretation of being the maximum likelihood 
evolutionary branching structure consistent with the given condi- 
tional existence probabilities {P(i, j)J defined by (39).18 

V. THE FUNDAMENTAL REPRESENTATION THEOREM 

The fundamental representation theorem is essentially a 
technical statement about the form of an optimal solution to (19). 
The theorem states that the argmax solution of (19)-i.e., the 
"link" speciesj(S) of (24)-must be one of the two closest species 
in S. The interpretation of this theorem allows us to represent the 
solution of (19) as a rooted directed tree whose sum of branch 
lengths, appropriately normalized, equals the diversity function. 

For ISI ? 2, define the pair (g(S), h(S)) to be "closest 
relative" functions: S -> S satisfying g(S) E S, h(S) E S, g(S) ? 
h(S), and 

(41) d(g(S),h(S)) = minimum d(ij). 
i~jEES 

i;j 

(It does not matter how the pair (g(S),h(S)) is ordered or whether 
it is unique.) 

Define the function W(S) as follows. For ISI = 1, W(S) = do. 
For ISI > 2, W(S) is the solution of the dynamic programming 
recursion, 

(42) W(S) = d(g(S),h(S)) + max {W(S\g(S)),W(S\h(S))J. 

THEOREM (FUNDAMENTAL REPRESENTATION THEOREM). For all S, 

(43) V(S) = W(S). 

Proof. From (19) it follows that I S I = 1 implies that V(S) = do. 
For IS I > 2, letj(S) be any argmax of (19), meaning j(S) E S is the 
"link" species of (24) satisfying 

(44) V(S) = d (j (S),S\j (S)) + V(S\j (S)). 

18. The entire topic of maximum likelihood evolutionary trees is treated much 
more fully in Weitzman [1991a], where a specific application is also given, drawn 
from crane data. 
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Suppose the induction assumption: for all S = n, 

(45) V(S) = d(g(S),h(S)) + max {V(S\g(S)),V(S\h(S))J. 

Clearly (45) is true for n = 2. 
Now let I S I = n + 1. Suppose that (45) is not true for all IS = 

n + 1. Supposeper contra that, for some IS I = n + 1, 

(46) g(S) ?j(S) and h(S) ?j(S), 

and 

(47) V(S) > d(g(S),h(S)) + max {V(S\g(S)),V(S\h(S))J. 

From condition (46) and definition (41), g(S) and h(S) must be 
"closest relatives" in the set S\j(S) (as well as the set S), meaning 

(48) d(g(S)\j (S)),h(S\j (S))) = d(g(S),h(S)). 

Applying the induction assumption (45) to the set S\j(S), and 
simplifying by using (48), it follows that 

(49) V(S\j(S)) = d(g(S),h(S)) 
+ max {V(S\j (S)\g(S)),V(S\j (S)\h(S))}. 

Substituting (49) into (44), we obtain 

(50) V(S) = d(j(S),S\j(S)) + d(g(S),h(S)) 
+ max {V(S \j (S)\g(S)),V(S \j (S)\h(S))}. 

Applying (19) to the sets S\g(S) and S\h(S) yields, respec- 
tively, 

(51) V(S\g(S)) > d(j(S),S\g(S)\j(S)) + V(S\g(S)\j(S)), 
(52) V(S\h(S)) > d(j(S),S\h(S)\j(S)) + V(S\h(S)\j(S)). 

Furthermore, from first principles in the definition (37) of the 
distance from a point to a set, 

(53) d(j(S),S\g(S)\j(S)) > d(j(S),S\j(S)), 

d(j(S),S\h(S)\j(S)) > d(j(S),S\j(S)). 

(54) max {V(S\g(S)),V(S\h(S))J 
> d(j (S),S\j (S)) + max {V(S\g(S)\j (S)),V(S\h(S)\j (S))J. 

Combining (51), (52), (53), and (54) gives 

(55) V(S) > V(S), 
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Using (55) to compare (47) with (50), we have, finally, a 
contradiction. 

The conclusion must be that the assumption (47) is wrong, i.e., 
for any set Swith ISI = n + 1, 

(56) V(S) = d(g(S),h(S)) + max {V(S\g(S)),V(S\h(S))J, 

the desired induction step. 
Since equations (56) and (42) are identical, and since they 

share the same initial conditions, the unique solutions V(S) and 
W(S) must also be identical.I 

The dynamic programming recursion (42) that defines W(S) 
for ISI = n involves (at most) 2n calculations. In this paper I shall 
not explore in detail the purely numerical aspects of how best to 
solve or approximate (42). Suffice it to say that a "clever" 
application of branch and bound methods seems to reduce the 
number of calculations to about (1.65)n and that problems of size 
up to about n = 35 can be routinely solved on a good quality 
personal computer. A mainframe computer could tackle a problem 
of much larger size. 

The basic representation theorem allows or encourages us to 
think of diversity V(S) from a relatively "difficult" dynamic 
programming equation (19) (of magnitude nfn) as the solution W(S) 
of a relatively "easy" dynamic programming equation (42) (of 
magnitude 2n). Henceforth, without ambiguity, we can use the two 
concepts interchangeably and drop the notation W(S) in favor of 
(the now more inclusive) V(S). 

Equation (56) is a dynamic programming recursion which can 
be interpreted, at any iteration, as a best method of "clustering" 
the two closest points. Geometrically, the process will define a 
rooted directed tree, whose twig tips represent the existing species. 
The fundamental representation theorem generates a genealogical 
tree describing the hypothetical evolution of S from a hypothetical 
common ancestor. 

It should be appreciated that none of this is in the least bit 
obvious. That the diversity function (19) should generally be 
represented by some unrooted spanning tree (what is sometimes 
called a "network") is perhaps not surprising. What is quite 
surprising is the fundamental representation theorem with its 
rooted genealogical tree interpretation. 

We show the rooted directed tree interpretation as follows. 
Without significant loss of generality, suppose for concrete- 

ness that point g(S) uniquely satisfies the maximum in (56). That 
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is, 

(57) V(S) = V(S\g(S)) + d(g(S),h(S)), 

meaning that g(S) is the "link" species j(S) of equation (24). 
In order to continue the recursion process, from (57) we need 

only to know the argmax of (56). (This observation has computa- 
tional significance because any shortcut approximation can be used 
that tells us which is the larger of V(S\g(S)) and V(S\h(S)).) In 
other words, we can think geometrically in terms of "clustering" 
the points g(S) and h(S) by "casting out" the "link" species g(S) 
while retaining the "representative" species h(S) to "represent" 
the pair (g(S),h(S)). (The algorithm thus automatically designates 
a member species to "represent" each clade; this "representative" 
species embodies, in extremis, the characteristics most distinguish- 
ing the given clade from other clades at that taxonomic level 
because loss of diversity from subtracting the "representative" 
species is greater than loss of diversity from subtracting the "link" 
species.) If S was of size n, there is now a dynamic programming 
problem of dimension (n - 1), because the shortest branch dis- 
tance d(g(S),h(S)) has been eliminated from the evolutionary tree 
and added to the running sum kept for tabulating V. 

The above-described procedure may then be continued in like 
fashion by similarly clustering the two nearest remaining neigh- 
bors of S\g(S), while adding their distance to the running sum 
tabulation of V, and so on. Each clustering operation reduces the 
size of the remaining set by one, while adding one term, represent- 
ing the length of the currently-shortest-distance branch, to the 
running tabulation of V. The iterations proceed until just one 
species remains, at which point the running sum of distances is 
equal to V(S) - do, where S is the original starting set and do is the 
normalization constant. 

As described above, the algorithm implicit in recursion (56) is a 
form of pair-group clustering, which is one of the most widely used 
methods for estimating phylogenies on the basis of distance data. 
Typically, the artificial distance from each newly created cluster to 
each other cluster is some weighted average of actual distances. As 
has been pointed out in the literature, the traditional method can 
in principle suffer serious discontinuities,'9 and it is ultimately 
heuristic, lacking any well-defined optimality criterion.20 The 
present algorithm has a rigorous foundation-the only one avail- 

19. See Jardine and Sibson [1971], section 7.4. 
20. See Swofford and Olsen [1990] and Felsenstein [1988]. 
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able for a clustering method to my knowledge-but it is less easy to 
calculate than traditional methods. Optimal clustering requires an 
algorithm that looks deeply into the overall structure of relations 
among species, like a chess-playing program. Note that at each 
stage the algorithm of this paper is always comparing actual 
distances between species and choosing to cluster the two remain- 
ing species with minimum actual distance. 

The "representation" of V(S) as the total branch length of the 
reconstructed evolutionary tree of S comes directly out of the 
dynamic programming recursion (57). If V(S\g(S)) is the total 
branch length of the hypothetical phylogenetic tree representing 
the evolution of S\g(S), then "adding" the species g(S)-the 
species which is closer to h(S) than any other pair of species are to 
each other-"adds" incremental branch length d(g(S),h(S)). The 
geometric interpretation of the induction argument is completed 
by arbitrarily normalizing V(S) -- do for I S I = 1. This amounts to 
normalizing the total branch length of the tree for ISI ? 2 by 
making the (common) distance from the hypothesized outgroup 
species to the twig tip of any existing species of S equal to do, a 
given large constant.21 

When equation (19) or (56) is applied to the distances from 
Table III, it yields the maximum likelihood evolutionary tree 
depicted in Figure I with the accompanying "as if" ultrametric 
distances of Table I. The tree is drawn in deterministic fashion by 
systematically utilizing, as seems reasonable, the information 
automatically generated at each stage of the algorithm about which 
of the two closest remaining species is the "representative" and 
which is the "link." The species "representing" the clade formed 
by each ancestor node is always placed farthest from the other 
clade from which the ancestor node has most recently diverged 
because there is a greater loss of diversity from subtracting the 
"representative" species than from subtracting the "link" species. 
Except for the first branch, where it is arbitrary which clade is 
placed to the left and which to the right, the convention naturally 
suggested by the algorithm completely determines species place- 
ment within the maximum likelihood tree and results in a com- 

21. In the context of the maximum likelihood probabilistic model, the normal- 
ization convention essentially represents a harmless scaling away of a loose degree 
of freedom; survival probabilities are pinned down by assuming that the absolute 
probability that (any) one particular species "makes it" all the way through the 
hazards of the evolutionary maze to be alive today is an arbitrary, but irrelevant, 
constant PO -- exp (-do). 
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pletely deterministic two-dimensional topological representation of 
where existing species stand in the associated taxonomic tree.22 

As a specific example, Figure I and Table I are derived from the 
primitive distance data of Table III in the following fashion. The 
two closest species of Table III are 5 and 6. When equation (56) is 
solved, it turns out that 5 is the "representative" and 6 is the 
"link." After 6 is eliminated, the two closest species (in the 
remaining five-by-five submatrix of Table III) are 1 and 2. Of this 
pair, (56), when it is solved, indicates that 1 is the "representative" 
and 2 is the "link." Eliminating 2, species 1 and 3 are the next 
closest, with 3 the "representative" and 1 the "link." The algo- 
rithm continues thus until only one species remains. 

As reflected in Figure I, species 3 "represents" the "as if" 
clade {1,2,3}, and therefore is placed farthest from 4 in the "as if" 
clade {1,2,3,4}. Species 1 "represents" the "as if" clade {1,2} and 
therefore is placed farthest from 3 within the "as if" clade 11,2,3}. 
The "as if' ultrametric distances of Table I are constructed out of 
the "link" distances generated in making Figure I, and the value of 
the diversity function is the total branch length of the tree (up to an 
arbitrary normalization constant). 

Although the underlying objects, whose diversity we seek, 
might not have been generated by any real evolutionary process, 
the algorithm nevertheless wants us to classify them as if they 
were the end products of a well-defined evolutionary phylogeny. 
The algorithm is always trying to tell an evolutionary story of 
diversity even though the diversity might not actually have been 
caused by genuine evolution. 

It is important to be clear about the difference between the 
simulated evolutionary tree of the general case, whose artificial "as 
if' distances within the tree are ultrametric, and the genuine 
evolutionary tree associated with the true ultrametric distances of 
a true evolutionary process. When true underlying distances are 
ultrametric, any reasonable clustering method will reconstitute 
the genuine tree. In this case the simulated evolutionary tree and 
the genuine evolutionary tree are the same. But in the general case 
when actual distances are not ultrametric, the artificial evolution- 
ary tree has some very different-and much weaker-properties 
from those possessed by a real evolutionary tree. 

A genuine evolutionary tree is stable in the sense that the 

22. Assuming, as seems reasonable, that multifurcations or exactly ultramet- 
ric distances are events of probability measure zero. 
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same tree skeleton remains no matter what species are subtracted 
in whatever order. The loss of diversity from a species becoming 
extinct can be myopically viewed at any stage as the length of the 
evolutionary branch of the species at that stage. When a species 
becomes extinct, the phylogenetic tree is diminished by snapping 
off the evolutionary branch of that species. But this analogy does 
not hold for an artificial evolutionary tree constructed in the 
general case of non-ultrametric underlying distances. This tree is 
just an approximation, albeit the "most likely" approximation. In 
the general case, there is only one species that satisfies the 
branch-snapping analogy. (In Figure I it would be species 6.) If any 
other species were eliminated (species 1 through 5 in Figure I), the 
loss of diversity is (generally) not the length of its branch. Even 
more problematical, the entire topology of the remaining tree may 
conceivably change if the artificial tree rearranges itself when a 
species is eliminated. In general, the diversity of a subset of species 
cannot be directly inferred from the artificial tree of the full set. 

We can perhaps summarize this discussion by saying that the 
structure of the artificially induced evolutionary tree of the general 
case may be fragile (to elimination of species) if distances are far 
from being ultrametric, while the structure of the genuine evolu- 
tionary tree that arises from a real evolutionary process is robust 
(to elimination of any species). 

VI. NICE PROPERTIES OF THE DIVERSITY FUNCTION 

The rest of the paper essentially consists of a list of desirable 
properties that the proposed diversity measure (19) possesses. Not 
every item on the list is equally important; some are much more 
fundamental than others. All of the items seem reasonable, and it 
is difficult for me to think of any obviously desirable (yet attain- 
able) properties of a diversity measure that have not been included. 

As was pointed out previously, in the end the real argument in 
favor of the diversity measure (19) being proposed here is that it 
possesses many "nice" properties, while other candidates for a 
value of diversity function are "not nice" in one or more essential 
aspects. In that sense, the list of nice properties is critical to 
establishing the validity of V(S). Again, this is a point that can only 
be appreciated by actually trying out other candidates for a value of 
diversity function and seeing where they fail to behave nicely. 

The list of nice properties can be divided crudely into catego- 
ries corresponding roughly to mathematical, taxonomic, ecological, 
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and economic aspects of the desired measure. After each item is 
introduced, a precise formulation of it is given; a proof is outlined 
or provided; and some attempt is made to motivate or apply the 
property. 

The remainder of this section deals with properties categorized 
loosely as "mathematical." 

1. MONOTONICITY IN SPECIES. Already covered in Section IV. 

2. LINK PROPERTY. Already covered in Section IV. 

3. TWIN PROPERTY. Suppose that some species k outside of S is 
identical to some species j belonging to S, meaning for some j 
E S, k 0 S that 

d(jk) = 0, 

d (ji) = d (ki), /Vi E S. 

Then if k is added to S, there is no change in diversity: 

V(S U k) = V(S). 

Proof. Follows from the basic representation theorem. 

The (identical) twin property is an important statement about 
continuity of diversity in species addition or subtraction. If a 
species is added that is very closely related to an existing species, it 
should only raise the value of diversity by a very small amount that 
goes to zero in the limit as the added species becomes an identical 
twin with an existing species. The twin property should hold for 
any reasonable diversity function. If it does not hold, some 
obviously wrong allocation choices can be made because resources 
may be spent inappropriately on preserving species that have 
identical counterparts in no danger of extinction. 

4. CONTINUITY IN DISTANCES. Let IS I = S' | . Let +( ) be a one-to- 
one function mapping S onto S'. 

Then, V E > 0, 38 > O such that YiYi I d(ij) - d(q(i),4((j)) I < 8 
implies that 

V(S) - V(S')I < E. 

Proof. Follows directly from the fact that V(S) is the maxi- 
mand of a linear programming problem (22), (23), whose parame- 
ters are continuous in distances. I 
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That the value of diversity function must be continuous in the 
underlying distances is an obviously necessary property. Surpris- 
ingly, this condition is sufficiently strong to eliminate some other- 
wise not completely unreasonable candidates for a diversity 
measure. 

5. MONOTONICITY IN DISTANCES. Let ISI = IS'| > 2. Let +( ) be a 
one-to-one function mapping S onto S'. 

Suppose that 

d(W(i),4(j)) > d(ij), Vi E S, Vj e S, i ?j. 

Then 

V(S') > V(S). 

Proof. Straightforward from the definition of V(S). I 
The above monotonicity property has an obvious interpreta- 

tion that any meaningful diversity function based on pairwise 
distances should possess. 

6. MAXIMUM DIVERSITY THAT CAN BE ADDED BY A SPECIES. If species 
k is added to collection S, then 

(58) V(S U k) < V(S) + D(k,S), VS, Vk e S. 

where D(kS) is the maximum distance from point k to set S, 

D(kS) - max d (k i). 
iES 

Proof. By induction, suppose that (58) holds VS, IS I = n. (It is 
certainly true for n = 1.) Now let S be any set with ISI = n + 1, and 
let k be any point k 0 S. From (19) applied to S U k, it follows that 

(59) V(S U k) = max {d(k,S) + V(S), 

max {d(i,S U k\i) + V(S U k\i)J. 

From the induction assumption (58) applied to S\i, 

(60) V((S\i) U k) < V(S\i) + D(kS\i). 

From first principles, 

(61) D(kS\i) < D(kS), 

(62) d(iS U k\i) < d(iS\i). 
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Putting inequalities (60), (61), and (62) into (59) produces 

(63) V(S U k) < max {d(k,S) + V(S), 

max {d(i,S\i) + V(S\i) + D(k,S)}}. 

Making use of (19), condition (63) reduces to 

V(S U k) < V(S) + D(k,S), 

which is the induction step to be proved. I 
Inequality (58) represents an upper bound on the extra 

diversity that can be added by including a new species. The 
increment to diversity should be no more than the maximum 
distance from the new species to any old species in the set. 
Condition (58) is an intuitively reassuring result. Some reflection 
reveals that it cannot in general be strengthened to a tighter bound 
without putting more structure on the problem. 

VII. TAXONOMIC ASPECTS 

The next two properties are inspired by basic principles of 
taxonomy. Intuitively, there should be some fundamental connec- 
tion between diversity and taxonomy, because both are ultimately 
based on related underlying concepts of similarity and difference. 
Indeed, this general duality is central to the paper. The following 
two specific items on the list of nice properties elaborate some basic 
features that it might be hoped a well-defined diversity measure 
would possess in the context of a meaningful taxonomy. 

1. CLADE AGGREGATION. A generalized lade of species, denoted C, 
is defined to be a subset of S 

cCS, S9 > CI> 2, 

that satisfies 

(64) d(iS\i) = d(iC\i), Vi E C, 

(65) d(ik) = dk, Vi E C, Vk E S\C. 

Let c stand for any species representing the generalized clade, 
meaning, 

(66) d(c,k) -d, /VkES\C. 
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Then 

(67) V(S) = V(C) + V((S\C)Uc) - do. 

Proof. By induction on the size of S, suppose that the clade 
aggregation property is true for ISI = n. (It is readily confirmed 
that clade aggregation holds for n = 3.) Now let S = n + 1. For 
convenience, normalize do 0. 

Decomposing (19) into two separate parts, 

(68) V(S) = max{a,}, 

where 

(69) a max {d(i,S\i) + V(S\i)}, 

(70) max {d(k,S\k) + V(S\k)}. 
keS\C 

Using (64), equation (69) can be rewritten as 

(71) o = max {d(i,C\i) + V(S\i)}. 

Using (65), (66), equation (70) can be rewritten as 

(72) = max {d(k,((S\C)Uc)\k) + V(S\k)}. 
keS\C 

Applying the induction assumption (67) to S\i with i E C, we 
have 

(73) V(S\i) = V(C\i) + V(((S\i)\(C\i))Uc) 

= V(C\i) + V((S\C)Uc). 

Plugging (73) into (71) yields 

oa = V((S\C)Uc) + max {d(i,C\i) + V(C\i)}, 

which by (19) is equivalent to 

(74) a = V(C) + V((S\C)Uc). 

Applying the induction assumption (67) to S\k for k E S\C, we 
have 

(75) V(S\k) = V(C) + V(((S\k)\C)Uc) 

= V(C) + V(((S\C)Uc)\k). 

Plugging (75) into (72) yields 

(76) = V(C) + max {d(k,((S\C)Uc)\k) + V(((S\C)Uc)\k)}. 
kES\C 
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Using first principles on (76) obtains 

(77) IB < V(C) + maximum {d(k,((S\C)Uc)\k) + V(((S\C)Uc)\k)}. 
k E(S\C)Uc 

Applying (19) to its right-hand side, expression (77) is equiva- 
lent to 

(78) IB < V(C) + V((S\C)Uc). 

Combining (74) and (78) with (68), we have, at last, 

V(S) = V(C) + V((S\C)Uc), 

the induction step to be proved. I 
A generalized clade, hereafter g.clade, is a subset of species, 

each of whose closest relative belongs to the g.clade, and each of 
whose distance from any species outside the g.clade is identical. A 
g.clade generalizes the concept of a clade to the case of non- 
ultrametric distances. The clade aggregation property decomposes 
the diversity of a set of species into two components: the diversity 
of the g.clade itself plus the diversity of all the other species 
aggregated with a single hypothetical representative of the g.clade. 
This result can be repeated for any number of g.clade subsets. The 
decomposability of g.clade subsets has significant computational 
and economic consequences. If preservation issues happen to 
concern only members of a particular g.clade, the analysis of 
resource allocation alternatives can safely proceed as if the g.clade 
were the fundamental universe of species, in isolation from non- 
g.clade members. To the extent that a set of species can be 
subdivided into g.clades, the computation of overall diversity is 
made much easier by taking advantage of clade aggregation. 

2. ULTRAMETRIC DISTANCES REDUCE DIVERSITY THEORY TO PERFECT 
TAXONOMY THEORY. Already covered in Sections III and IV. 

VIII. ECOLOGICAL DIVERSITY 

This section applies the diversity function of the present paper 
to a highly stylized ecological community. Suppose that the 
underlying resources of the habitat support a total population of N 
units of biomass. Let there be 1 different "ecological-species." (In 
this section "ecological-species" means real biological species in 
the traditional sense.) The collection of individuals of ecological- 
speciesj will be denoted Sj (j = 1,2, ... , 1). It is assumed, symmet- 
rically, that individuals of different ecological-species are equally 
diverse from each other, while individuals belonging to the same 
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ecological-species are identical. Let ecological-species j 
(j = 1,2, . .. , 1) consist of Nj individuals, measured in common 
units of biomass. That is, 

I = Nj. 
If S is the collection of all individuals, then 

ISI = N, 
(79) S = USj, 

N = Y Nj. 

Suppose that the habitat is modeled as a line segment of length 
N, which conceptually might represent a one-dimensional gradient 
of some ecological significance.23 Ecological-species j occupies an 
ecological-species niche represented by a line segment of length Nj 
belonging to [0, N]. Each individual of the ecological-species 
occupies a single niche one unit long within its ecological-species 
niche. Figure II depicts the model representation for three ecologi- 
cal-species. 

Think of N and all the {Nj } as being indefinitely large and 
satisfying 

N- 
(80) lim = PP > 0, Vj = 1,2, ... ),1, N--*NoN 

where 

(81) Pj = 1. 

Conceptually, the {Pi } are constants representing the relative 
biomass of each ecological-species. 

Note that the numbers N and each of the {Nj } can automati- 
cally be made indefinitely large in the requisite limiting way simply 
by making the biomass weight units and habitat distance units 
sufficiently small.24 Actually, this is perhaps the best way to think 
of the limiting process (80) because it allows the total biomass and 
habitat to remain constant while rendering the density of all 

23. For example, if the habitat is a salt marsh, the one-dimensional gradient 
might represent the degree of salinity. The dominant ecological species in a salt 
marsh are the two Spartina grasses. The ecological-species Spartina alterniflora is 
more tolerant of tidal immersion than S. patens, and hence there is a natural 
ordering of their niche location positions within the salinity gradient. 

24. Think of metric tons of biomass becoming 103 kilograms of biomass, 
becoming 106 grams of biomass, becoming 109 milligrams of biomass, and so on. 
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Ni= Niche of 1 N 2= Niche of 2 N3 Niche of 3 

l~~~~~~~~~~~~~~~~~~~~~~~ l 

N = Total Habitat 

FIGURE II 
Ecological Species Niches 

individuals to be uniform throughout their constant habitat-niche 
range. 

Now "pretend" temporarily that each individual is like a 
separate species, whose ecological distance from any other individ- 
ual is represented by how far apart they are on the niche line. 

Let 

V(S;N) 

represent the naive "inflated" diversity function of S obtained 
from pretending that all individuals of S constitute different 
species. 

Let 

V(Sj;N) 

represent the "false" diversity function of set Sj (in isolation) 
obtained from pretending that all individuals of Sj constitute 
different species. This "diversity" is completely spurious because it 
should be zero, since the set Sj consists of identical individuals. 

It is natural to define the "true" diversity V* of the model 
ecological community (per unit biomass) to be 

(82) V* _ lim (1 IN)[V(S;N) - 2 V(Sj; N)] 
New oo 

subject to (80) holding in the limit. 
Definition (82) corrects the double counting inherent in the 

"inflated" diversity of S by subtracting off the sum of "false" 
diversities of the 1 ecological-species sets. (In reality, the ecological- 
species sets should each have zero diversity.) The true diversity of 
S is the residual that remains after removing from the inflated 
diversity function of S all spurious diversity contributed by the 
ecological-species sets. 

The widely used Shannon diversity index is 

(83) H _y- P. 1n0o2P. 
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THEOREM. Under the assumptions of the model, 

(84) V* = H12. 

Proof. We begin with the following. 

LEMMA. Suppose that there is a collection A of M different 
species-individuals spaced one unit apart from each other 
along a line segment of length M - 1. (Set A is depicted in 
Figure III for the case M = 5.) Suppose that 

M = 2K + 1, 

for some positive integer K. Then 

(85) V(A) = (M- 1)/21og2(M- 1) + (M- 1). 

Proof of Lemma. By induction on K, making repeated use of 
the basic representation theorem. The flavor of the proof can be 
given for M = 5, illustrated in Figure III. The distance between 
each pair of neighboring points is one. It is not difficult to show that 
of the nearest neighbors 1 and 2, the point cast out is 2, adding 
distance one. Similarly, between nearest neighbors 3 and 4, the 
point to be cast out is 4, adding distance one. These two operations 
"core out" points 2 and 4, leaving the set (1,3,5). Of the remaining 
nearest neighbors 1 and 3, the point to be "cored out" is 3, adding 
distance two and leaving end points 1 and 5, whose distance is four. 
Thus, V(A) = ((1 + 1) + 2) + 4 = 8, as given by (85). In the general 
case, the first coring operation "cores out" (M - 1)/2 points, 
adding total distance ((M - 1)/2) * 1 = (M - 1)/2 and leaving each 
of the remaining ((M - 1)/2) + 1 points separated by a distance of 
two. The next coring operation "cores out" (M - 1)/4 points, 
adding total distance ((M - 1)/4) * 2 = (M - 1)/2 and leaving each 
of the remaining ((M - 1)/4) + 1 points separated by a distance of 
four. Each subsequent "coring out" operation adds total distance 
(M - 1)/2. There are log2(M - 1) such coring operations that it is 
possible to perform. Finally, one is left with the end points at 
distance M - 1 apart. Summing up all such distances yields (85).I 
The remainder of the proof proceeds as follows. For allj = 1,2,.... 
1, define 

Kj(Nj) log2(Nj - 1). 

Define 

K(N) log2(N - 1). 



ON DIVERSITY 399 

1 2 3 4 5 

M-1=4 

FIGURE III 

Linear Equidistant Species 

In the limit as N becomes indefinitely large while (80) holds, 
K(N) and the {Kj(Nj)} can be increasingly accurately approximated 
by integer values.25 

Therefore, applying the lemma to (82), 

1 'N- 1 
(86) V* = lim - 2 log2(N - 1) + N - 1 

log2 (Nj- 1) + Nj -1)]. 

Using (79), expression (86) can be rewritten as 

1 '2(1 -1) No- 1 
(87) V* = lim [ ( 1 -N log2(N- 1) 

N-l 
- j 1092 Nj-1) -I j 

o2Nil 

Taking the appropriate limits and making use of (80), (81), 
expression (87) becomes 

V*= - 1/2 [E Pj log2Pj], 

the result to be proved. I 
Theorem (84) ties together two concepts of diversity. The 

Shannon-Weiner formula (83) is a famous measure of information 
or of entropy. It has been widely used in ecology as an index of 
diversity for ecological communities.26 

The concept of diversity being used in this paper is in principle 
more general than ecological diversity, which would appear as if it 

25. I present here what is sometimes called a "physicist's proof." A fully 
rigorous proof that spells out in detail all the fine points of the limiting argument 
constitutes several pages that would seem disproportionately out of place here. The 
reader who cares should be able to fill in the details, as they are straightforward. 

26. See Pielou [1977] for an outstandingly lucid treatment of ecological 
diversity issues, including an axiomatic derivation of the Shannon diversity index. 
Magurran [1988] contains a comprehensive survey of ecological diversity indexes. 
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ought to be some kind of special case. It is therefore a gratifying 
and reassuring result that, for at least one reasonable interpreta- 
tion of an ecological community, the diversity function of this 
paper reduces to the well-known Shannon index. 

IX. ECONOMIC CONSIDERATIONS 

What follows next is a list of "economic items." The basic 
philosophy behind this approach is simple. Imagine the following 
thought experiment. Suppose, without having a formal definition 
of diversity, that we know intuitively the solution or the solution 
form of some particular, if hypothetical, diversity-maximizing 
resource-constrained allocation problem. Then a formally defined 
diversity function should yield the intuitively valid solution or 
solution form. In this way, intuitive thought experiments about 
resource allocation problems involving diversity may be used to 
validate the appropriateness of particular diversity functions. 

1. FAVOR THE MORE DISTANTLY RELATED SPECIES. Suppose that 1 E 
S, 2 E S, and 

d(1,i) < d(2,i), ViiES\1\2. 

Then 

V(S\2) < V(S\1). 

Proof. By induction on n = I S |. Details left as an exercise. 
If one species is unambiguously more distantly related to the 

rest of the population than another, it should always be preserved 
over the other, ceteris paribus. 

The above result expresses one sense in which the more 
distantly related species should be favored. Another sense is the 
following. 

Let IS = n (>2). Let B be the set of all n(n - 1)/2 possible 
pairs of different species (i, j) E S, i ? j. Let (i *,j*) E S solve 

d (i*, j*) = maximum d (i, j). 
igES 

Then 

V(i *,j*) = maximum V(ij). 
(i~j)EB 

Proof. Follows directly from the relevant definitions. | 

If only two species can be preserved out of a set, they should be 
the most distantly related pair. 
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2. IRRELEVANCE OF EQUALLY DISTANT RELATIVES. Suppose that 
there is a species k 0 S satisfying 

(88) d(ki) = d, ViES. 

Then 

(89) V(QUk) = V(Q) + d, VQCS. 

Proof. Condition (88) implies that 

(90) d(k,Q) = D(k,Q) = d, VQCS. 

Conclusion (89) then follows from combining (21) and (58) 
with (90).1 

If one species is equally related to all other species under 
consideration, its presence or absence is irrelevant to decisions 
concerning the preservation or extinction of any subsets of the 
other species. 

3. RULE OF THE SNAKE. Let S = {1,2 ... , n}. Suppose that there 
exists a strict ordering, 

d(ik) < d(jk) Vijk ES, i < j. 

Then 

n 

V(S) = d(i-1,i). 
i=1 

Proof. By induction on n. Left as an exercise. 
Suppose that there is an unambiguous sense in which species 

can be ranked from more closely to more distantly related (to the 
rest of the group). Call the more distantly related species more 
"valuable." Then the total value of diversity of the group should be 
the sum of pairwise distances along a chain connecting the most 
valuable species to the next most valuable, to the next most 
valuable after that, and so forth. 

The basic intuition should be clear. A concept like "the most 
valuable species" is generally problematical because it is inherently 
a global property; the most valuable species can change as other 
species in the set become extinct. However, in this particular case 
the concept makes sense. The most valuable species is the farthest 
distant from the others-by any reckoning. When the most 
valuable species has been eliminated, value has been lost equal to 
the distance from the most valuable to the next most valuable 
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species-and so forth along a chain-linked snake whose head is the 
most valuable species and tail is the least valuable. 

4. ADDITIVITY PROPERTIES OF INDUCED UTILITY FUNCTIONS. Let k 0 

S be a hypothetical "reference" or "comparison" species for S. 
Define 

U(i) d(k,i), V(iES, 

U(ij) V(ij,k), ViJ ES, 

U(S) V(SUk). 

With additive separability, total utility is the sum of individual 
utilities: 

Suppose that 

U(ij) = U(i) + U(j), VijeS. 

Then 

U(S) = z U(i). 
ics 

With substitutes, total utility is less than the sum of individual 
utilities: 

Suppose that 

U(ij) < U(i) + U(j), vijES, 
U(i', j') < U(i') + U(j'), for at least one pair i', j'ES. 

Then 

U(S) < IU(i). 
ics 

With complements, total utility is more than the sum of individual 
utilities: 

Suppose that 

U(i, j) ? U(i) + U(j), VijeS, 
U(i", j") > U(i") + U(j"), for at least one pair i", jES. 

Then 

U(S) > I U(i). 
ics 

Proof. By induction on n = IS 1. Left as a nontrivial exercise. 
(Hint: use the fact that the diversity of a triangle is the sum of its 
shortest and longest sides, and apply the fundamental representa- 
tion theorem to S U k.) I 
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The intuitive explanation of the above family of results is as 
follows. 

Suppose that we are interested in preserving certain collec- 
tions of objects, each individual member of which may possess 
some inherent value. An example might be architectural landmark 
buildings. Let k stand for a reference object, not of interest for its 
own sake, against which the inherent utility of each of the other 
objects is calibrated. In the example, k might stand for an ordinary, 
average, nonlandmark building. The inherent utility of k alone is 
normalized to be zero; the utility of any object of interest is always 
measured relative to the reference k and is made equal to the 
"distance" of that object from k. In the example, the stand-alone 
value of any particular landmark building is determined relative to 
the ordinary building k, and is identified with the imputed distance 
of that landmark building from k. 

Now if two objects share very little in common, say because 
they represent entirely different periods or styles, their joint utility 
should be approximately the sum of their individual utilities. On 
the other hand, if two buildings substitute for each other, say 
because they are both examples of a particular style, the utility of 
the pair should be less than the sum of their individual utilities, 
even though one building might have higher individual utility 
because it is a better preserved specimen than the other. Con- 
versely, if two objects complement each other, like a matched pair 
of gloves, their joint value should exceed the sum of their individual 
values. 

A good theory of diversity should automatically pick up these 
themes and integrate them into its main body. The framework of 
this section can be viewed as an extension of the theory of diversity 
to the case where objects have an intrinsic value or utility. If they 
are to be trustworthy evaluators, these induced utility-diversity 
functions should possess basic properties of utility functions. When 
individual utilities are additively separable, total utility should 
equal the sum of individual utilities. With diminishing returns to 
combining species, total utility should be less than the sum of 
individual utilities. And when there are increasing returns to 
combining species, total utility should exceed the sum of individual 
utilities.27 

27. This section represents a tentative first step in the direction of trying to 
show how the approaches to diversity used in economic models might be viewed as 
special cases within the framework of the current paper. A full development of this 
theme seems a worthy subject of future research. 
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5. MIN-Loss EXTINCTION. Without loss of generality suppose that 1 
E S and 2 E S and 

d(1,2) < d(ij) for VijES, i ?ej. 

Then either i' = 1 or i = 2 is the solution of 

V(S\i') = max V(S\i). 
iEs 

Proof. Min-loss extinction is a direct consequence of the 
fundamental representation theorem. I 

Suppose that S contains n species, but the underlying "budget 
constraint" allows exactly n - 1 of these species to survive with 
certainty, while exactly one species must perish with certainty. If 
there is a choice, which one of the n species should be allowed to go 
extinct so that the other n - 1 might be preserved? The intuitive 
answer is that one of the two most closely related species in the set 
should be the single species that is extinguished. 

The min-loss extinction property is a strong general criterion 
for discriminating among proposed diversity functions. 

At the end of Section III a powerful extension of this concept 
was stated for the special case of ultrametric distances. 

X. CONCLUDING REMARKS 

This paper is difficult to summarize. I hope it demonstrates 
that, by starting with the basic concept of a diversity function, a 
powerful, unified, general theory of diversity can be developed, 
which yields many useful insights over a wide range of applications. 

HARVARD UNIVERSITY 
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