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At each instant of time a depletable resource can be drawn from any one 
of a number of pools. The cost of removing an extra unit from a pool 
depends on how much has already been taken out of it. What policy 
supplies a fixed flow of the resource at minimum present discounted 
cost? 

It is easy to characterize the optimal rule in a classical environment 
where every pool has nondecreasing extraction costs. At any time simply 
draw the required amount from the source with lowest marginal cost. But 
what happens if, as in the real world, incremental extraction costs decline 
in some initial range? In the general case, a marginalist policy of exploiting 
the least cost source would be suboptimal. 

The present paper shows that a natural generalization of the marginalist 
rule is optimal when resource pools have arbitrary extraction costs. A key 
solution concept turns out to be the “equivalent stationary cost” of 
exploiting the resource. Properties of an optimal policy are derived and 
interpreted. 

THE MODEL 

The present paper is primarily an exercise in trying to characterize, at a 
high level of abstraction, the basic form of an optimal policy for exploiting 
natural resources under very general cost conditions, including decreasing 
costs. This goal can be most conveniently served by treating the under- 
lying prototype problem in a discrete formulation. (A continuous version 
yields completely analogous results, but the mathematical analysis is 
intrinsically more technical. Actually, the form of an optimal policy in the 
continuous case is most easily proved by first treating the corresponding 
discrete or integer mode and then carefully taking the limit as the step 
size approaches zero.) 
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A “generalized resource” is extracted from “generalized resource 
pools,” indexed by i. The system is in state {mi}, where each m, is a non- 
negative integer, if amount mi of the resource has already been extracted 
from pool i. A function 

F&4 

gives the cost of extracting one more unit of the resource from pool i when 
m units have already been taken from that source. If no more than amount 
m can be gotten from pool i, we symbolically write Fi(m) = 00. 

Let vi be an indicator variable that takes on value unity if pool i is being 
exploited, and zero, otherwise. A transition can be made from state 

to state 

where 

at a cost of 

There is a constant demand for the resource which must be satisfied. 
Without loss of generality, time is measured so that demand equals one. 
Let 01 be the appropriate one-period discount factor. The basic problem is 
to determine control variables {am} which will 

minimize 01~ c r,(t) Fi(mi(t)) 
t=o i 

(1) 

subject to 
m,(t + 1) = m&) + vi(t), (21 

c m> = 1, (3) 

vi(t) = 0 or 1. (4) 

(Implicitly we are assuming that (l)-(4) is well formulated. In fact it is not 
difficult to specify sufficient conditions for guaranteeing the existence of a 
solution.) 

There are many ways in which the actual economics of extraction is more 
complicated than the simple model presented here. (Just to mention a few: 
Uncertainty may be present; demands and discount factors could vary 
with time; extraction costs might depend on current outflow as well as on 
how much has been cumulatively taken from a pool. Equation (4) could be 
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replaced by the seemingly weaker “mixing” condition 0 < vi(t) < 1, but 
only at the expense of making the analysis more intricate, and without 
otherwise altering results. Note that when time units are sufficiently small 
any fractional extraction policy can be approximated to an arbitrary 
degree of accuracy by a discrete policy of the form (4) (which rapidly 
switches back and forth among the pools being “mixed”).) Nevertheless, 
the above formulation might be defended as a rough approximation to the 
general issue of finding the best pattern for developing a resource from 
alternative sources or pools. The fact that it is possible to sharply charac- 
terize an optimal solution makes problem (l)-(4) a natural preliminary to 
any more general analysis. And it may even be a reasonable description 
of some situations. 

Depending on the context, the various pools might be mines, pits, wells, 
deposits, fields, regions, or even resource-based technologies. Actually, 
with a judicious interpretation of “resource pool,” formulation (l)-(4) is 
sufficiently general to include as special cases many of the standard 
deterministic operations-research models for such problems as equipment 
selection and replacement, inventory and production scheduling, or 
capacity expansion. (In such situations there are typically several classes 
of pools, each of which contains an infinite number of identical members. 
For equipment problems a “resource pool” is a certain piece of equipment 
and the “amount extracted” is the length of time it has been in service. 
With scheduling, inventory, and expansion problems, a pool is a certain 
strategy-schedule (like ordering inventory or building capacity) which 
goes up to some expiration or regeneration point (after which costs are 
interpreted as being infinite); the “amount extracted” is the length of time 
the given strategy-schedule has been carried out.) 

NONDECREASING COSTS: A SPECIAL CASE 

Consider now the classical assumption of constant or increasing 
marginal cost. In symbols, 

(5) 

for all i, m, In’ such that 

m ,< m’. 

When restriction (5) is imposed, it is easy to characterize an optimal 
solution to problem (l)-(4). Always extract the next unit from the cheapest 
source currently available. At time t. fix 

Q*(t) = 1 
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for any integer i* satisfying 

Fi,(mi,(t)) = mm r;i(mi(t>). (6) 

That such a policy is optimal follows directly from applying the standard 
marginalist argument to a situation with convex cumulative cost functions 
and positive time discounting. 

It is important to realize that the marginalist selection rule (6) does not 
give correct answers in a nonconvex environment where (5) fails to hold. lf 
extraction costs can decline, an optimal policy may require exploiting a 
source having high initial but low eventual costs. There is no way that a 
completely myopic algorithm that looks only at incremental costs will 
pick out this kind of policy. The correct solution concept, if there is one 
for a problem seemingly as complex as (l)-(4), would have to somehow 
look ahead at the entire pattern of future costs. 

Now we can pose the following basic question. Is there any simple 
abstraction or generalization of the marginalist principle which works 
when no structure whatsoever is placed on the cost coefficients {F,(m)) ? The 
answer turns out to be yes. 

The algorithm which is developed in this paper for dealing with an 
arbitrary cost structure may be of some interest. Situations with a range 
of decreasing marginal cost are frequently the rule rather than the excep- 
tion. Substantial set-up costs in overhead, research, development, or the 
like must usually be incurred just to open up a resource pool. Then there 
is the pervasive feature of learning by doing or cumulative technological 
progress, which is likely to lower costs over at least the beginning stages 
of exploiting a new source. It is true that costs of extracting from a given 
pool will eventually rise if and when resource deposits start to give out. 
(Even then, fresh investments in secondary and tertiary recovery methods 
may cut subsequent operating costs, at least temporarily.) But the evidence 
suggests that incremental costs are not universally nondecreasing over 
their entire range. 

SOLVING THE GENERAL CASE 

If amount m has already been drawn from pool i, the equivalent sta- 
tionary cost of taking the next n units in a row from it is the weighted 
average 

(7) 
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Let ri be the time horizon which minimizes (7), 

We permit the case li = cc. (Strictly speaking, the operation inf should 
replace min in (8). Likewise for formulae (6) and (11) if the number of 
resource pools is infinite.) This could occur, for example, when costs are 
everywhere nonincreasing. 

The implicit cost of pool i (when m units have been extracted from it) is 
defined to be its smallest equivalent stationary cost 

CD,(m) = ‘U,“(m). (9) 

The following decision rule completely characterizes an optimal policy 
in the general case. (That is. it constitutes a necessary and sufficient 
condition for an optimum.) 

Always extract the next resource unit from the pool with lowest implicit 
cost. Symbolically, in an optimal policy, at each I 

for any integer i* satisfying 

@&zi*(t)) = mm Qi(mi(t)). (11) 

Converting arbitrary cost streams to stationary equivalents for the 
purpose of finding the cheapest alternative is an old economist’s trick. The 
optimality of decision rule (lo), (11) can in a sense be interpreted as 
justifying this heuristic procedure under certain conditions. 

Note that the implicit cost of a pool reduces to its marginal cost for the 
special case of nondecreasing costs. This is because when (5) holds, the 
horizon ri = 1 is always a solution of (8); and then (9) becomes 

@i(m) = F[(m). 

So the decision rule (11) is indeed a generalization of the marginalist 
principle (6). 

It is not necessary to recalculate implicit costs in each time period. If a 
pool is not used, its implicit cost does not change. If it is used, its implicit 
cost must have been lower, or at least no higher, than the implicit cost of 
any other pool. But then it will remain the lowest implicit cost pool (and 
hence, will continue to be exploited) for at least a number of periods equal 
to the equivalent stationary cost minimizing horizon ri of (8). 
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This last conclusion can be derived as follows. Split the time interval 
[0, ri) into two subintervals [0, h) and [h, ‘i) for h any integer between 1 and 
fi - 1. The equivalent stationary cost of extracting over the interval [0, 2) 
is a weighted average of the equivalent stationary costs over its component 
subintervals, 

We know from (8) that 

Y&n) < Y,“(m). 

It follows that 

Y;-ym + 12) < Y;(m). 

Using (9), the above expression becomes 

Yyywl + 7%) < @&z>. 
But 

Thus, 
@,i(i17 + I?) < Yf-‘“(772 $ I?). 

(13) 

for Iz = 1, 2,..., fi - 1, the result to be proved. 
To illustrate the typical form of an optimal policy for exploiting de- 

pletable natural resources, consider the following simple example. Suppose 
there are but three resource pools. Each pool has an initial range of 
decreasing costs, followed by a final section of increasing costs. Let the 
pools be ordered so that the first has lower implicit cost than the second, 
which in its turn is lower than the third. The optimal strategy will be to 
initially exploit the pool with lowest implicit cost, pool number one. This 
will be done until the marginal cost of extracting one more unit (in the 
increasing cost range) becomes greater than the implicit cost of the second 
pool. At that time pool two will start being exploited, and it will be the 
exclusive source until its marginal cost in the increasing cost range becomes 
greater than the marginal cost of pool one. Then pool one or two will 
alternately be exploited, depending on which is currently the cheaper 
source at the margin (in a continuous formulation, both would simul- 
taneously be tapped). That is, if pool one has lower incremental cost than 
two, it will be exploited until its incremental cost exceeds two’s, then two 
will be exploited until its incremental cost exceeds one’s, etc. This rising 
marginal cost phase ends when the implicit cost of the third pool is found 
to be lower than the incremental costs of the first two pools. Then the 
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third pool alone is tapped, up to the point where its incremental cost in the 
increasing cost range becomes greater than the incremental cost of the 
first or the second pool. From then on all three pools are alternately 
exploited, that pool being tapped at any given time which has lowest 
marginal cost. 

Note that in a situation where all pools are the same and there is an 
unlimited collection of them, the optimal policy will be cyclic or recursive. 
The same conclusion holds if there are several classes of pools, each class 
containing an infinite number of identical pools (because in an optimal 
strategy only pools from one class will be tapped). This is why so many of 
the standard operations research models with renewable options (for 
example, the simple deterministic models of equipment selection and 
replacement, inventory and production scheduling, or capacity expansion) 
end up having a repetitive solution which may be universally characterized 
as follows. At each decision node, choose the strategy element with lowest 
equivalent stationary cost. 

That such an elementary decision rule as (IO), (11) is optimal depends 
crucially on the simplifying assumptions of the model. There does not 
seem to be available a sharp characterization of an optimal solution when, 
for example, demand varies with time or the discount rate is not constant. 
(About all that might be said of a general character in such cases is that a 
limiting argument could be used to show the results presented here are 
valid as an approximation when the stipulated preconditions are close to 
being met.) 

THE BASIC MONOTONICW PROPERTY 

The correctness of decision rule (lo), (11) derives ultimately from an 
important monotonicity property. 

Pick any time t. Suppose that pool i is being exploited throughout the 
interval [t, t + k] but not in period t + k, for k some positive integer. 
(If k = 00, the monotonicity property is empty. But an important 
corollary, to be explained later, still holds.) Then pick any time t’ > t + k. 
Suppose that pool i’ is exploited throughout the interval [t’ - k’, t’) but 
not in period t’ - k’ - I, for some positive integer k’. (Naturally, 
t + k < t’ - k’.) 

The basic monotonicity property is that with an optimal policy the 
equivalent stationary cost of exploiting pool i over the interval [t, t + k) 
must be no greater than the equivelent stationary cost of exploiting i’ over 
[t’ - k’, t’). In symbols, 

Y;@??,(t)) < Yf$77& - k’)). 04) 



358 MARTIN L. WEITZMAN 

When t + k = t’ - k’, this fundamental lemma can be proved by a 
simple variational argument that reverses the order of pool exploitation. 
Suppose the original exploitation pattern looks like this: 

pool i pool i’ 
e-m 
I I I 

t t+k t’ 

FIGURE 1 

+ time 

If the equivalent stationary cost of exploiting pool i over the interval 
[t, t + k) is greater than pool i’ over [t’ - k’, t’), it will be cheaper to delay 
incurring the higher cost by changing the exploitation pattern to: 

pool i’ pool i 
m-e 
I I I 

t t + k’ t’ 

FIGURE 2 

4 time 

More formally, when t + k = t’ - k’, the present discounted cost over 
the interval [t, t’) of the allegedly optimal policy which exploits pool i in 
the subinterval [t, t + k) and pool i’ in the subinterval [t’ - k’, t’) = 
[t + k, t’) is 

a’(1 - a”‘)/(1 - a) Yik(mi(t)) + ~~+~(l - &)/(l - CI) !P;,‘(ny(t + k)). 

05) 

By comparison, the present discounted cost of the feasible alternative 
policy which would reverse the order of exploitation of pools i and’? in the 
interval [t, t’), but would otherwise leave the system in the same state at 
times t and t’, is 

C2(1 - C&)/(1 - cx) Yi”:(mi*(t + k)) + 0lt+k’(l - 2)/(1 - CX) Yi”(nQ(f)). 

(16) 

Because the original policy was optimal, the value of expression (15) 
must not be higher than (16). The resulting inequality reduces to 

YtU,“(m,(t)) < Y’$&,(t + k)), (17) 

which is equivalent to (14) for t + k = t’ - k’. 
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Suppose now that t + k < t ’ - k’. Divide the time interval [t + k, 1’ - k’) 
into Y contiguous subintervals of the form [tip1 , tJ with tj > tie1 . The 
divisions are made so that during each subinterval one distinct pool is 
being exploited. Let pool ij(ij # ij-r and ij # ij+l) be tapped in the time 
interval [tjml , tj) for j = 1, 2 ,..., r where t, = t + k, t,. z t’ - k’, i,, G i, 
ir+l E i’. Repeatedly applying the appropriate form of result (17) at each 
of the r + 1 transition times {tj}j’=o (where exploitation of one pool ends 
and of another begins) yields a string of inequalities which can be collapsed 
into (14). 

The basic idea is illustrated in Fig. 3 for the case r = 2. From what has 
previously been shown, the equivalent stationary cost over 

pool i pool ir pool i, pool i’ 
-eP 

I ,z; i- 4 time 
t t+k t1 

t’ - k’ t’ 

FIGURE 3 

the interval [t, t + k) is < over [t + k, tl), which is < over [tl , t’ - k’), 
which is < over [t’ - k’, t’). This concludes our proof of the basic 
monotonicity property. 

The following corollary to the basic monotonicity property is impor- 
tant. 

Let i’ be any pool and k’ any positive integer. Suppose there is a time T 
such that pool i’ is never tapped after T. Let the equivalent stationary 
cost of (hypothetically) exploiting i’ over the time interval [T, T + k’) be 

Suppose pool i is exploited throughout the interval [7’, T + k) but not 
in period T + k, for some positive integer k. (We also allow the possibility 
k = 03. In this case it will be evident that the proof of the corollary still 
goes through, although there is no opportunity or need to apply the basic 
monotonicity property. If k’ = co, the statement and proof of the corollary 
are likewise unaffected.) Let the equivalent stationary cost of exploiting i 
over the time interval [T, T + k) be 

A = !P~ym<(T)). 

In an optimal policy, it must be that 

h <CL. 

(19) 

(20) 
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The proof of corollary (20) is as follows. Let the equivalent stationary 
cost at time T of the optimal policy over the entire interval [T, co), during 
which there is no extraction from i’, be /3. In other words, if the alledgedly 
optimal policy costs f(0) in period 0, 

p = (1 - a) f f(e) d-=. 
li=T 

By the basic monotonicity property, h must be no greater than the 
equivalent stationary cost over any subinterval of [7’, a) during which 
one distinct pool is being exploited. But there is an easy generalization of 
(12) which says that the equivalent stationary cost of extracting over any 
interval is a weighted average of the equivalent stationary costs of extrac- 
ting over each of its component subintervals. It follows that 

x <P. (22) 

Consider an alternative policy which exploits pool i’ in the interval 
[r, T + k’) while postponing to a starting date of T + k’ the allegedly 
optimal policy which had previously begun at T. In other words, what was 
policy over [T, a) now becomes policy over [T + k’, co) and pool i’ is 
exploited in the interval [7, T + k’). Before time T, the original and 
alternative strategies coincide. 

The cost over [T, co) of the alternative variation discounted to time T is 

1 - &’ 
-pi&/3. 

I-a 

This must be no less than the corresponding discounted cost of the original 
optimal policy 

P/(1 - a). 
It follows that 

P GP. (23) 

Combining (22) and (23) yields the desired corollary (20). 

PROOF OF OPTIMALITY 

Our proof of the main result is by contradiction. Suppose that the 
proposed decision rule (lo), (11) is nonoptimal. If some other policy is 
optimal, there must be a time t and a poolj(# i*) such that 

@j(mj(r>) > @i*Cmi*Ct>>7 (24) 
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I 
and yet, 

z+(t) = 1, 

instead of rj*(t) = 1. 

361 

(25) 

In this allegedly optimal policy, let t + k be the first period after t that 
some pool other than j is exploited. (The case k = cc is allowed, which 
means that poolj alone is exploited after time t.) The equivalent stationary 
cost of exploiting pool j over the interval [t, t + k) is 

From the definition of @j(mj(t))y 

@k%(t)> < y, 

which can be combined with (24) to yield 

@j*(mj*(t)) < y. (27) 

Let n* be the value of ri which satisfies (8) for i = i*, m = m+(t). If 
n* = co, a direct argument based on (27) and the monotonicity property 
show that exploiting only pool i* from time t on has a present discounted 
cost lower than the proposed policy. In what follows, the case n* < cc is 
treated. 

Although poolj is being exploited at time t instead of pool i* it may be 
that i* will be exploited again at some future dates. Suppose, as one case, 
that at least mi*(t) + n* units are eventually extracted from pool i in the 
allegedly optimal policy with (24) (25) holding. Let t’ be the first time 
when 

mi*(t’) = nQ*(t) -I- iz*. 

Let k’ be the positive integer such that pool i* is exploited throughout the 
interval [t’ - k’, t’), but not at time t’ - k’ - 1. 

For the values i = i*, m = mj,(t), li = n*. h = n* - k’, expression (13) 
becomes 

Y$(mj*(t) + ?I* - k’) < @ii~(n~i*(t)). (28) 

Combining (28) with (27) yields 

Y’$((n+(t) -I- H* - k’) < y. (29) 

Now inequality (29) is a direct contradiction with the basic monotonicity 
property (14). A time segment [t, t + k) with higher equivalent stationary 
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cost y is preceding a segment [t’ - k’, t’) with lower equivalent stationary 
cost Y’;(m&) + II* - k’). 

A contradiction (now with the corollary) is also implied if after time 
t a total of less than n* additional units are to be taken from pool i* in an 
allegedly optimal policy. Let T be the time right after the last unit has been 
taken from pool i* if this occurs after t, and t otherwise. Jn the present 
context let k’ be defined as the positive integer satisfying 

tqe(T) = fi>h tq,(s) = n?,,(t) + tI* - k’. (30) 

For k’ so defined, (29) continues to hold. Using (30), expression (29) 
becomes 

Y$(tni*(T)) < y. (31) 

Employing definition (18) for i’ = i*, (20) becomes 

By the basic monotonicity property and the definition of T, 

(32) 

(33) 

Inequalities (32) and (33) can be combined to yield 

which is a direct contradiction with (31). 
This concludes our proof of the form of an optimal policy. (Strictly 

speaking, we have proved the necessity of (lo), (11). That rule specifies a 
unique selection of i* for each t (except in the case of ties, for which it is 
easy to show that how the tie is broken makes no difference to the value 
of the objective function). Thus, provided an optimum exists, sufficiency 
of (lo), (11) has also been demonstrated.) 

SCARCITY PRICE OF THE RESOURCE 

By “efficiency,” “shadow,” or “scarcity” price of the resource at time t 
is meant its marginal value at that time, defined in terms of the overall 
objective (I), discounted to t. (Note that efficiency prices will not 
necessarily have the “decentralization” property of inducing and sup- 
porting optimal decisions unless we are operating in the convex environ- 
ment of nondecreasing extraction costs.) It turns out that the efficiency 
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price of the generalized resource can be represented by a simple expression 
with a direct economic interpretation. 

The shadow price of the resource at time t is 

y, = (1 - n!) f F*(s) W-t, (34) 
s=t 

where 
F*(s) = F,*(,,(rn&)) (35) 

is the extraction cost in period s of an optimal policy. 
The above result has a most interesting interpretation. The current 

shadow price is an exponentially weighted (by the discount rate) average 
of all future costs. At any time the scarcity price of an exhaustible resource 
is the equivalent stationary cost of exploitation henceforth. In other words, 
the efficiency price is exactly equal to that hypothetical constant extraction 
cost per unit which would yield the same present discounted cost as an 
optimal policy. 

That the shadow price must have the form (34) is easily demonstrated. 
Suppose that an extra unit of the resource is given as a free gift in period t 
(recall that the resource could have been measured in arbitrarily small 
units to begin with). Consider the following proposed policy, which is now 
feasible. Up to time t, follow exactly the same extraction pattern as the 
original optimal solution (lo), (II). During the time interval [t, d + 1). 
take advantage of the free gift and extract nothing. Throughout the interval 
[.r, s -+ 1) for s > t + 1, extract from the pool i*(s - 1) which in the 
original optimal solution had been exploited during the previous interval 
[s - 1, s). 

The cost of such a policy discounted to period t is 

t-1 

Ct’ = c F*(s) cx-f + 

S=O 

*$ F*(s - 1) as-t. 

The cost of the original optimal policy discounted to period t is 

c, = f F*(s) a”-t. 
S=O 

The difference is 

c, - Ct’ = (1 - a) f F*(s) as-t. 
s=t 

Thus, the gain achieved by the gift of an extra unit of the resource in 
period t is at least pt , defined by (34). (It would be exactly pt if the gift 
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came as an unforseen “surprise” at t, in which case the proposed policy 
would be optimal. lf the date of the gift is known beforehand, a planner 
may be able to cut present discounted costs by altering the proposed 
extraction schedule.) Using a similar argument, the loss incurred by taking 
away one unit of the resource in period t - 1 is no greater than pt . The 
efficiency price of the resource at time t, defined as its undiscounted 
marginal value, is therefore given by expression (34). (A few mathematical 
fine points are being glossed over in favor of a cleaner exposition. For 
example, left- and right-hand-side marginal products need not be equal to 
each other; the proposed shadow price is merely “trapped between” them. 
Also, it is implicitly being assumed that time periods are “sufficiently 
small” to justify the variational arguments being employed.) 

As a consequence of (34), the efficiency price of a depletable resource 
can have a complicated and interesting time profile. It may temporarily 
decline, corresponding to the development of a source having a significant 
range of decreasing costs (the decline will be permanent if the decreasing 
cost stage lasts forever). In the long run, when different pools are exploited 
the shadow price trends upward because the resource is becoming more 
expensive as the cheaper sources are exhausted; this increase will of course 
be monotonic in the classical case where each pool has nondecreasing costs. 
For operations-research type problems with renewable options, the 
shadow price exhibits a wave-like recursive pattern. 


