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1 INTRODUCTION

Equilibrium climate sensitivity is a key parameter that serves as a very
useful macro-indicator of the eventual aggregate response of tempera-
ture change to the aggregate level of greenhouse gases (GHGs). Decades
of scientific research have failed to constrain the upper range of climate
sensitivity, which means that alarmingly high distant-future temperature
responses are not excluded. This chapter highlights a generic statistical-
inference mechanism that makes it difficult to thin down to zero inherently
fat-tailed probability estimates of rare extreme outcomes.

LetAln CO,besustained relative changein concentrations ofatmospheric
carbon dioxide while AT is equilibrium mean global surface temperature
response. Equilibrium climate sensitivity (here denoted A) is a benchmark
amplifying or scaling multiplier for converting A ln CO, into AT by the
(reasonably accurate) linear approximation A7 = (A/In2) X Aln CO,.
As the Intergovernmental Panel on Climate Change in its IPCC-AR4
(2007) Executive Summary phrases it:

The equilibrium climate sensitivity is a measure of the climate system response
to sustained radiative forcing. It is not a projection but is defined as the global
average surface warming following a doubling of carbon dioxide concentra-
tions. It is likely to be in the range 2 to 4.5° C with a best estimate of 3° C, and
is very unlikely to be less than 1.5° C. Values substantially higher than 4.5° C
cannot be excluded, but agreement of models with observations is not as good
for those values (italics in original).

In this chapter I am mostly concerned with the roughly 15 per cent
of those A ‘values substantially higher than 4.5° C’ which ‘cannot be
excluded’. A grand total of 22 peer-reviewed studies of climate sensitiv-
ity published recently in reputable scientific Journals and encompassing a
wide variety of methodologies (along with 22 imputed probability density
functions (PDFs) of &) lie indirectly behind the above-quoted IPCC-AR4
(2007) summary statement; they are of that document in Table 9.3 and Box
10.2 listed. It might be argued that these 22 studies are of uneven reliability
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and their complicatedly-related PDFs cannot easily be combined, byt
for the simplistic purposes of this illustrative example 1 do not perform
any kind of formal Bayesian model-averaging or meta-analysis (or even
engage in informal cherry picking). Instead I Just naively assume that all 22
studies have equal credibility and, for my purposes here, that their PDFg
can be simplistically aggregated. The upper 5 per cent probability leve]
averaged over all 22 climate-sensitivity studies cited in IPCC-AR4(2007) is
7° C, while the median is 6.4° C,! which I take as signifying approximately
that P[A > 7°C] =~ 5%, Looking at the upper tails of these 22 PDF s, one
might roughly presume from a simplistically-aggregated PDF of these 27
studies that P[A > 10° C] = 1%. Even if my numbers are somewhat off,
it still seems apparent that the upper tails of the PIYFs of A appear to be
long and fat. A fat-tailed PDF assigns a relatively much higher probability
to rare events in the extreme tails than does a thin-tailed PDF 2 Although
both limiting probabilities are infinitesimal, the ratio of a thick-tailed prob-
ability divided by a thin-tailed probability approaches infinity in the limit.

A critical question is this. Why, after decades of extensive research, do
these upper tails of climate sensitivity PDFs seem so intractably long and
fat? The climate science literature appears to have coalesced around an
answer along the lines that there might be some physical basis for believing
that 1/ is approximately normally distributed, which would make J itself
have something like a fat-tailed Cauchy-Lorentz PDF. As a story about
feedback processes and measurement errors, some of this logic can make
sense and it provides some much-needed insight into the physical nature of
anissue that is crucially important for understanding a key driver of global
warming. However, as a story about statistical inference, this reasoning is
partial and incomplete in the sense that it appears to rely on a very specific
data generating process (DGP) that is not fully rigorously specified — nor
does this story pinpoint formally what exactly is the relevant problem here
of prediction under uncertainty. In this chapter, I suggest that the core
logic behind a fat-tailed PDF of climate sensitivity perhaps transcends the
underlying physics and may even be more generic than somewhat partial
reasoning about the properties of ratios of random variables in a particu-
lar DGP. I argue that the relevant posterior-predictive PDF of virtually
any high-impact low-probability rare event has a deeply built-in tendency
to be fat tailed — almost irrespective of the underlying DGP. When these
fat tails matter because catastrophic damages have essentially unlimited
liability — as with climate change — this aspect is capable of driving the
economic analysis.

The essence of the climate sensitivity dilemma highlighted in this
chapter is the difficulty of learning extreme-impact tail behavior from
finite data alone. Loosely speaking, the driving mechanism is that the
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operation of taking ‘expectations of expectations’ or ‘probability distribu-
tions of probability distributions’ spreads apart and fattens the tails of
the reduced-form compounded posterior-predictive PDF. It is inherently
difficult to determine extreme bad-tail probabilities from finite samples
alone because, by definition, we don’t get many data-point observations
of infrequent events. Therefore, rare disasters located in the stretched-out
fattened tails of such posterior-predictive distributions must inherently
contain an irreducibly large component of deep structural uncertainty.
The underlying sampling-theory principle is that the rarer an event, the
more unsure is our estimate of its probability of occurrence — and the
larger the sample size required to rule it out for practical purposes. In ?his
spirit (from being constructed out of inductive knowledge), the empirical
studies of climate sensitivity are perhaps pre-ordained to find the fat-tailed
power-law-like PDFs which they seem, approximately, to find in practice.
Climate sensitivity is not nearly the same thing as temperature change.
In previous work,’ T tried to fudge the distinction by arguing thgt the
shapes of both PDFs are very roughly similar because a doubling of
anthropogenically injected CO,-equivalent greenhouse gases (GHGS) Telg-
tive to pre-industrial-revolution levels is essentially unavoidable within
about the next 40-50 years and the GHGs are very likely to remain well
above this level for at least the subsequent century or so after first attaining
it. But such a discrete two-period formulation suppresses the continuous-
time dimension by ignoring the fact that higher A7 values are (continu-
ously) correlated with later times of arrival. This chqpter gddresses more
centrally the relationship between dynamic AT trajectories Qnd cl%mate
sensitivity. I show that a previous two-period result, that fat«tallgd climate
sensitivity can have strong economic implications, survives being recast
into a more complete dynamic specification, even though (ther things
being equal) the higher the temperature realization, the later' t'h¥s tempera-
ture realization is expected to arrive. When fat climate-sensxt%vny tails are
combined with very uncertain high-temperature damage, this aspect can
dominate the discounting aspect in calculations of expected present dis-
counted utility — even at empirically plausible real-world interest rates gnd
even when taking full account of the important continuous correlation
that, conditional upon its realization, the higher the temperature, the later
is its expected time of arrival. ' o
A central theme of this line of research is that with finite data, it is prgc—
tically inevitable that rare extreme events will have fat tails. These fat tails,
which stubbornly resist the accumulation of finite data, reflect back at us
our own prior ignorance concerning how to model or represent or quan-
tify rare extreme events. My message is that we must learn to live Wth the
idea that the answers to cost-benefit analyses of what to do about climate
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change may very well depend — at least to some degree — upon subjective
Judgments about how bad it might get, with what probabilities, in the most
extreme situations.

2 ADYNAMIC AGGREGATIVE MODEL OF
GLOBAL WARMING

This section compresses into a single differential equation what is arguably
the simplest meaningful dynamic model of the physical process of global
warming. Of course this particular one-equation model cannot possibly
capture the full complexity-of climate change. However, I think the highly
aggregated approach taken here is realistic enough to serve as a spring-
board for meaningful discussions of some basic climate change issues
which, for the purposes of this chapter, are actually clarified when tightly
framed in such stark simplicity.

Perhaps the single most useful concept for understanding the process of
climate change is that of radiative forcing. GHGs such as CO, are prime
examples of this, but there are many others, such as solar intensity, aero-
sols and particulates. (The radiative forcing from CO, happens to be pro-
portional to the logarithm of its atmospheric concentration, but this is not
true in general for all forcings.) A key property of radiative forcings is that
the various components and subcomponents can be aggregated simply by
adding them all up because they combine additively.

Suppose for simplicity that throughout times 7 < 0, the planetary
climate system has been in a state of long-run equilibrium at a constant
temperature with constant radiative forcing. Imagine that startin g at
time 7 = 0, and continuing throughout times 7 = 0 a sustained perturba-
tion (relative to times 7 < 0) of radiative forcing of constant magnitude
AR, has been additionally imposed. (Whether this constant additional
radiative forcing AR, isitself exogenous or endogenous is irrelevant in this
context because only the reduced-form total forcing matters here.) If the
earth were a black body planet with no atmosphere and no further feed-
backs, the long-run temperature response would be AT — AAR, where
X, is the feedback-free equilibrium-climate-sensitivity constant defined by
the fundamental physics of a black-body reference system described by the
Stefan-Boltzman law. Even in richer, more realistic situations with feed-
backs and complicated dynamics, other things being equal, it is not a bad
assumption that at any time ¢ the temperature moves with an instantane-
ous velocity approximately proportional to AAR(1) — AT(z) —that is, the
(linearized) basic equation of temperature motion is
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7= %MOAR,.(z) ~ATOL. (n)

The positive coeflicient /2 in (1) represents the thermal inertia of the system,
in this application primarily standing for the overall planetary capacity of
slab-like oceans to take up heat.

The full temperature dynamics of this idealized planetary system can
then most simply be described as follows. At time ¢ = 0, suppose that a
system previously in long-run equilibrium is now subjected to an exog-
enously imposed radiative forcing of AF(r). Let the total change in radia-
tive forcing at time ¢ = 0 be denoted AR/(1). If the endogenously induced
radiative forcing at time ¢ = 0 is denoted AR,(¢), then

AR(t) = AF(t) + AR (D). (2)

In a simple linear feedback system applied to the prob]em at han(tL the
temperature change AT(¢) causes a comparatively fast-.actlng (.relatlve to
(1)) endogenous feedback response on induced radiative forcing AR, (1)
according to the formula
J 3)
AR(1) = k‘AT([)’
)

0

where the (linear) feedback factor f is a basic parameter of the syst'em.
The relevant feedback factors in climate change involve clqud formation,
water vapor, albedo, among others. A key property of linear feedback
factors is that (as with radiative forcing) the various components and sub-
components can be aggregated simply by adding them all up because they

combine additively. o . ‘
Plugging (3) and (2) into (1) yields after simplification the fundamental

differential equation -

e %[onF(z) — (1 = NAT(O)], @

whose solution is

! 1 -7
AT() = %J'OAF(S) exp(—(wz—f) (r — s))ds. (5

1

The oversimplifications of physical reality that have gone into the one-
equation temperature change trajectory (5) are too numerous and too
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tedious to recount here. There is only one major defence of this ultra-
macro approach: it seems fair to say that (5) captures the dynamic inter-
play of forces along a global-warming path better than any alternative
single-differential-equation formula. If we want a sharply focused formu-
lation of the big moving picture of a dynamic global-warming trajectory
in terms of its primary contributing ingredients, then we are pretty much
stuck with (5).

In what follows, it will be analytically convenient to work with the
special case where exogenously imposed radiative forcing is constant, so

that for all times, ¢ = 0,

~ AF(t) = F, (6)

which simplifies (5) into

| A — -
AT() = 1‘:717{1 - exp(—( 7 f)t)} 7

For ngtational neatness, assume that all units are expressed in terms of a
doubling of CO,. The equilibrium climate sensitivity is then defined as

. AT(z
A= lim —-Tg, (8)
and it is readily apparent from applying (8) to (7) that
— )\‘O A

which is one of the most basic relationships of climate change.

Even accepting the enormous oversimplifications of reality that go into
an equation like (5) (or (7)), there remain massive uncertainties concern-
Ing the appropriate values of the structural parameters. The critical feed-
bgck parameter f (and hence, by (9), climate sensitivity A) is perhaps the
b1gg§st uncertainty in the system. While this chapter concentrates on this
particular uncertainty, it should be appreciated that the relevant values
of h and of past forcings {AF(s)} are also very uncertain. Just glancing
gt equation (5) is highly suggestive of why it is so difficult in practice to
infer /" (or &) directly from data. The record of past natural forcing experi-
ments is extremely noisy and such components as aerosol concentrations
are notoriously difficult to identify. Furthermore, it is readily shown that
the first-order response of a system like (5) to a change in forcings does
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not involve long-run parameters like f (or A) at all, but more centrally
concerns the overall ability of the oceans to take up heat as embodied in
the thermal inertia coefficient 4, which itself is not very well known in this
aggregative context. It is statistically very difficult to distinguish between a
high- f low-A world and a low- f high-/ world. To be able to deduce J(ord)
at all precisely would require a long and fairly accurate time series of past
natural forcings along with a decent knowledge of the relevant thermal
inertia — none of which is readily available. A more detailed look at how
most scientists frame and view the difficulty of inferring climate sensitivity
is examined in the next section.

3 WHY IS CLIMATE SENSITIVITY SO
UNPREDICTABLE?

The title of this section is taken from the title of an influential recent Science
article by Roe and Baker (2007), which highlights nicely the core dilemma
here. Their explanation overlaps in its logic and spirit with a long series of
preceding scientific insights that were similar in tone but were less formally
articulated. The starting point for this genre of explanations is the obser-
vation that forcings AF and feedback factors f are both linearly additive
in individual subcomponents, while neither temperature responses A7 nor
climate sensitivity A display this linear additivity property.

What bothers scientists most about the climate-sensitivity issue is that,
even after some three decades of intensive research, almost no progress has
been made on providing a meaningful upper bound for climate sensitivity.
I would argue that this concern is somewhat misstated and perhaps even
misdirected. It is not the absence of an absolute upper bound on climate
sensitivity per se that is disturbing or, for that matter, even mysterious.
The absence of an upper bound on A just means that the right tail of the
corresponding climate-sensitivity PDF is very long and stretched out
because very high values cannot absolutely be ruled out. However, it is
not the length of the right tail PDF that is disturbing for policy implica-
tions, but rather its thickness. A great many catastrophic possibilities in
our world have long tails, but we do not worry about them because we
may have some reason to believe that these long tails are thin with prob-
ability and their asymptotic PDFs converge rapidly towards zero. The real
problem with estimated climate sensitivity PDFs is that the right tail is too
‘fat’ (or ‘thick’ or *heavy’) with probability to allow us to feel comfortable
with our current state of knowledge. In this sense. the scientific concern
about the lack of an absolute upper bound on climate sensitivity is some-
what misconstrued because the real issue is not that the right upper tail is
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too long (which only means that high values are empirically or theoreti-
cally conceivable) but that it is too fat (which means that high values are
possible with uncomfortably large probabilities). Although the scientists
themselves do not make a distinction between tails that are too long and
tails that are too fat, in this section I restate their explanations in terms
of the more substantive and more genuinely disturbing issue of why the
upper tail of the PDF of climate sensitivity is so fat with probability (as
opposed to being so stretched out or long or unbounded).

Inferences about climate sensitivity come from two broad classes or
categories of studies. The first group is computer simulations of large-scale
climate models with randomized parameters. The second group is noisy
observations of past natural experiments via proxies that essentially mimic
AT/AF. 1 begin with the first category.

Roe and Baker (2007) come at the climate-sensitivity estimation problem
from the perspective of the first category of perturbed-physics simulations
of large ensembles of computer models. In computer-simulated numeri-
cal modeling of climate, there are hundreds of parameters governing all
manner of minute details, such as fall speed of raindrops, how reflectiv-
ity changes as snow ages, exchange of turbulent fluxes in the boundary
layer, evapotranspiration through plant roots, and so forth. In most cases,
these uncertain parameters represent not-directly-observable ‘effective’
coefficients that are stochastically perturbed in the simulations — and the
physical meaning of what they actually represent can be quite unclear.
The major feedback parameters that climate scientists typically analyze
(water vapor/lapse rate, clouds, surface albedo and so forth) are some very
complicated functions of obscure combinations of model parameters. The
climate system has complex, non-linear, and even chaotic features.

Despite these non-linear complications and the overall messiness of
climate dynamics, Roe and Baker (2007) argue that in practice, feedbacks
still combine more-or-less additively, If

m

f=3 (10)

and if each feedback sub-factor J; s distributed more-or-less independ-
ently of the other feedback sub-factors, then if m is large enough and each
Jf;1s small enough, by the central limit theorem, the overall feedback factor
Jf is distributed approximately normally. The argument closes by noting
that climate sensitivity A defined by (9) is then basically distributed as one
over a normal PDF, which is essentially a skewed Cauchy-Lorentz-like
distribution which has a long upper tail. As 1 have indicated, I think the
real issue here is that this PDF has a fat upper tail (not that it is long). In

Consequences of the climare-sensitivity inference dilemma 195

my version of this story, the upper tail of the Cauchy-Lorentz-like PDF
of A is fat because it behaves asymptotically like a power-law distriby-
tion « 1/A% (To make the story airtight, one must set aside issues about
values of f greater than one, or dividing by zero, or artificial truncations,
which, alas, are far from being trivial details because how they are resolved
can substantially alter the logic of the argument and its conclusions.
Furthermore, the independence assumption is suspicious because of likely
negative correlations among the [ analogous to temperature-constrained
/ being negatively correlated with 4 - more on this later.)

Turning to the second category of empirical measurements, a less
formal version of what seems generically to be a very similar story to the
above Roe-Baker version (of why it is difficult to obtain an upper bound
on climate sensitivity) has been present in the scientific literature for some
time now. This long-present story concerns noisy observations of past
natural experiments by proxies that essentially mimic AT and AF, from
which 1/A is essentially estimated as AF/AT. For concreteness, I use the
recent formulation in an influential survey article by Allen et al. (2006)
entitled Observational Constraints on Climate Sensitivity. The mechanism
behind this story is analogous to the underlying mechanism of the Roe-
Baker story except that here AF plays the role of f and AT plays the role of
L. Again, the key point of departure is that even though the climate system
has complex, non-linear, and even chaotic features, in practice observed
changes in radiative forcings still combine more or less additively. If

i

AF = Y AF, (1)
=1

and if each radiative sub-forcing AF;is distributed more-or-less independ-
ently of the other radiative sub-forcings, then if m is large enough anq egch
AF; is small enough, by the central limit theorem, the overall radiative
forcing AF is distributed approximately normally.
If one writes
AF = E AT (12)
A

then, it is further asserted by Allen et al., that the dominant uncertain-
ties in empirical observations are on the left-hand side of equation (12)
because empirical uncertainty in measured or inferred A7 is typically
much smaller than empirical uncertainty in measured or inferred forcings.
This line of reasoning -~ normal measurement errors on noisy observations
of AF —strongly suggests estimating the coefficient 1/A in (12) by regress-
ing observations of AF as the dependent variable on observations of AT
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as the independent variable. (There is nothing inherently wrong with
this approach so long as one keeps in mind that the causality we actually
believe in, which is also what we need for prediction purposes, goes in the
reverse direction: AF — AT.) In the case of regressing AF on AT in (12), if
the variance of the error term were known, then under standard Bayesian
assumptions, the posterior-predictive distribution of /A would be normal.
Once again, the argument is concluded by noting that climate sensitivity
% is then distributed as one over a normal PDF; this, again setting aside
issues about negative values or dividing by zero or artificial truncations
(that, unfortunately for this argument, are actually substantial), is essen-
tially a skewed Cauchy-Lorentz-like distribution with a long upper tail.
And once more the real issue is that this Cauchy-Lorentz-like distribution
has a fat upper tail (not that it is long per se), which comes about because
this inverted-normal PDF tail behaves agymptotically like a power-law
distribution o 1/A2

In the previous paragraph, I have done my best to represent accurately
what I think is the prevailing scientific wisdom about why there are obser-
vational constraints causing the PDF of climate sensitivity to have a fat
upper tail. Alas, I fear this physical reasoning may be somewhat incom-
plete as stated and perhaps is not even fully rigorous. In what follows,
I'try to give a more careful rendition of the core inference-prediction
problem. Interpreted carefully, the above-stated idea that there are
normally-distributed measurement errors On noisy observations of AF
translates (12) into a statement about the conditional PDF of AF given
AT, where both random variables are drawn from some as-yet-unspecified
DGP whose joint realizations are bivariate observations of (AF,AT). The
formally correct linear-normal translation here is that given any realized
value of AT, the conditional PDF of AF is

AFIAT ~ Ma + bAT, v). (13)

However, what we are really interested in for climate-change prediction
is not (13), but rather the PDF of AT|AF. In other words, what we really
want to know is what happens to A7 for a given postulated AF. It cannot
be stressed strongly enough that there is simply no way to infer the PDF of
AT|AF from a knowledge of the PDF of AF|AT alone. Essentially, one is
required additionally to postulate some knowledge of the bivariate DGP
that is jointly generating the observed values of (AF, AT). To illustrate
what is involved in this kind of inference-prediction problem as applied
to climate change, pretend for the sake of analytical simplicity that the
PDF of empirical observations of (AF, AT) is bivariate normal. This is
undoubtedly not literally true, but the bivariate normat assumption will
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serve here to highlight crisply the critical inference-predlct}on problems
involved in explaining why climate sensitivity is s unprqdlctable - here
taken as meaning that the climate sensitivity PDF has a th?ck upper tail.

Suppose, then, that the complete DGP (datq gen?ratlng process) of
what has been measured in past noisy observations 15 po'stula'ted tg be
bivariate normal in (AF, AT), which (using standard notation) is equiva-
lent to having the key properties:

AF ~ Ny, 63), (14)
AT ~ Npy, 03), (15)
AF|AT ~ N(up + pgf“[AT — ), 051 — Pz)) (16)
T
AT|AF ~ N(u, + pgf[AF = el oHl — pz)), (17)
E[(AT - L) (AF — )] (18)
P GrOp .

Notice that (16) has the same form as (13), vyhere a=Wp = quuT]/\ig

= po, /0, v=o}(l —p?). However, the 111c01}1p¥ete IOgIC‘.l?V‘(i o
in trying to infer the tail properties of the PDF of chm}a;tel senﬁ( ;thl‘ying
anything like the reciprocal of the PDF of b from (I 3 (w ~1CA l];SAT algné
to infer the tail properties of AT|AF from the PDF oi FIAT alone
becomes apparent once the entire DGP has been carefully spect ,

r example, in (14)-(18) above. ’ ]
© Oence glz'aﬁted( th)at(the observed data is beipg g.enerated' byﬁ 111(115%)?&(1)
ent draws from the bivariate normal distribution in equgtlons ( Y fo;
there is no question but that the critical equation we are;nteresits ! oliﬂlcing
predicting the temperature-change r'esponse‘to a given (é 1a_n%ee]ﬁn e
is (17). The bivariate normal system in equations (14)——(1 )'IS : agst e
overall DGP for the noisy observations we are measqrmg int (;e pthis -
from natural forcing expertments. We are not }'eall}/ 111t?resTe 1;1 s ful
noise-generating DGP (14)-(18) as an end in itself. Fpl Txaﬁr}lzj we are
not really interested in identifying all five pbarametf;rs' in t(l\f: }\fcurgtely "
system (14)-(18). We are only interested in predicting as ai, rately @
possible what will be the noise-free true futurg temp'era‘t u‘ref, rwp P
hypothetically known noise-free true chang¢ in I'KdIaUth owggressmn
t];e model assumptions, this best predictor will come only from reg
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estimation of (17), irrespective of the rest of the bivariate-normal DGP
system (14)-(18).

If we want to conceptualize some ‘true’ value of climate sensitivity A
that is hidden from us by noisy disturbances via errors of measurement
or observation (and most scientists seem to prefer to think this way), a
natural interpretation of how to estimate A is as follows. Suppose A were
known. In the absence of any errors of measurement or observation,
the true relationship is that a known ‘true’ change in constant radiative
forcing AF* would induce (for each parametrically fixed value of AF¥)
a known ‘true’ equilibrium temperature response AT* according to the
linear-proportional (but not affine) formula

AT*| AR = AAF*, (19)

The ‘true’ value of A in equation (19) is the Holy Grail of climate sensitiv-
ity we seek, since knowing it would allow us to predict the equilibrium
temperature response to various radiative forcings corresponding to
various GHG scenarios. The only way that the standard scientific linear
description (19) can be made compatible with (17) is by imposing on (17)
the a priori known (on the basis of scientific first principles) additional
constraint that the affine term is zero:

Cr
Wr = p—lp =0, (20)
Of

in which case (17) becomes transformed into

AT|AF ~ NOAF, V), Q@

where simple algebra then shows that A = /e and V= 63(1 — p?),
neither of which is directly observable.

If we are allowed to imagine that the noisy observations come in the form
of nindependent realizations from the bivariate normal DGP described by
equations (14)-(18), then the DGP for observation 7 (i = 1,2, ..., n) of
(21) can be written in the familiar linear-normal regression form

AT, = AAF, + ¢, (22)
where each ‘error term’ g, is independent identically distributed A0, ).
Interestingly, fat tails on the posterior-predictive distribution of A also
emerge from this more complete description of the DGP via the following
tail-fattening mechanism. Let A be the least-squares estimator
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1 AZAE

A= _2;____ (23)
SAF?
=1

where the sample variance is
A & -
_1 — RAF) (24)
V= 2 (AT,

Under standard Bayesian reference prior assumptions, the posterior-
predictive distribution of A is Student-r with n — 1 degrees of freedom:

(7\. _ X)‘j)“fﬂ 142

b « (1 P 25)

The Student-t PDF (35) is fat-tailed for all r << =, displaying the asymp-
totic behavior of a power law in A with exponent n + 1. The fatness of the
tails is directly proportional to ¥ and inversely propor?ional to n. SO th{lt
the empirical real-world fact that the upper tail of‘ climate sensitivity is
actually very fat traces back to a relative scarcity of }ndc%pqqdent observa-
tions (n is small) combined with very noisy observations (¥ 1s ?arge).

The above reasoning is just one specific example of a generic argumc?nt
that when you are trying to infer the value of a parameter way 0L1t§1de
the range of usual experience or data, you end up with a thick-tailed
posterior-predictive distribution. This thick tail reflects back .the undgrly~
ing thickness of the standard non-informative referqnce famlly' of priors.
The posterior-predictive distribution is more thin in proportlon'to the
number of observations, but it is still technically thick for any given 7.
I have already explained this mechanism in some detai'l n carhfar work
and don’t elaborate further here.* What I think all of this 'shows is that a
careful restatement of the Allen et al. (2006) argument still prgdﬁuces fat
tails, although by a somewhat different mechanism than the original one
they had in mind.

The Roe and Baker tail-fattening mechanism may appear to be gl({ng
slightly different lines, but I think it is ultimately more similar than dlﬁel;f
ent. Something suspicious is happening there when f ~ 1 because we don 1
really believe it is easily physically possible to haye f > 1onthe gl‘OLlnd5
that this would result in limitless runaway warming. So probably there is
some prior information restricting /' = Zf; from being greater than one. In
other words, if a bunch of f; values are big, then a bunch of othgr Jf; values
should be small in order to compensate and keep f from being greater
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than one. This is somewhat analogous to the argument that observed
temperature constrains S and % to be negatively correlated. It means the
J; are not independently distributed and the appeal to the central limit
theorem is suspect. But the very complicated macro interactions restrict-
ing f= Xf, < I are not well modeled by the micro assumption that the £
are independently distributed. The Roe and Baker story may be a good
mechanical description of where the long thick tail is coming from in the
simulations that human beings perform on computers, but the physics
behind the independence of micro J; within the simulations is questionable
because it is inconsistent with the macro-physics that <l

I think that the Roe and Baker tail-fattening mechanism and my tail-
fattening mechanism explained above are more similar than different in
the following sense. In both situations, we don’t know how to represent
things far outside the range of average experience. In both cases, the thick
tails are coming from prior assumptions built into the modeling process
rather than from hard science that justifies these assumptions. In both
cases, the fat tails reflect more these prior assumptions than any actual
empirical knowledge of overall system behavior in that extreme region
where £ is close to one and  is very big.

I would emphasize that none of this dependence on subjective prior
modeling assumptions makes the problem any less real. To make eco-
nomic decisions today, we must work with the fat posterior-predictive
distributions, which are all coming essentially from lack of prior knowl-
edge about extreme values, reinforced by lack of empirical experience with
extreme values. Throughout the rest of the chapter I just assume that the
PDF of climate sensitivity A has a thick upper tail - for whatever reason —
and examine the consequences for the economics of climate change. Thus,
in what follows, the PDF of A, which is denoted @(A), is presumed to
have an upper tail that declines to zero less rapidly than ¢xponentially (for
example, polynomially, as with a power-law PDF).

4 ECONOMIC DYNAMICS OF FAT-TAILED
TEMPERATURES

From (5} it is mmmediately apparent that, other things being equal, at any
given time, higher values of / (and hence of A) imply higher values of AT
However, it is also true that higher values of X (or of f) make the system
take a longer time for AT to reach its long-run equilibrium value. To
examine this issue more closely, suppose in what follows that the planet
has been subject to a sustained doubling of CO,. With the convention
being followed here that all units are expressed in terms of a doubling of
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CO,, this means that ' = 1. Substituting = 1 and (9) into (7), the time
trajéctory of temperature change (expressed in terms of A) becomes

Aol .
AT, (1) = 7{] - exp(—ﬁ-)}. (26)

Equation (26) indicates that AT — A. The questioq I now examirTe
is length of the time it takes for AT to attain the fraction o of A, whem
0 < a < 1. Call this time 7,(A). From (26), ,(X) must obey the equation

Aot M)
oA = 7{1 - exp(— Otm H (27

which can be rewritten as

t,(A) = gy, (28)
where
via) = %(— In (1 - ). 29)

From (28), it is apparent that 7,(A) = A. Thus, for any given a, th;; largex:
the climate sensitivity A, the longer it takes for the systqm to attalp tde ietlln
perature change AT = ¢, Nevertheless,.if‘ the PDF O'f.:)\. is fat—tage in in1e
upper end, then eventually there is a positive probabl}lty. of 'ATI te(;((;r ans
unboundedly high. The formal statement OthlS plos&blhty ist 1a, or any
value of 77, however large, there exists some time ¢’ such thatt > t }imp °
P[AT(1) > T'] > 0. The question I now seek to gddrcss is Wh(ft t‘ ES gé)o~
sibility of very high temperatures arriving at very distant times does 1(]>. e
nomic welfare analysis. The answer depends (among many other thing
on what is assumed about damage at very high temperatures. ioh

Most existing Integrated Assessment Models (IAMS) t;eat1 te%er
temperature damage by an extremely casual extrapolation o~ W (;aamage
specification is arbitrarily assumed to be the .lou:-temperatul(ei Samage
function’. The high-temperature ‘damage function extrapplate TO n e
low-temperature ‘damage function’ is rema.rkably SCDSItht? to sss;wde
them because an extraordinarily wide variety of them u?n h’ew nace
to fit virtually identically the low-tempe‘rature damage th“at as een
assumed by the modeler. In the 1AM bllterature, most qclma]ge i
tions reduce welfare-equivalent consumption by the quadratic-po );no f(;r
multiplier 1/[1 + y(AT)?] with v calibrated to some postulated loss
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AT =~ 2—3° C. There was never any more compelling rationale in the first
place for this particular loss function than the comfort that economists
feel from having worked with it before. In other words, the quadratic-
polynomial specification is being used to assess climate-change damages
for no better reason than casual familiarity with this particular form from
other cost-of-adjustment dynamic economic models, where it had been
used primarily for its analytical simplicity.

T would argue strongly on a priori grounds that if, for some unfathom-
able reason, climate-change economists want dependence of damages
to be a function of (AT)2 then a far better choice of functional form at
high temperatures for a welfare-equivalent quadratic-based consumption-
loss multiplier is the exponential form exp(—y(AT)?). Why? Look at the
specification choice abstractly. What might be called the ‘attenuating
pressure” on welfare (denoted 4) is arriving here as the arbitrarily imposed
quadratic form A(AT) = (AT)?, around which some further structure is
imposed to convert it into utility units. With isoelastic utility, the exponen-
tial specification is equivalent to dU/U « dA, while for high A4 the polyno-
mial specification is equivalent to dU/U « dA4/A. For me it is obvious that,
between the two, the former is much superior to the latter. Why should the
impact of d4 on dU/U be artificially and unaccountably diluted through
dividing @4 by high values of 4 in the latter case? The same argument
applies to any polynomial in AT Of course I cannot prove that my favored
choice here is the more reasonable of the two functional forms for high AT
(although T truly believe that it is), but no one can disprove it either — and
this is the point.

The value of y required for calibrating welfare-equivalent consumption
at AT = 3° C to be, say, 98 per cent of consumption at AT = 0° C is so
miniscule that both the polynomial-quadratic multiplier 1/[1 + v(AT)?]
and the exponential-quadratic multiplier exp(—y(AT)?) give virtually
identical outcomes for relatively small values of AT < 5° C, but at ever
higher temperatures, they gradually yet ever-increasingly diverge. With a
fat-tailed PDF of % and a very long time horizon, there can be a big dif-
ference between these two functional forms in the implied willingness to
pay (WTP) to avoid or reduce uncertainty in AT. I next calculate the WTP
to avoid uncertain AT when the consumption-loss welfare-equivalent
quadratic-based multiplier is of the exponential form exp(—y(AT)). In
what follows I use a utility function of the constant elasticity form

‘ o
uo = (30)
where the coeflicient of relative risk aversion is n>1 and C(0) is
normalized to unity.
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Suppose the economy grows at a given rate g > 0. The rate of pure
time preference is & > 0. Suppose there is some arbitrarily-imposed time
horizon H. The random variable of climate sensitivity A has a thick upper
tail in its PDF @(X). The base case thought experiment here is a doubling
of CO, beginning at time zero. I now ask: what is the WTP — in terms of 2
constant fraction of consumption foregone at all times # between 0 and
- to avoid altogether this temperature uncertainty? The answer as a func-
tion of the time horizon is denoted here as WTP(H).

Making use of (28), (29) and (30), WTP(H) must satisfy the
condition:

H
f ((1 — WTP(H))exp(gt)' “nexp(—8¢)dt
o

Il -n

tr Hyla)
J U (exp(gz,(A) — yor?)) nexp(—&1, (M) @ (L) dh | do
0

— 0 1
- = 31)

As H — oo_ it is not difficult to show that with a fat tail in @(A), the inte-
gral on the right-hand side of (31) approaches —o because the term in
exp(—ya’)?) dominates everything else. This fact in turn implies that

lim WTP(H) = 1. (32)

H—x

When the consumption-reducing welfare-equivalent damage multiplier
has the exponential form exp{—y(AT)?), then as the horizon H — o, the
above result (32) implies at the limit that the WTP to avoid (or even reducg)
fat-tailed uncertainty in AT” approaches 100 per cent of consumption. This
does not mean, of course, that we should be spending 100 per cent of con-
sumption to eliminate the climate-change problem. But this example does
highlight the remarkable ability of miniscule refinements of the damage
function (when combined with fat tails) to dominate climate-change cost—
benefit analysis ~ and the remarkable fragility of policy advice coming out
of conventional thin-tailed IAMs with polynomial damage.

I think this example shows that a previous two-period result that _fat-
tailed climate sensitivity can have strong economic implications survives
being recast as a more complete dynamic specification, even though (othgr
things being equal) the higher the temperature realization, the later thls
temperature realization is expected to arrive. When fat climate-sensitivity
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tails are combined with very uncertain high-temperature damage, this
aspect can dominate the discounting aspect in calculations of expected
present discounted utility ~ even at empirically plausible real-world inter-
est rates and even when taking full account of the important continuous
correlation that, conditional upon its realization, the higher the tempera-
ture, the later its expected time of arrival.

The model I have used throughout this chapter for the sake of analytical
sharpness is so incredibly oversimplified that it can legitimately be criti-
cized on an enormous number of counts as being grossly unrealistic. The
temperature dynamics is primitive, climate change involves much more
than an instantaneous doubling of atmospheric CO,, the utility function
may be wrong (especially for low consumption), results depend on the pos-
tulated exponential-quadratic damage function, policy is much richer than
a double-or-nothing CO, decision, there is some possibility of learning and
adaptive mitigation (although the inertial commitment of GHGs already
in the pipeline is distressingly long), technological change is ignored, and
so forth and so on. Nevertheless, I believe that a fair conclusion from this
example is that any economic analysis of climate change that does nos
include an explicit treatment of rare climate catastrophes (no matter how
far off in the future they may occur) is problematic and its policy conclu-
sions are under a dark cloud until this fat-tailed disaster aspect is modeled
explicitly and addressed seriously.

5 CONCLUSION

This chapter has two main goals. The first goal is an attempt to place the
physical-science measurement-based discussion of why climate sensitivity
is so unpredictable into a broader context of statistical inference, predic-
tion and decision making. Here the chapter makes two basic points: ( 1)
it is not the fact that it is difficult to place an upper bound on climate
sensitivity that is worrisome, but rather the fact that the upper tail of
its PDF is fat with probability; and (2) the fatness of the upper tail of
the PDF of climate sensitivity comes primarily from being generically
built into any situation where we are trying to estimate the probabilities
of rare outlier events from limited data based on incomplete structural
knowledge.

The second goal of the chapter is to show that previous findings from a
two-period discrete-time formulation survive the introduction of continu-
ous time and more realistic dynamics that take explicit account of the fact
that higher temperatures arrive later. The overarching message of the line
of research leading to this chapter continues to be that, at least potentially,
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the influence on cost-benefit economic analysis of fat-tailed structural
uncertainty about climate change, coupled with great unsureness about
high-temperature damage, can outweigh the influence of discounting or
anything else. My message is that we must learn to live with the idea that
the answers to cost-benefit analyses of what to do about climate change
may very well depend — at least to some degree — upon subjective judg-
ments about how bad it might get, with what probabilities, in the most
extreme situations.
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NOTES

1. Details of this calculation are available from the author upon request. Eleven of the
studies in Table 9.3 overlap with the studies portrayed in Box 10.2. Four of these overlap-
ping studies conflict on the numbers given for the over-5 per cent level. For three of these
differences, I chose the Table 9.3 values on the grounds that all of the Box 10.2 values
had been modified from the original studies to make them have zero probability mass
above 10° C. (The fact that all PDFs in Box 10.2 have been normalized to zero prob-
ability above 10° C biases my over-5 per cent averages here towards the low side.) Wi@h
the fourth conflict (Gregory et al., 2002a), T substituted 8.2° C from Box 10.2 for the = in
Table 9.3 (which arises only because the method of the study itself does not impose any
meaningful upper-bound constraint). The only other modification was to average the
three reported volcanic-forcing values of Wigley er ¢/. (2005a) in Table 9.3 into one study
with the single over-5 per cent value of 6.4° C. )
As I use the term in this paper, a PDF has a “fat’ (or ‘thick’ or ‘heavy’) tail when its
moment generating function (MGF) is infinite - that is, the tail probability approaches
zero more slowly than exponentially. The standard example of a fat-tailed PDF is a
power-law-family distribution. although, for example, a lognormal PDF is also fat-
tatled, as is an inverted-normal or inverted-gamma. By this definition, a PDF whose
MGF is finite has a ‘thin’ tail. A normal or a gamma are examples of thin-tailed PDFs,
as is any PDF having finite supports.
3. Weitzman (2008).
4. See Weitzman (2008), where the fat-tailed properties of this example are extended to a
much broader family of distributions than the normal and Student-+.

b



206 Handbook of environmental accounting
REFERENCES

Allen, M., N. Andronova, B. Booth, S. Dessai, D. Frame, C. Forest, J. Gregory, G. Hegerl,
R. Knutti, C. Piani, D. Sexton and D. Stainforth (2006). ‘Observational Constraints
on Climate Sensitivity’. Chapter 9 in Avoiding Dangerous Climate Change, ed. H.J.
Schellnhuber, Cambridge University Press, pp. 281-289.

Allen, Myles R. and David J. Frame (2007). ‘Call Off the Quest” Science (October 26), 318,
pp. 582-583.

Gregory, J M., R.J. Stouffer, S.C.B. Raper P.A. Stott and N.A. Rayner (2002). ‘An
Observationally Based Estimate of the Climate Sensitivity’. Journal of Climate, 15, pp.
3117-3121.

IPCC-AR4 (2007). Climate Change 2007: The Physical Science Basis. Contribution of

Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on
Climate Change. Cambridge University Press, 2007 (available online at http://www.ipcc-
wgl.unibe.ch/publications/wgl-ard/wgl-ard.html, accessed 16 May 2010).

Roe, Gerard H (2007). ‘Feedbacks, timescales, and seeing red’. Mimeo, September 2.

Roe, Gerard H. and Marcia B. Baker (2007). “Why is Climate Sensitivity So Unpredictable?
Science (October 26), 318, pp. 629-632. -

Weitzman, Martin L (2008). Climate Change. Working Paper, February 8 (available online
at www.economics.harvard.edu/files/faculty/61_Modeling.pdf, accessed 16 May 2010).
Wigley, T.M.L., C.M Ammann, B.D. Santer and S.C.B. Raper (2005). ‘Effects of Climate
Sensitivity on the Response to Voleanic Forcing’. Journal of Geophysical Research, 110,

D09107. doi: 10.1029/20041D005537.

.
%
§




