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1. Introduction to the theory of complete accounting under uncertainty

As is well known, the deterministic version of the maximum principle allows us to state

rigorously the relationship between deterministic income (essentially the Hamiltonian) and

deterministic wealth (essentially the state evaluation function). As a background motivat-

ing point of departure, consider the simple story of an infinitely long-lived individual

whose sole wealth consists of a bank deposit paying a constant rate of interest. For this

simple parable, whether we define and measure income in the spirit of Fisher as being the

return on wealth, or in the spirit of Lindahl as being consumption plus net value of

investment, or in the spirit of Hicks as being the largest permanently maintainable level of

consumption, we get the same answer to the question ‘‘what is income?’’. The theory of the

deterministic maximum principle shows is that this fundamental identity of the three

seemingly different definitions of income is much broader and goes much deeper than the

simple bank-account parable.

We now seek to extend the investigation to cover uncertainty by dealing with the case

where net capital accumulation is described by a stochastic diffusion equation in place of a

deterministic differential equation. Stochastic diffusion equations introduce mathematical

subtleties and complexities, which we will only deal with casually in this treatment.

The introduction of uncertainty ratchets up the required level of analysis another several

notches on the scale of mathematical complexity. To treat the subject of this paper fully

rigorously and also at the level of generality of a multi-dimensional economic growth

problem could easily turn this paper into a book and would be out of all proportion to its
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intended purpose (presuming even that it could be done). As a result of the inherent

mathematical complexity of the subject, in this paper we make almost no attempt at being

rigorous or general. Instead, to focus as sharply as possible on the core content of the wealth

and income version of the maximum principle under uncertainty, we just assume the

simplest imaginable stochastic generalization of the basic one dimensional calculus-of-

variations prototype economic control problem, along with whatever assumptions it takes

to make all of the relevant functions well behaved for the purpose at hand. Then we content

ourselves with stating the relevant results in an intuitively reasonable fashion and providing

an ‘‘economist’s proof’’ consisting of mathematically plausible, but ultimately heuristic,

arguments. Economic applications of stochastic diffusion processes constitute what is by

now an important area of economics. There exist several books treating this topic at varying

levels of mathematical sophistication, which the interested reader is encouraged to

consult.1

Because it is very easy to get lost in the mathematical details of stochastic diffusion

processes, whose rigorous foundation is quite intriguingly sophisticated, we should keep

our well-defined goals here sharply in view throughout this paper. These limited are the

following. We are seeking to connect income with wealth (or welfare) – under uncertainty.

The major issue here boils down to giving a convincing wealth-and-income economic

interpretation of the (so-called) Hamilton–Jacobi–Bellman equation for the simplest

stochastic generalization of the prototype calculus-of-variations economic problem If

we keep this limited aim firmly in mind, it can serve as a natural boundary delimiting this

paper’s treatment of investment and uncertainty from the various treatments of investment

and uncertainty available in other papers and books treating other economic applications of

stochastic diffusion processes. This paper, then, assumes some prior knowledge of

probability theory and stochastic processes; it is more directed at using such a framework

to shed light on the stochastic relationship between income and wealth (or welfare) than at

rigorously explaining the probabilistic framework itself.

As we will see, the stochastic connection between income and wealth depends critically

on some subtle issues of timing, measurement, and information. For example, it will

become crucial to specify carefully what is being measured as income, when is it being

measured, and how is it being measured. In the deterministic case the appropriate timing

and measurement of income flows was so apparent that no special discussion was

warranted. With stochastic diffusion processes, all of this can change dramatically, since

seemingly slight differences of specification about when in the production period the price

term of a chain-linked Divisia production index is evaluated (beginning, middle, or end)

can give quite different relations between wealth and income. In a stochastic-diffusion

economy, it matters how index numbers of income or production are constructed.

The workhorse model of this paper treats the one-dimensional firm (or investment

opportunity) under uncertainty. In this case direct gain is measurable in money terms as a

dividend or payout, the firm’s stock market value is observable, and income will refer to

expected true earnings (dividends plus expected net investment evaluated at opportunity

cost). Within this context, the main result of the paper is to state and prove a stochastic
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wealth and income version of the maximum principle. (The main result will be that

forward-looking comprehensively accounted expected-immediate-future true earnings

must exactly equal the firm’s opportunity cost of capital times the observed stock market

value of all its outstanding shares.)

It is possible to generalize the stochastic results of this chapter into multi-sector

stochastic growth models without differentiability assumptions. However, we make no

serious effort to develop formally such generalizations. (This, like a mathematically

rigorous version of the present paper, would require a book of its own.) Instead, we content

ourselves here with the hope that, from a good intuitive understanding of the most basic

stochastic control model, which we endeavor to convey in this paper, there will develop on

its own in the reader a sense of what should be the broad outlines of the analogous

‘stochasticized’ versions of the multi-dimensional maximum principle.

2. The deterministic case in terms of policy functions

We begin by reviewing the simplest case of the deterministic one-capital firm with

‘perfectly complete’ income accounting. We will recast the solution to this problem in a

somewhat non-traditional form to ease the transition to, and emphasize the connection

with, the stochastic version, which will be the primary focus of our attention here.

Although the main stochastic result generalizes to multi-capital cases with various

constraints on the control variables and many other complications, we purposely choose

here the simplest imaginable one-dimensional unconstrained version in order to focus as

sharply as possible on the core relationship between wealth and income under uncertainty.

It is all the more essential to deal with the simplest imaginable case here because, even so,

there will be some tricky conceptual (and mathematical) issues involved in the timing and

measurement of ‘‘expected true earnings,’’ which concept, while it is generalizable, is best

examined initially in a pure form that is as free as possible of any conceivable distracting

complications.

Although all kinds of generalizations are possible (including consumer portfolio choice

formulations), for the sake of having a particularly sharp image with a crisp statement and a

vivid storyline we interpret the one-dimensional prototype problem as modeling the

dynamic behavior of a firm whose shares are publicly traded. A good specific example

to keep in mind might be the optimal extraction of a fixed pool of oil by a publicly-held

Hotelling monopolist. Another particularly good example to carry along for viewing in the

mind’s eye could be a firm described by the q-theory of investment, whose shares are

competitively traded. Of course the theory of the stochastic maximum principle covers a

much more general situation than just these two applications, but it can help the

conceptualization and intuition greatly to keep in mind, as we develop the concepts of

this paper, a specific example or two. In particular, it will aid clear thinking throughout

what follows to think of investment and capital in real or physical terms – i.e., barrels of oil,

numbers of trucks, and so forth. This will automatically reinforce the core idea that, even in

the multi-sector case, we are assuming that every investment has an internal shadow

accounting price for the firm, which can vary with changes in the current level of

investments or as the background stocks of capital are altered over time.
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Let us start with the primitives describing the one-dimensional firm’s environment,

which are assumed to be given. The control variable is taken to be net investment, I.

Essentially, any other control variable (or variables) could be transformed into this

reduced-form instrument by a change of variables. For simplicity we are assuming that

the choice of I is unconstrained so that, at least in principle, I is allowed to take on any

value. The direct gain is represented by the variable G. Since we are interpreting the control

problem as being a model of a publicly-owned dynamic firm, the relevant direct gain here is

best conceptualized as being a dividend that the firm pays out to its shareholders. G can be

expressed as a function of I (for a given level of K) by the equation G = G(K, I). The implied

‘‘production possibilities frontier’’ between G and I, for a given fixed value K = K(0), is

depicted as the curve in Fig. 4.

It is important to recognize that here – in this time-autonomous formulation – the firm’s

‘‘production possibilities frontier’’ G = G(K, I) does not depend on time explicitly. The

time autonomy of the firm’s ‘‘technology’’ for trading off dividends against (net) invest-

ments for a given level of capital means that all sources of future dividend and investment

possibilities are correctly ‘accounted for’ by changes in capital stocks. It might therefore be

said that we have ‘complete accounting’ here – in the sense that there are no residual forces

of growth having their origin in ‘unaccounted-for’ time-dependent atmospheric changes.

The firm’s risk-class-adjusted ‘‘opportunity cost of capital’’ or its ‘‘competitive rate of

return’’ is given as the parameter r. The firm seeks to maximize, over an infinite horizon,

the present discounted value of dividends paid out to its shareholders.

We express the firm’s dynamic optimal control problem in a traditional calculus-of-

variations form where the control set essentially allows any value of I to be assumed –
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implying that the firm will not wish to choose ‘‘crazy’’ values of I, even if it can, because of

the implicit deleterious effects on G.

Where are we trying to go now with this deterministic model? We are attempting now to

rephrase the wealth and income version of the maximum principle in this deterministic

model so that the transition to its natural stochastic generalization is made easier and more

understandable.

If we try to place it in the finance literature, the wealth and income version of the

maximum principle is itself a substantive generalization of the extremely simple ‘Gordon

model’ for calculating the stock market value of a firm with a constant rate of dividend

growth. The ‘Gordon formula’ says that the competitive stock market value of a firm

paying dividends (of current value D0), which will grow exponentially at rate g, is V = D0/(r

� g), where r is the firm’s opportunity cost of capital. This ‘Gordon model’ can be seen as a

very special limiting case of the deterministic wealth and income version of the maximum

principle. (In this case, it is as if G(K, I) = rK � I, K(0) = D0/(r � g), and, in this limiting

degenerate case of an optimal control problem where the instrument I(t) is constrained to

be equal to gK(t), the efficiency price of investment p(t) is always one.) When we present

the stochastic wealth and income version of the maximum principle, which we are now

leading up to, we will have generalized yet further the scope of a methodology whose

simplest conceivable originating example is the ‘Gordon model’.

In deterministic control theory it is usual to conceptualize the optimal policy and

express the optimality conditions as a function of (the) time. What we want to do

throughout this paper is to conceptualize the optimal policy and express the optimality

conditions as a function of (the) state. Let us therefore think of a ‘‘policy function’’ I(K) as

expressing the control I as a function of the state variable K. Then an ‘‘optimal policy

function’’ I*(K) expresses the optimal control setting as a function of the capital stock K.

What exactly do we mean by this notation?

Any policy function I(K) generates a corresponding time trajectory K(t), which satisfies

the differential equation

dKðtÞ ¼ IðKðtÞÞ dt; (1)

along with the initial condition

Kð0Þ ¼ K0: (2)

(For reasons that will soon become apparent, we are using the seemingly arcane notation of

(1) here to describe the ordinary differential equation _K ¼ I.) In particular, the optimal

policy function I*(K) generates a corresponding time trajectory K*(t), which also satisfies

the relevant versions of (1) and (2), i.e.,

dK�ðtÞ ¼ I�ðKðtÞÞ dt; (3)

and

K�ð0Þ ¼ K0: (4)

Waving aside mathematical technicalities and difficulties (as will be our custom

throughout this paper), our definition of the optimal policy function I*(K) is that it satisfies
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(3), (4) and for any other policy function I(K) satisfying (1), (2), it must hold that

Z 1

0

GðK�ðtÞ; I�ðK�ðtÞÞÞ e�rt dt�
Z 1

0

GðKðtÞ; IðKðtÞÞÞ e�rt dt: (5)

Since the calculus of variations form of the problem is a special case of optimal control

theory where there are no constraints on the control variable (here net investment), the

Hamiltonian formulation works as a special case where the maximized Hamiltonian (with

respect to net income) is obtained at an interior solution. (An additional assumption that the

control I is constrained to be in a control interval, so that m(K) � I � M(K), could readily be

handled by the model, but we are trying to convey here the basic message as simply and as

directly as possible.)

With (5) representing an optimal net investment policy, we can define the corresponding

accounting price of investment as a function of the capital stock here as

PðKÞ	 � G2ðK; I�ðKÞÞ: (6)

Next define for all K0 the state evaluation function

VðK0Þ	
Z 1

0

GðK�ðtÞ; I�ðK�ðtÞÞÞ e�rt dt; (7)

where the corresponding trajectories {K*(t)} satisfy conditions (1)–(5) above. In words,

V(K0) is the state evaluation function because it represents the value of an optimal policy

expressed parametrically as a function of the initial condition K(0) = K0.

Of course we know from other considerations of optimal control theory that it is also

true (wherever V(K) is differentiable) that

PðKÞ ¼ V 0ðKÞ: (8)

For reasons that will become apparent presently, we choose here to emphasize the less-

customary current-rate-of-transformation accounting-price interpretation of Eq. (6), by

making it into a definition of P(K), while Eq. (8) then appears here in the form of a derived

result or theorem. (The more customary order, of course, is exactly the opposite – namely,

to define P(K) first by (8), and then to derive Eq. (6) as a theorem.) With the primary

interpretation being (6), P(K) can then be viewed more conspicuously as a theoretically

observable shadow or accounting price representing the current marginal rate of trans-

formation between investments and dividends, when the capital stock is at level K.

In order to motivate the definition of the firm’s true income or earnings, it is convenient

to invent and apply, in a thought experiment, the fiction of an ‘‘ideal accountant.’’ Suppose

the firm is currently at the level of capital stock K. This means the firm is located on its

production possibilities frontier at the point where I = I*(K) and where G = G(K, I*(K)), and

that the firm is acting as if it is using P(K) as an internal shadow price to represent the

appropriate current marginal rate of transformation of I into G. It is assumed that the ideal

accountant knows all of this information. Thus, the ideal accountant observes the current

dividend flow G(K, I*(K)), the current investment flow I*(K), and also knows the firm’s

corresponding current internal efficiency price of investment in terms of dividends, P(K).
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In this situation, a ‘not unreasonable’ definition of the firm’s true income or true

earnings (as a function of its capital stock) is

YðKÞ	GðK; I�ðKÞÞ þ PðKÞI�ðKÞ: (9)

Formula (9) represents a ‘not-unreasonable’ definition of income because it is a direct

analogue of the intuitive idea that income is measured as consumption plus the value of net

investment, where the accounting price of investment is taken as its opportunity cost in

terms of marginal consumption foregone.

The geometric relationship between G, I, P and Y, for the initial value K = K(0), is

depicted in Fig. 4.

The ‘‘wealth and income version’’ of the maximum principle applied to this situation is

the theorem that, under the stated assumptions of the model,

rVðKÞ ¼ YðKÞ; (10)

which holds for all K.

Let us now review very carefully the intended operational meaning of theorem (10) as

a description of a dynamic optimizing firm whose shares are publicly traded. The

variable r measures the firm’s ‘‘opportunity cost of capital’’ or its ‘‘competitive rate of

return’’, and is assumed to be known. (The simplest example to have in mind here is an

environment of risk neutrality, where p represents the available risk-free return-although

more general interpretations are possible via so-called ‘‘risk-neutral evaluation.’’)

The state evaluation function V(K) is observable as the competitive market value of

all shares in this firm, when the capital stock is K. Essentially, V(K) must equal this

competitive share value because it equals the (maximized) present discounted value of

all future dividends that will be paid out by the firm, which a ‘‘share’’ entitles the owner

to have.

The left hand side of Eq. (10), rV(K), represents the flow of return payments that the

holders of shares of this firm could expect to obtain on alternative comparable investments

made elsewhere in the economy. The right hand side is genuine income, Y(K), as defined by

formula (9).

Eq. (10) is a genuine theorem relating two independently measured concepts. There is

nothing in the least degree tautological or circular about (10). True earnings are measured

by the ideal accountant, who need know absolutely nothing about the stock market value of

the firm or its competitive rate of return. (It is completely irrelevant to the ideal accountant

even whether the firm is privately held or it issues shares that are publicly traded.) The cost

of capital times the stock market value of shares is noted by a stock market observer, who

may know absolutely nothing about the true currently accounted earnings of the firm –

except insofar as it manifests itself through the share price. The theorem embodied in (10)

says that, in the above model, these two independently measured entities must theoretically

be equal.

If earnings could be comprehensively and accurately measured, with all investments

evaluated at true opportunity costs, then the ratio of true earnings to share valuation should

equal exactly the firm’s competitive rate of return on capital. All of the information about

the future that is embodied in competitive asset pricing is in principle also captured by

current perfectly–comprehensively accounted income. Thus, we have here a theory of ideal
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income accounting explaining quite sharply why someone attempting to understand asset

pricing might be very interested, at least in principle, in examining true economic earnings.

The essential idea here is that ideally measured income and wealth are, at least in principle,

two independently observable sides of the same coin. While financial economists who

specialize in theories of asset pricing occasionally make passing or indirect reference to

earnings or income, the centrality of the kind of tight conceptual connection revealed by

(10) – which is at least useful as a theoretical organizing principle for thinking about what

earnings or income is ideally supposed to be measuring or representing – seems not to have

been grasped in the finance literature.

Of course Eq. (10) is only a theoretical result about the relationship between ideal

comprehensively accounted income and wealth. The real world of accounting may actually

be very different from the theoretical idealizations of this model. However, the overarching

point here is that there is a theoretically tight connection between an idealized measure of

income and wealth. A tight theoretical relation like this can serve as a valuable starting

point for focusing our thinking about some important possible financial (or even welfare)

connections between stock values and flow values.

3. Stochastic income and wealth

Thus far, the precise connection between ideally accounted comprehensive income and

perfectly competitive share evaluation has been developed for what is essentially a

deterministic dynamic firm. But since asset pricing is widely believed to be associated

with uncertainty in a genuinely essential way, it will be interesting to see what happens to

the relation (10) when the underlying dynamic model of the firm is augmented by

uncertainty.

We now follow a long modeling tradition by introducing uncertainty as a stochastic

diffusion process appended to the accumulation Eq. (1). (The analytical power, which it

can bring to bear on many dynamic optimization problems, is one of the reasons that many

modelers like stochastic diffusion processes in the first place.) This particular form of

uncertainty is far from innocuous and in a sense will drive the strong results that come out

of the model. Modeling uncertainty as a continuous time stochastic diffusion process in the

accumulation of capital stocks certainly has ample precedence in the economics and

finance literature, and, one might argue, such a formulation at least approximates some

realistic situations. As we will show, this formulation in terms of a stochastic diffusion

process will turn out to be a good starting point for thinking about the introduction of

uncertainty into the basic model-because with this formulation we will still be able to

obtain a striking connection, in the spirit of (10), between ideally measured stochastic

income and stochastic wealth.

By defining the deterministic problem in the unusually roundabout form that we just did

– in terms of policy functions – we have greatly eased our transition to an analysis of the

proper stochastic generalization. We now introduce genuine uncertainty by replacing (1)

with its stochastic generalization

dKðtÞ ¼ IðKðtÞÞ dt þ sðKðtÞÞ dZðtÞ; (11)
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and (3) by its corresponding stochastic generalization

dK�ðtÞ ¼ I�ðK�ðtÞÞ dt þ sðK�ðtÞÞ dZðtÞ: (12)

In the above problem, dZ represents the stochastic differential of a simple Wiener

process, while the function s(K) represents the standard deviation per unit time of

‘unintended’ or ‘unexpected’ capital accumulation at stock level K. The control variable

is the unconstrained net investment level I. In (11), the level of I is chosen at time t by the

policy function I(K(t)), conditional on observing the state variable K(t). Similar comments

apply to (12) for I*(K*(t)).

Were this a paper whose main theme was about applications of stochastic optimal

control theory to economics or finance, then much more effort would be spent motivating

and explaining the stochastic diffusion Eq. (11) (or (12)). Even so, it is worth noting that

almost all such books for economists on the subject (which I know of) do not define

rigorously the exact meaning of the underlying stochastic diffusion equations or the exact

meaning of an optimum. Nor is the treatment of the dual optimality conditions in such

books fully rigorous. Such is the inherent mathematical complexity of a rigorous treatment,

that it is far more ‘economical’ for most economists to rely heavily on intuitively plausible

explanations and heuristic proofs. Here, we shortchange even this approach to the subject

by relying on other texts, which are more centered directly on the economics or finance

applications of stochastic diffusion processes, to provide such a more-detailed heuristic

background explanation of stochastic diffusion processes themselves. As we have noted,

even these books typically fall far short of full mathematical rigor, but they at least try more

than we are able or willing to do in this paper.

The ultimate purpose of this paper is to develop a stochastic wealth and income version

of the maximum principle for the simplest possible one-sector dynamic stochastic model,

which generalizes what has been done previously for the deterministic case. For such a

purpose, we can rely on others providing the background elements of stochastic diffusion

processes, while we concentrate our ‘detailed heuristics’ here on those mathematical

aspects that are particularly relevant for defining the concept of stochastic income and

relating it to stochastic wealth.

Stochastic diffusion processes, such as what we are using here in the basic model, are

mathematically quite tricky. Such processes are continuous almost everywhere but they

fluctuate so violently, per unit time in the limit, that they are differentiable almost nowhere.

The variances of such processes are of order dt in time, so that the standard deviations are

of order
ffiffiffiffi
dt

p
– which means we must be very careful in taking differentials of stochastic

functions because we must consider the impact of the second-order terms of a Taylor series

expansion in standard deviations to ensure that we have retained all relevant first-order

terms.

Our one modest attempt here at an ‘‘explanation’’ of the meaning of (11) (or (12)) is to

give an as-if heuristic story, which will be useful later in interpreting the concept of

stochastic income. In fact, this ‘‘explanation’’ is so contradictory from a strictly rigorous

mathematical viewpoint that it cannot even be carried out meaningfully. Nevertheless, the

as-if story is exceedingly useful as a first introduction, because it conveys, albeit in

misleadingly simple terms, the ‘‘spirit’’ of what remains after the real mathematicians, like
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Wiener, Kolmogoroff, Itô, and Stratonovich, have performed their magic with rigorous

definitions and proofs.

Suppose we want to conceptualize the diffusion process (11) as the limit of a finite-

difference version (with infinitesimally small step sizes), which is analogous to the very

useful usual way of thinking about an ordinary differential equation as being the limit of

what happens to a finite difference story – in the limit as the step size goes to zero.

(Everyone begins by intuiting the stochastic diffusion story along these lines, even the great

mathematicians who provided a precisely rigorous description in order to ‘‘patch up’’ the

parts where the as-if story goes wrong.) Let the step size be h, which is to be interpreted as

some very small positive number. Then the as-if story that Eq. (11) is trying to tell us goes

something like this. Given K(t) at time t, the situation is as if there is a fair-coin-flipping

probability of one half that the coin comes up ‘‘heads,’’ in which case the realized value of

K at time t + h is

K1ðt þ hÞ ¼ KðtÞ þ IðKðtÞÞh þ sðKðtÞÞ
ffiffiffi
h

p
þ Oðh3=2Þ (13)

while the situation is as if there is a fair-coin-flipping probability of one half that the coin

ends up ‘‘tails,’’ in which case the realized value of K at time t + h is

K2ðt þ hÞ ¼ KðtÞ þ IðKðtÞÞh � sðKðtÞÞ
ffiffiffi
h

p
þ Oðh3=2Þ; (14)

where the expression O(h3/2) stands for all terms of order 3/2 or higher in h.

Note the informational timing in the above description, which turns out to be a crucial

aspect of the as-if story. First, at time t the value K(t) of the state variable is observed.

Almost simultaneously, at almost that same time instant of t but just immediately after the

value K(t) of the state variable is observed, the value of the control variable I(K(t)) is

chosen. The observation of K(t) and the subsequent choosing of I(K(t)) both occur before

the fair coin is flipped. This ‘‘observing and then choosing’’ at time instant t is subsequently

followed by a period of length h, during which the fair coin is flipped and the outcome is

observed at time t + h. From (13) and (14), the actual realized value K(t + h) of the state

variable at time t + h may then be conceptualized, for small enough h, as if it has taken on

the value K(t) + I(K(t))h plus or minus the standard deviation s(K(t))
ffiffiffi
h

p
.

The other appropriate change that must be noted in going over to a stochastic diffusion

generalization of a prototype-economic control problem is that the deterministic criterion

defining the optimal investment function (5) must be changed to its appropriate expected-

value version. As usual here omitting mathematically significant details, our definition of

the optimal policy function I*(K) is that it satisfies the stochastic diffusion process (12), (4)

and for any other policy function I(K) satisfying the stochastic diffusion process (11), (2), it

must hold that

E

Z 1

0

GðK�ðtÞ; I�ðK�ðtÞÞÞ e�rt dt

� �
�E

Z 1

0

GðKðtÞ; IðKðtÞÞÞ e�rt dt

� �
: (15)

The notation E[
] refers to the expectation of the random variable contained within the

square brackets. In the case of (15), what is inside the square brackets is a relatively simple

example of a so-called stochastic integral. For any given realized stochastic trajectory of

{K(t)}, (or of {K*(t)}) the integrals within the square brackets of (15) can be understood in
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the usual (Riemann–Stieltjes) sense. Thus, we are allowed to conceptualize each sample

path of realized {K(t)} (or {K*(t)}) as yielding a corresponding realized value of the

stochastic integrals appearing inside the square brackets of (15). Since what is inside the

square brackets is, by this procedure, a well-defined random variable, there is no problem

with interpreting its expected value in the usual way.

It will be useful to note for later reference that the stochastic version of the ‘prototype

economic control problem’ (15) embodies the stochastic analogue of the idea that all

sources of future growth are correctly ‘accounted for’ via changes in capital stocks. With

the stochastic version, however, future capital and capital changes are unknown at the

present time. As usual in such problems, it is mathematically trivial here to extend the

model to include atmospheric time-dependent stochastic diffusion shocks – provided we

are allowed to ‘account for’ them properly by knowing their correct efficiency prices. (For

this mathematically trivial extension of the theory, we merely treat the variable that is being

shocked over time ‘as if’ it were just another capital-stock-like state variable – and then

apply the existing time-free theory.)

We now want to make use of a particular application of a famous result from the theory

of stochastic diffusion processes, which application we will here call ‘‘Itô’s Expectation

Formula.’’ This result is a specific case of what is known in the stochastic-diffusion

literature more generally as ‘‘Itô’s Lemma.’’ We do not really need the more general form

here, and there is no sense cluttering up the presentation of this paper with it. Any book

dedicated to stochastic diffusion processes, including books on applications to economics

and finance, will contain a full discussion of Itô’s Lemma, consistent with the level of

abstraction of the book.

What we are calling here ‘‘Itô’s Expectation Formula’’ can be seen as a generalization of

a right-direction version of Taylor’s Theorem. Consider any function F(K) that has

everywhere a continuous second derivative. The result we need for this paper, in the

notation of this paper, is the following.

Lemma (Itô’s expectation formula).

For h > 0,

E½FðKðhÞÞ� ¼ FðKð0ÞÞ þ fF0ðKð0ÞÞIðKð0ÞÞ þ 1

2
F00ðKð0ÞÞs2ðKð0ÞÞgh þ Oðh3=2Þ;

(16)

where the expression O(h3/2) stands for all terms of order 3/2 or higher in h. From staring at

(16), it should become fairly evident the sense in which (the right-handed version of)

Taylor’s Theorem about a first-order deterministic approximation can be seen as a

particular instance of Itô’s expectation formula applied to the special case s2(K(0)) = 0.

Itô’s expectation formula looks very simple, but this is a deception. Behind the scenes,

Itô had to define precisely what he meant by a stochastic integral, whose integrator is the

outcome of a stochastic diffusion process (here {K(t)}) having unbounded variation within

any time interval [0, h]. The issues involved in a rigorous definition of an Itô stochastic

integral, which lie just below the surface of (16), are mathematically quite sophisticated.

We limit our discussion to an attempt to convey the basic idea verbally of why the timing

implicit in an Itô stochastic integral is compatible in an essential way with stochastic

M.L. Weitzman / Japan and the World Economy 16 (2004) 277–301 287



optimal control theory. We also try to indicate preliminarily why we may want to express

projected stochastic income as the expectation of a differently defined ‘‘Stratonovich

stochastic integral,’’ even though Itô’s is the concept compatible with the information-

timing sequence implicit in the kind of stochastic-diffusion optimal-control problem that

forms the backbone of this paper. (Whenever we employ such terms as ‘‘Itô stochastic

integral’’ or ‘‘Stratonovich stochastic integral’’ throughout this paper, it is essentially for

background, motivational, or heuristic purposes not really requiring a rigorous mathema-

tical definition.)

In the deterministic dynamic model of a firm’s optimal policy, there was no need to

make a distinction between infinite horizon optimal plans completely specified now,

without revision, and infinite horizon optimal plans when revision is later allowed –

because in the absence of uncertainty no revision is required. But here, in the presence of

uncertainty, we specify that an optimal program allows instantaneous updating based on

new information and that the ‘‘optimality’’ is with respect to maximizing the present

discounted expected value of gains given the current state and with future updating

allowed. Essentially, we are working with a concept of information and timing that is

compatible only with an ‘‘Itô stochastic integral’’ – meaning, heuristically, that in the

limiting process defining the integral, all relevant functions are evaluated at the left

endpoint of time subintervals of form [t, t + dt]. Such kind of stochastic integration

concept is completely appropriate for measuring functions in the context of a dynamic

decision process of ‘‘non-anticipating control’’ – meaning the firm decides I(t) at time

instant t based on observed K(t), but only after this decision is made is the value of dZ(t)

revealed and allowed to exert its influence throughout the vanishingly small time interval

(t, t + dt].

Although the treatment of stochastic diffusion processes presented here has been

heuristically rudimentary to the point of casualness, it is only fair to warn the reader

that some truly deep mathematical issues underlie a genuinely rigorous mathematical

formalization. Speaking generally and for the most part, there usually is not a complete

need for an economist to plumb down to the full depths of mathematical rigor to understand

the essential take-home economic messages that emerge from such stochastic control

models in economics or finance. However, it turns out that for the particular application in

which we are interested, the treatment of stochastic income will force us to rethink at least

one basic issue that goes to the core of what a stochastic diffusion process means as a

representation of economic dynamics. This basic issue has to do with some delicate matters

of timing and information, involving ex post and ex ante measurement of index numbers,

that seem not to have been encountered or noticed so far in other economic applications of

stochastic processes, but which come to the fore in trying to define the concept of stochastic

income operationally in terms of the thought experiment by which it is supposed to be

accounted.

The stochastic control problem represented by (15) is describing a situation where, in

the discrete version whose limit it is, the action taken at time t, at the beginning of a

(vanishingly small) period of length dt, could depend on the knowledge of the current state

K(t), but not on any knowledge of the random future state K(t + dt). If time is truly

continuous, the two times t and t + dt cohere in the limit as dt vanishes. To rule out any kind

of seeing-ahead or clairvoyance property, the mathematical limiting process must be
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carefully modeled so as not to allow current choices to depend on information available

even the tiniest instant ahead.

The limiting process that rules out clairvoyance, by in effect forcing strategies to be

continuous from the left while the uncertainties are continuous from the right, gives rise in

a natural way to the construction of an Itô stochastic integral. In fact, this is one major

reason why the particular Itô way of constructing a stochastic limiting process is the only

concept of stochastic integration ever encountered by most economists. We would not need

to spend so much time belaboring the point except that when it comes time to give a proper

definition of how to measure ‘‘expected stochastic income,’’ it will not be based on the

interpretation of an Itô stochastic integral of the value of capital accumulated within a

(vanishingly small) period of time.

As we will presently argue in more detail, for measuring stochastic income a different

kind of stochastic integral than Itô is required, which is based on the ‘‘trapezoid rule’’ of

averaging the price values at both endpoints of each tiny time interval, rather than

evaluating it, as Itô does, only at the left endpoint of the limiting interval used to define

the stochastic integral. Thus, it turns out, one famous kind of stochastic integral, called an

Itô integral, is appropriate (behind our heuristics) for formulating and evaluating the firm’s

stochastic optimal control problem, while another, also very well known, competing kind

of stochastic integral, called a Stratonovich integral, is more appropriate (behind our

heuristics) for measuring stochastic income.

We can readily provide an intuitive explanation for why (16) holds, which is at the same

level of heuristic description as our treatment of (13) and (14). If we make use of the

interpretation in the story that outcomes (13) and (14) are as-if determined as a result

(‘‘heads’’ or ‘‘tails’’) of the random flipping of a fair coin, by expanding F(K(h)) as a

second order Taylor series expansion evaluated at time t = 0, we can tell a new as-if story

about it. The new as-if story told ‘‘in the spirit of Itô’’ is that for the given K(0) at time t = 0,

the situation is as if there is a fair-coin-flipping probability of one half (case 1: the coin

comes up ‘‘heads’’) that the realized value at time t = h of the stochastic function F(K(h)) is

F1ðKðhÞÞ ¼ FðKð0ÞÞ þ F0ðKð0ÞÞIðKð0ÞÞ½K1ðhÞ � Kð0Þ� þ 1
2F00ðKð0ÞÞ

� ½K1ðhÞ � Kð0Þ�2 þ O3; (17)

while the situation is as if there is a fair-coin-flipping probability of one half (case 2: the

coin comes up ‘‘tails’’) that the realized value at time t = h of the stochastic function

F(K(h)) is

F2ðKðhÞÞ ¼ FðKð0ÞÞ þ F0ðKð0ÞÞIðKð0ÞÞ½K2ðhÞ � Kð0Þ� þ 1
2F00ðKð0ÞÞ

� ½K2ðhÞ � Kð0Þ�2 þ O3; (18)

where the notation ‘‘O3’’ stands for all terms of third or higher order in [K(h) � K(0)].

Combining (17) and (18) into an expected value expression, we then have

E½FðKðhÞÞ� ¼ FðKð0ÞÞ þ 1
2F1ðKðhÞÞ þ 1

2F2ðKðhÞÞ þ O3: (19)

Now substitute from (13) (for t = 0) into (17), and from (14) (for t = 0) into (18). Then

combine the resulting expressions for (17) and (18) in terms of h into the formula (19),
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cancel all redundant terms, and collect all terms of order 3/2 or higher in h. The resulting

equation is (16), the Lemma we want.

We will now reinforce our intuition about the exact timing that is involved in describing

the expectation of an Itô stochastic integral by generating heuristically a very important

condition that must be met by the optimal policy function I*(K). This famous condition is

known as the ‘‘Hamilton–Jacobi–Bellman equation,’’ hereafter abbreviated as ‘‘HJB.’’

Some version of HJB shows up in a very high fraction of stochastic control problems,

ranging from physics to finance.

We begin our development of HJB by constructing the state evaluation function here, in

this stochastic setting, as an obvious generalization of the deterministic case. Define for all

K0 the state evaluation function

VðK0Þ	E

Z 1

0

GðK�ðtÞ; I�ðK�ðtÞÞÞ e�rt dt

� �
; (20)

where the corresponding trajectories {K*(t)} satisfy conditions (2), (4), (11), (12), (15). In

words, V(K0) is the state evaluation function because it represents the expected value of an

optimal policy expressed parametrically as a function of the initial condition K(0) = K0.

We now proceed heuristically from (20) to HJB. From the basic dynamic programming

principle of optimality, we have for any positive h that (20) can also be expressed

recursively as

VðKð0ÞÞ ¼ E

Z h

0

GðK�ðtÞ; I�ðK�ðtÞÞÞ e�rt dt

� �
þ e�rh E½VðK�ðhÞÞ�: (21)

Combining (15), (20), (21), we have that for any policy function I(K) satisfying (11) and

(2), it must hold for all positive h that

VðKð0ÞÞ�E

Z h

0

GðKðtÞ; IðKðtÞÞÞ e�rt dt� þ e�rh E½VðKðhÞÞ
� �

: (22)

In (21), (22) and what follows, the stochastic variables within the square brackets are

being understood ‘‘in the spirit of Itô.’’ This means, loosely speaking, that for any time

instant t the state K(t) is observed and then the policy I(K(t)) is chosen at the left end of time

instant t just before the random variable dZ(t) becomes known at the right end. ‘‘In the spirit

of Itô’’ signifies that the timing of a stochastic process is to be understood in the order that

‘‘dZ moves just ahead’’ of the state and control variables. The timing/information sequence

we are postulating for an Itô process may here be written symbolically as:

KðtÞ 7! IðKðtÞÞ 7! dZðtÞ 7!Kðt þ dtÞ½¼ KðtÞ þ IðKðtÞÞdt þ sðKðtÞÞdZðtÞ�
7! IðKðt þ dtÞÞ 7! dZðt þ dtÞ 7! 
 
 
 (23)

The main point about being ‘‘in the spirit of Itô’’ here is this. The timing/information

convention described by the sequence (23) must be followed whenever expressing any

Taylor series expansions of random variables ‘‘in the spirit of Itô.’’

From the fundamental theorem of the calculus and Taylor’s Theorem, the following

result is just a particular application here of a condition that must hold for any well-defined

M.L. Weitzman / Japan and the World Economy 16 (2004) 277–301290



stochastic integral:

E

Z h

0

GðKðtÞ; IðKðtÞÞÞ e�rt dt

� �
¼ GðKð0Þ; IðKð0ÞÞÞh þ Oðh2Þ: (24)

We now apply Itô’s expectation formula (16) to the state evaluation function V(K).

Setting F(K) = V(K) in (16), we obtain

E½VðKðhÞÞ� ¼ VðKð0ÞÞ þ fV 0ðKð0ÞÞIð0Þ þ 1
2V 00ðKð0ÞÞs2ðKð0ÞÞgh þ Oðh3=2Þ:

(25)

It should be evident that the second-order Taylor series expansion (25) is being carried

out and evaluated ‘‘in the spirit of Itô.’’

We know that

e�rh ¼ 1 � rh þ Oðh2Þ: (26)

Combine (26) with (25) and collect all terms of order higher than 3/2 to obtain the

expression

e�rh E½VðKðhÞÞ� ¼ ð1 � rhÞfVðKð0ÞÞ þ V 0ðKð0ÞIðKð0ÞÞ
þ 1

2V 00ðKð0ÞÞs2ðVðKð0ÞÞÞgh þ Oðh3=2Þ: (27)

Next, plug (27) and (24) into (22). Then expand out the resulting expression and

consolidate all terms of order 3/2 or higher. We thereby obtain

V �V � rVh þ Gh þ V 0Ih þ 1
2V 00s2h þ Oðh3=2Þ; (28)

where all functions are evaluated ‘‘in the spirit of Itô’’ at time t = 0 when the capital stock is

K(0).

Now cancel V from both sides of the inequality (28), divide by positive h, and go to the

limit as h ! 0+. Then rewrite the resulting expression out fully as

rVðKð0ÞÞ�GðKð0Þ; IðKð0ÞÞÞ þ V 0ðKð0ÞÞIðKð0ÞÞ þ 1
2V 00ðKð0ÞÞs2ðKð0ÞÞ: (29)

The above procedure carried out ‘‘in the spirit of Itô’’ converted the inequality (22) into

the equivalent inequality (29). If we apply exactly the analogous procedure to the equality

(21), we obtain the equivalent equality

rVðKð0ÞÞ ¼ GðKð0Þ; I�ðKð0ÞÞÞ þ V 0ðKð0ÞÞI�ðKð0ÞÞ þ 1
2V 00ðKð0ÞÞs2ðKð0ÞÞ: (30)

Combining (30) with (29), we then obtain the famous Hamilton–Jacobi–Bellman

equation (HJB) for this situation:

rVðKð0ÞÞ ¼ max
I

½GðKð0Þ; IÞ þ V 0ðKð0ÞÞI� þ 1
2V 00ðKð0ÞÞs2ðKð0ÞÞ: (31)

The question we are now wanting to ask is ‘what is the proper economic interpretation

of HJB as a relation between income and wealth?’. The answer is not immediately obvious.

M.L. Weitzman / Japan and the World Economy 16 (2004) 277–301 291



From (30) (or (31)), the term

GðKð0Þ; I�ðKð0ÞÞÞ þ V 0ðKð0ÞÞI�ðKð0ÞÞ (32)

certainly looks like true current income at properly accounted prices, but what does the

term

1
2V 00ðKð0ÞÞs2ðKð0ÞÞ (33)

stand for? The conventional answer is very mechanical. In some technical sense, term (33)

represents the expected loss of value from the concavity of the value function – because

Jensen’s Inequality plays a significant role when the underlying stochastic process is

fluctuating so violently per unit time in the limit as a Wiener process does when the time

interval is made infinitesimally small.

In this ‘‘explanation,’’ the Jensen’s-Inequality term (33) is being ‘‘explained’’ by the as-

if risk aversion of a shadow central planner who ‘‘owns’’ the state evaluation function V(K).

For such a story, V00/2 stands for the ‘‘price of risk,’’ while s2 represents the ‘‘quantity of

risk.’’ But if the uncertainty in the model is firm-specific in the first place, why cannot such

‘‘risk’’ be diversified away by shareholders in the usual way – merely by holding just a

small amount of this firm’s stock in a portfolio? Why should any kind of ‘‘risk adjustment’’

be necessary here? In this Jensen’s-Inequality way of looking at the world there is a

fundamental inconsistency with the basic principles of finance. Surely we can tell a better

story for an economic interpretation than this!

The second derivative of the state evaluation function is an endogenously derived

construct, rather than an exogenously given primitive. Where do we look in a stochastic

economy to find V00(K(0)) (or, for that matter, s2(K(0)))? The Jensen’s-Inequality story

may be technically correct as a pure mathematical description, in some narrow sense,

but what does it mean operationally in terms of measurement? Which index number

might we have our ideal accountant calculate in order to ‘account for’ the Jensen’s-

Inequality term (33)? What is the economic interpretation of the HJB condition (31) in

terms of some well-defined thought experiment linking stochastic income with stochastic

wealth?

We are now ready to begin to confront formally the issue of stating rigorously the

stochastic analogue of the deterministic ‘‘wealth and income’’ Eq. (10) and explaining its

relation to HJB. For convenience in seeing some useful analogies, we employ the same

notation and use a conceptually similar apparatus to what was developed to explain the

deterministic case, only henceforth it is intended that all notation refers to the stochastic

solution.

Because the control variable I is being treated as if it could in principle take any

value, the solution of the HJB Eq. (28) must satisfy the marginalist-interior first-order

condition

V 0ðKÞ ¼ �G2ðK; I�ðKÞÞ: (34)

Following the methodology of the deterministic case, let us first define here the primary

relationship to be the accounting price of investment in state K – i.e.,

PðKÞ	 � G2ðK; I�ðKÞÞ: (35)
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Then, as with the deterministic case, we are conceptualizing the derived secondary

relationship

PðKÞ ¼ V 0ðKÞ (36)

as being in the form of a theorem obtained by combining the definition (35) with the

inference (36). (If the standard deviation depends upon I as well as K, so that we must write

s(K, I), it is not possible to define so simply as by using (35) the accounting price of

investment goods. Nevertheless, the theory goes through if accounting prices are defined by

(36), with the only other modification being that I is then chosen to maximize expected

immediate-future income, rather than actually realized current income.)

As before in the deterministic case, the variable r here measures this stochastic firm’s

risk-neutral-evaluated opportunity cost of capital or its competitive rate of return, and is

assumed to be observable (or at least it can be calculated from applicable financial-market

considerations and data). The state evaluation function V(K) is again observable in the

stochastic case here as the competitive stock market value of all shares in the firm, when the

capital stock is K.

Essentially, V(K) must be the competitive share value by the usual arguments – because

it equals the (maximized) expected present discounted value of all (here stochastic) future

dividends that will be paid out by the firm, and which a ‘‘share’’ entitles the owner to have.

The expression rV(K) represents the flow of returns that the holders of shares of this firm

could expect to obtain on competitively equivalent alternative investments made elsewhere

in the economy. Thus, what is going to appear on the left hand side of the stochastic

generalization of Eq. (10) has essentially the same interpretation as in the previous

deterministic case – it is interpretable as the firm’s cost of capital times the stock market

value of its shares, which is recorded by a stock market observer who may know absolutely

nothing directly about the true earnings of the firm.

The more challenging issue here is to define rigorously what is the appropriate proxy for

expected true earnings on the right hand side of the appropriate stochastic generalization of

Eq. (10). We are groping here to find for this simple stochastic model a rigorous definition

of the concept of ‘‘projected earnings.’’ We again employ the useful fiction of the ‘‘ideal

accountant.’’ Only now, in this stochastic setting, the ideal accountant is endowed with

even more powerful abilities and is being asked to take on an even more daunting thought-

experimental task.

Ideally measured earnings in the near future are themselves a random variable. Stated

heuristically, the ideal accountant will be asked to evaluate true future earnings along all

realizable stochastic trajectories throughout a given near-future period – and then to

estimate their expected value per unit time (in the limit as the length of the future period

goes to zero). Intuitively, therefore, we are searching for a reasonable definition of the

expected value of forward-looking future stochastic income over what might be called

loosely the ‘‘immediate future.’’ The ideal accountant is effectively asking himself: ‘based

on current information, what do I expect that I will have measured as the true income of this

firm over the immediate future?’. The ideal accountant is non-anticipating, in the strict

mathematical sense that he is using only current information to ‘estimate’ or ‘project’

expected true income over the immediate future, which is a legitimate construction to make

on the basis of non-anticipating current information.
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Let us first begin by fixing the length of the near future interval at h, which is some

arbitrarily given positive number that will eventually be made to go to zero in the limit.

What we define rigorously as ‘‘expected future income’’ over the time interval (0, h] is

intended to be a stochastic generalization of the right hand side of formula (9). Up to this

point in the development of the argument we could essentially finesse the issue, but now we

must seriously face up to this issue of what exactly we intend to mean here by a stochastic

generalization of true income (or earnings). We now pose this issue very sharply in terms of

which price index of investment goods to use.

For any chosen value of the parameter l, where 0 � l� 1, define the weighted-average

accounting price of capital accumulated throughout the interval [0, h] to be the random

variable

PlðK�ððhÞÞ	 ð1 � lÞPðKð0ÞÞ þ lPðK�ððhÞÞ: (37)

What we are now going to ask the ideal accountant to measure as forward-looking

immediate-future expected income (per unit time, now, at time t = 0) is an expected-value

generalization of the deterministic case, taking here the form

EYðlÞ	GðKð0Þ; I�ððKð0ÞÞÞ þ lim
h! 0þ

1

h
E½PlðK�ððhÞÞðK�ðhÞ � Kð0ÞÞ�; (38)

where the relevant underlying stochastic process is

dK�ðtÞ ¼ I�ðK�ðtÞÞ dt þ sðK�ðtÞÞ dZðtÞ; (39)

and K(0) is given as an initial condition.

The critical question before us then becomes very specific: ‘what value of l should we

instruct the ideal accountant to use?’. The choice will very much matter for the evaluation

of the second term on the right hand side of (38). Everything is now a stochastic random

variable in this setup. The efficiency price of investment (in terms of dividends) and the

capital being accumulated are both changing stochastically throughout the time interval [0,

h]. There is an efficiency price of investment at the beginning of the interval, P(K(0)),

and there is a (different) efficiency price of investment at the end of the interval, P(K(h)). If

l = 0, it corresponds to using the initial price to evaluate the capital that has been

accumulated throughout the interval [0, h]. If l = 1, it corresponds to using the final

price to evaluate the capital that has been accumulated throughout the interval [0, h].

If l = 1/2, it corresponds to using the average price throughout the interval to evaluate the

capital that has been accumulated throughout the interval [0, h]. In a deterministic setup

(i.e., s2(K(0)) = 0), it makes no difference what value of l is chosen in definition (38).

However, in a stochastic-diffusion setting, this choice can potentially make a significant

difference.

The case l = 0 corresponds to making the random variable within the square brackets of

(38) be effectively an Itô stochastic integral of P(K(t)) dK(t) between t = 0 and t = h –

meaning the price function P(K) is to be understood as being evaluated at the left endpoint

of the tiny subintervals that, in the limit, define this Itô stochastic integral. The case l = 1/2

corresponds to making the random variable within the square brackets of (38) be

effectively a Stratonovich stochastic integral of P(K(t)) dK(t) between t = 0 and t = h

– meaning the price function P(K) is to be understood as being based upon the ‘‘trapezoid
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rule’’ of averaging the price function values at both endpoints of the tiny subintervals that,

in the limit, define this Stratonovich stochastic integral. In any event, we come back again

to the very-specifically posed critical question here: ‘which value of l should we instruct

the ideal accountant to use to evaluate the capital that is being accumulated stochastically

within the interval?’.

I think that most economists would agree on the answer to this question. We should use

some measure of the average efficiency price that occurs within the interval – i.e., we

should take the average of the price that occurs at the beginning of the interval and the price

that occurs at the end of the interval. This is essentially a natural extension of the idea that it

is best to measure a finite-difference approximation of a Divisia index of the value of

capital accumulation by using the average investment price, which corresponds to the

midpoint of an interval, for evaluating the amount of capital that has been accumulated

during the interval.

It turns out that – with the unboundedly violent fluctuations that occur in realized capital

stock changes per tiny subinterval as the tininess of the subinterval approaches zero, which

degree of violence is inherent in the nature of a Wiener process – it matters at which point

of the tiny subinterval we evaluate the stochastically changing price (when we define

rigorously, as a limiting process, the stochastic integral implicitly contained within the

square brackets of (38)). If we want to base the efficiency price on the ‘‘trapezoid rule’’ of

having the ideal accountant average the price values at both endpoints of the tiny sub-

intervals, which intuitively seems more plausible than picking either of the extremes of the

price at the beginning left endpoint or the price at the ending right endpoint, and which is

consistent with best-practice real-world construction of Divisia indexes, then the concept

of integration we should be using to evaluate (38) is the Stratonovich stochastic integral

corresponding to the case l = 1/2. Once we buy into the notion – whether intuitively or

based on a formal result from index number theory – that it is better for comparisons to use

some average of Laspeyres and Paasche price indices, rather than using either price index

alone, then by logic we should also buy into the notion of using l = 1/2 for measuring

expected income.

The Stratonovich stochastic integral of P(K(t)) dK(t) corresponding to l = 1/2 is

symmetric backwards and forwards, which is an essential property for a Divisia-like

index of real capital accumulation to possess in the setting of a stochastic diffusion process.

If, in a thought experiment, we decumulated capital symmetrically by retracing our steps

backwards along the same realization of the stochastic trajectory along which we

accumulated it, when we arrived back at the initial state we would then want our index

of the total value of real net accumulated capital to register zero. This is precisely the

forwards–backwards symmetry that characterizes the Stratonovich stochastic integral,

because the Stratonovich path integral is always zero around any closed loop. However, in

the above thought experiment, the path-dependent Itô stochastic integral of P(K(t))dK(t),

corresponding to l = 0, would yield some non-zero forwards–backwards round-trip value

of net total capital accumulated, when there actually has been zero net total capital

accumulated. As we will later show formally, the expected value of the difference-from-

zero biased-measurement error of such an Itô (l = 0) ‘round trip evaluation’ of net capital

accumulated, per unit time, into the immediate future and back, exactly accounts for the

Jensen’s-Inequality term (30).
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Thus, it turns out, our stochastic integral of choice for formulating and evaluating the

stochastic optimal control problem is unquestionably the Itô integral, which is most

appropriate for this particular application – but our stochastic integral of choice for

measuring expected true income in (38) is the Stratonovich stochastic integral correspond-

ing to l = 1/2, which represents the undeniably appropriate concept for this particular

application. Such a distinction matters only for the evaluation of the ‘‘accumulated-

capital’’ part of expected income – because both the amount of capital accumulated and the

accounting price of capital accumulated are jointly changing stochastically, which with a

continuous diffusion process must be accounted for instantaneously, even within the tiniest

measurement interval.

Therefore, to make a long story short, our mathematically rigorous definition here of the

firm’s ideally measured immediate-future expected stochastic income is

EY
1

2

� �
	GðKð0Þ; I�ðKð0ÞÞÞ þ lim

h! 0þ
1

h
E

PðKð0ÞÞ þ PðKðhÞÞ
2

ðKðhÞ � Kð0ÞÞ
� �

;

(40)

which, it is readily confirmed, corresponds to the special l = 1/2 ‘Stratonovich-case’

of (38).

Because the outcome will hinge on subtle questions of timing in what might be called

‘‘stochastic-diffusion index number theory,’’ it has been absolutely crucial here to specify

carefully what is being measured as the properly accounted net value of capital accumu-

lated over a near-future period, when is it being measured, and how it is being measured. To

make more vivid the image of a forward-looking trapezoidal accountant working on the

right-hand-side of the stochastic wealth and income version of the maximum principle, let

us give him a name. Let us call our ideal accountant ‘Mr. Strat’. From an economist’s

standpoint, Mr. Strat is the world’s greatest accountant. Mr. Strat is the leading authority on

the theory and practice of projecting forward a firm’s expected true economic earnings.

Expression (40) is the expected immediate-future value of the firm’s true income,

representing exactly what Mr. Strat expects he will be measuring as complete income

over the immediate future. In this sense, Mr. Strat’s expected immediate-future income

measurement (40) can be interpreted as the mathematical formalization, which is appro-

priate to this stochastic setting, of the idea of a firm’s ‘‘projected true earnings.’’

The stochastic generalization of the deterministic wealth-and-income statement (10) is

the following theorem, which is the main result of this paper.

Theorem (Stochastic wealth and income version of the maximum principle).

rVðKð0ÞÞ ¼ EYð1
2Þ: (41)

In asserting that expected income is the return on expected wealth, it is directly apparent

that (41) represents a stochastic generalization of (10). We will ‘‘prove’’ the stochastic

wealth and income version of the maximum principle here in two steps. First, applying Itô’s

expectation formula to (38) and (37) will give us a useful general result holding for any l.

Second, we will then obtain (41) by just plugging into this general result the specific

parameter value l =1/2.
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Define, then, the function

FðKÞ	 ½ð1 � lÞPðKð0ÞÞ þ lPðKÞ�½K � Kð0Þ�; (42)

and note that

FðKð0ÞÞ ¼ 0: (43)

Taking first and second derivatives of F(K) from (42), and then evaluating at, K = K(0),

we obtain

F0ðKð0ÞÞ ¼ PðKð0ÞÞ; (44)

and

F00ðKð0ÞÞ ¼ 2lP0ðKð0ÞÞ: (45)

Plugging (43), (44), and (45) into the right hand side of (16), we then obtain from Itô’s

expectation formula the result that

E½FðK�ððhÞÞ� ¼ fPðKð0ÞÞI�ððKð0ÞÞ þ lP0ðKð0ÞÞs2ðKð0ÞÞgh þ Oðh3=2Þ: (46)

Now divide both sides of (46) by positive h and go to the limit h ! 0+, thereby obtaining

lim
h! 0þ

1

h
E½FðK�ðhÞÞ� ¼ PðKð0ÞÞI�ðKð0ÞÞ þ lP0ðKð0ÞÞs2ðKð0ÞÞ: (47)

Applying definitions (37) and (42)–(47) then yields

lim
h! 0þ

1

h
E½PlðK�ðhÞÞðK�ðhÞ � Kð0ÞÞ� ¼ PðKð0ÞÞI�ðKð0ÞÞ þ lP0ðKð0ÞÞs2ðKð0ÞÞ:

(48)

Applying Eq. (48) to the definition (38) turns the latter expression into

EYðlÞ	GðKð0Þ; I�ðKð0ÞÞÞ þ PðKð0ÞÞI�ðKð0ÞÞ þ lP0ðKð0ÞÞs2ðKð0ÞÞ: (49)

Since (36) must hold as an identity for all K, by differentiating it we obtain

P0ðKÞ ¼ V 00ðKÞ; (50)

which must also hold for all K. Now use (36) and (50) to compare (49) with the HJB

condition (30). We have then just shown that for all l satisfying 0 � l� 1, the relation must

hold that

rVðKð0ÞÞ ¼ EYðlÞ þ ð1
2 � lÞV 00ðKð0ÞÞs2ðKð0ÞÞ: (51)

The stochastic wealth and income version of the maximum principle (41) follows

immediately from plugging l = 1/2 into Eq. (51).

Now all of the pieces should fit. If the accounting is done correctly (which includes

using the proper price index number corresponding to l = 1/2) expected income is the

return on expected wealth. The key economic interpretation of HJB is provided directly by

the ‘‘stochastic wealth and income version of the maximum principle,’’ which is Eq. (41)

(along with the definition (40)).
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Using (51), we can analyze formally the important concept of the measurement error or

index-number bias introduced by various values of l. To do so, let us examine what is

measured as the accounting value of the capital accumulated (as investment) along any

round-trip forwards–backwards trajectory. At time t = 0, the stochastic trajectory {K*(t)}

begins at K = K(0). Throughout the time interval [0, h] the trajectory {K*(t)} grinds out a

particular stochastic path realization. At time t = h, the stochastic trajectory arrives at

K = K*(h).

Throughout the time interval [h, 2h] let us imagine a hypothetical trajectory, which is

exactly the same as the realized trajectory of time interval [0, h], except that time is running

backwards. For any time t with 0 � t � h, the hypothetical trajectory f~Kðh þ tÞg, which we

are analyzing as a thought experiment throughout the time interval [h, 2h], is related to the

stochastic trajectory {K*(t)}, which was actually realized throughout time interval [0, h],

by the equation

~Kðh þ tÞ ¼ K�ðh � tÞ: (52)

What would be measured by an ideally instructed accountant, given any value of l, as

the value (per unit time) of capital accumulated along such a forwards–backwards-

symmetric path in the full time interval [0, 2h]? From (52) and the definition (37), it

would be

PlðK�ðhÞÞ½K�ðhÞ � Kð0Þ� þ P1�lðK�ðhÞÞ½Kð0Þ � K�ðhÞ�
2h

: (53)

Now it should be quite intuitive that a truly ideal stochastic index of the value of capital

accumulated throughout the time interval [0, 2h] should register that (53) is exactly zero.

When zero net capital has actually been accumulated, the properly accounted value of total

net accumulated capital should also be zero. It is readily seen that the value of (53) is zero

for l = 1/2 and is non-zero for any other value of l.

The degree of expected measurement error in the sense of immediate-future expected

index-number bias is then captured by the limiting expected value of expression (53),

which ‘‘should’’ be zero but instead is

BðlÞ	 lim
h! 0

1

2h
fPlðK�ðhÞÞ½K�ðhÞ � Kð0Þ� þ P1�lðK�ðhÞÞ½Kð0Þ � K�ðhÞ�g: (54)

Using arguments very similar to what was used to derive (52), it can readily be shown

that the definition (54) reduces to

BðlÞ ¼ ð1
2
� lÞV 00ðKð0ÞÞs2ðKð0ÞÞ: (55)

From formula (55), it follows immediately that the Jensen’s-Inequality term (33) can be

interpreted as representing precisely the expected index-number bias or measurement

error (per unit time) from using the ‘‘incorrect’’ Itô-like beginning-of-period price

corresponding to l = 0 instead of the ‘‘correct’’ Stratonovich-like mid-period average

price corresponding to l = 1/2. When capital accumulation is ‘‘correctly accounted’’

(l = 1/2), there is no measurement bias and correctly accounted expected income is exactly

the return on correctly accounted expected wealth.
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4. Discussion and conclusion

Note that the stochastic wealth and income version of the maximum principle (41) can

readily be interpreted as giving a direct finance-theoretic asset-evaluation interpretation to

the Hamilton–Jacobi–Bellman Eq. (31). The result (41) means that, for this dynamic

stochastic model of the firm, HJB is trying to tell us that the information content of stock

market evaluation (times the competitive rate of return) is captured completely by forward-

looking expected earnings in the immediate future, provided that these earnings have been

ideally accounted.

Notice that it is not current true earnings that line up exactly with the current stock

market evaluation. That was true for the deterministic case, but it no longer holds in a

genuinely stochastic environment where s2(K(0)) > 0. Rather, in this model it is

forward-looking expected true earnings in the immediate future that must equal the

current stock market evaluation. The stock market, so to speak, now knows current true

earnings and is already looking ahead to projected true earnings in the immediate future.

For this model, the entire informational content of competitive stock market asset

evaluation (times r) is exactly mirrored in expected true earnings for the immediate

future. Therefore, to the extent that the stock market value of a firm is correlated with its

expected future true earnings for a stochastic diffusion model like this, in principle all of

the correlation is explained by the immediate future, and none by periods further ahead

than that.

The assumption of ideal comprehensive accounting is very strong here, but it is also able

to purchase a very strong focal-point result as a polar case. Perhaps a more balanced way of

conceptualizing the possible significance of (the multi-capital version of) this basic result

for the theory of asset pricing is in its inverse form as a kind of representation theorem.

Asset pricing theory essentially consists of different versions of representing today’s

asset prices as the expected value of ‘something’ tomorrow. The economic interpretation of

the Hamilton–Jacobi–Bellman equation, which is given by the stochastic wealth and

income version of the maximum principle (41), gives us a new ‘something’ to look at and

ponder. From (a multi-capital version of) (41), the current stock market evaluation of a

firm’s shares must have a representation as the immediate-future expectation of income – or

at least of an income-like linearly weighted expression, whose quantities are changes in

state variables affecting the firm’s ability to pay future dividends, and whose weights for

evaluating these changes in capital are shadow accounting prices representing current rates

of transformation into dividends. Under ideally complete accounting, this expected-

income-like term is exactly the expected immediate-future true earnings of the firm.

Otherwise, and in reality of course, this expected-income-like term will be captured by

projected immediate-future earnings only to the degree that the firm’s accounting system is

relatively complete and accurate in being able to assess changes in all those continuously

changing capital-like state variables that are relevant for the firm’s ultimate dividend-

paying ability.

Even in a world of imperfect accounting, such a new representation theorem may be

useful for asset pricing theory. Knowing the precise theoretical link between asset value

and earned income may lead to new ways of conceptualization and measurement.

Also, such a result may serve the theory of income accounting as a kind of a guiding
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beacon lighting the way toward better practice by providing a rigorous conceptual

foundation and by suggesting what activities to include as investments and how best to

price them.

For an interpretation of the main result of this model in terms of national income

accounting, we need to modify the setting appropriately. The relevant prices of capital or

investment goods in the setting of a national economy would be observableas the result of

competitive market processes operating both in a static and in a dynamic sense. The static

interpretation is the usual one: it is as if every agent is currently optimizing (the agent’s

static net utility or static net profits) for the given current prices. The dynamic interpretation

in the stochastic economy would involve a dynamic competitive rational-expectations

equilibrium in price uncertainty – meaning, essentially, a self-reinforcing equilibrium in

expectations where no agents, even when carrying out their optimal actions, can expect to

make pure profits over time. (While the details are omitted here, what translates into the

‘zero expected pure profits’ condition of a rational-expectations decentralized dynamic

competitive equilibrium is precisely the wealth and income version of the maximum

principle, (41), which is based implicitly on the case l = 1/2.)

Even for a hypothetical situation of perfectly comprehensive accounting, in a stochastic

setting the national income statistician is recording as current NNP some just-observed or

just-measured index of the value of current economic activity, rather than the expected

value of immediate-future income. Therefore, in the rational expectations competitive

dynamic equilibrium of a stochastically evolving economy, current comprehensive NNP is

an accurate barometer of expected wealth (or welfare) only to the extent that current

income is an accurate barometer of expected immediate-future income. A nation’s

expected future welfare is not completely reflected by last year’s realized NNP, but,

rather, it is mirrored completely accurately in next year’s expected NNP. The theory is

telling us to smooth out the unanticipated shocks of the immediate past, which have

distorted last year’s recorded NNP, by projecting ahead to next year’s expected NNP. This

makes the welfare interpretation of present comprehensive NNP somewhat more com-

plicated than in the deterministic case, but at least we understand, in the spirit of the

stochastic diffusion model of this paper, what exactly are the theoretical relationships

between all of the relevant concepts.

The relative brevity of this paper is illusory because the treatment of stochastic diffusion

processes here has been so extremely compressed. Had we really tried carefully or

rigorously to explain optimal control theory for stochastic diffusion processes, this would

have been a book instead of a paper. While cursory, the treatment of this paper should be

sufficient to illustrate how the basic principles may be extended into the domain of

uncertainty, at least for some classes of stochastic processes.

5. Bibliographic notes

As was indicated in the text, there are a number of books whose aim is to explain the
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include a good discussion of the modeling issues involved in the ‘‘Itô versus Stratonovich’’

debate. In this connection, the original book by Stratonovich (1968) may profitably be
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A fully rigorous treatment of stochastic-diffusion optimal control theory is developed in
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The literature on the theory of complete accounting under uncertainty is sparse. A

pioneering article laying out the basic issues is Aronsson and Löfgren (1995), which is also
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chapter is reporting new work.

M.L. Weitzman / Japan and the World Economy 16 (2004) 277–301 301


	Stochastic income and wealth
	Introduction to the theory of complete accounting under uncertainty
	The deterministic case in terms of policy functions
	Stochastic income and wealth
	Discussion and conclusion
	Bibliographic notes


