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The map appears to us more real than the 
land.

—D. H. Lawrence

Three major puzzles, described later in this 
section, have captured the attention of macro-
economic finance: the equity-premium, riskfree-
rate and equity-volatility puzzles. A common 
strand of these three asset-return puzzles is that 
markets are behaving as if investors fear some 
unknown hidden randomness that isn’t obvious 
from the data. People are acting in the aggre-
gate like there is much more marginal-util-
ity–weighted subjective variability about future 
growth rates than past observations seem to sup-
port. This paper offers a single unified theory 
for all three macro-finance puzzles based on 
the idea that what is learnable about the future 
stochastic consumption-growth process from 
any number of past empirical observations must 
fall far short of full structural knowledge. The 
main findings can be summarized as follows: 
(a) the process of discovering structural param-
eters has significant economic consequences, 
with parameters controlling the spread of the 
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distribution of future consumption growth rates 
(like the growth-rate variance) being the most 
critical for consumption-based asset pricing; (b) 
integrating out structural-parameter uncertainty 
by Bayes’s rule spreads apart probabilities and 
thickens the tails of the posterior distribution for 
predicting the future consumption growth rate, 
an effect that persists indefinitely if structural 
parameters are conceptualized as continually 
evolving; (c) the thickened posterior-predictive 
left tail represents structural uncertainty about 
bad events, which for any relatively-risk-averse 
utility function creates a fear-factor effect that 
can easily dominate quantitative applications of 
expected-utility theory; (d) such tail-thickened 
posterior-predictive growth rates have strong 
repercussions on asset prices that can parsimo-
niously account for, and even reverse, all three 
major asset-return puzzles; (e) explanations 
of macroeconomic asset returns by rational-
expectations calibrations and regressions may be 
illusory because, no matter how much objective 
data there are, any desired equity premium or 
riskfree rate can always be reverse-engineered 
by making tiny, seemingly-innocuous changes 
in subjective prior beliefs.

This paper begins by noting that macroeco-
nomic asset pricing is dominated by a perva-
sive subset of rationally formed expectations, 
which in the literature is sometimes called 
REE for Rational Expectations Equilibrium. 
The key characteristic of REE (defining it 
as a proper subset of the set of all rationally 
formed Bayesian equilibria) is the imposed 
extra assumption that the subjective probability 
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distribution of outcomes believed by agents 
within an economic system equals the objective 
frequency distribution actually generated by the 
system itself. For the purposes of this paper, 
REE is effectively a dynamic stochastic general 
equilibrium where all reduced-form structural 
parameters of the data-generating process are 
known—presumably because they have already 
been learned previously as some kind of an ergo-
dic limit from a sufficiently large sample. When 
the REE concept of a dynamic stochastic gen-
eral equilibrium is applied empirically to price 
assets in a macroeconomic setting, it produces 
the three major asset-return puzzles described 
briefly below.

The “equity-premium puzzle” refers to the 
striking failure of REE to explain a historical 
difference of some six or so percentage points 
between the average return from a represen-
tative stock market portfolio and the average 
return from a representative portfolio of rela-
tively safe stores of value. Such a large risk pre-
mium for equity suggests a fear of the unknown 
that seems inconsistent with a nonbizarre, com-
fortably familiar coefficient of relative risk aver-
sion, say with conventional values  g < 2 6 1.

The “riskfree-rate puzzle” refers to the five-
percentage-point or so discrepancy between 
the interest rate that is predicted by the REE 
Ramsey formula and what is actually observed. 
For a plausible risk-aversion coefficient g < 2 
and a plausible rate of pure time preference r 
< 2 percent, the REE Ramsey formula predicts 
a riskfree interest rate of r f < 6 percent, while 
what people are actually willing to accept to 
reduce fear of the unknown is r̂ f < 1 percent.

The term “equity-volatility puzzle” as used 
here refers to the empirical fact that actual 
returns on a representative stock market index 
have a variance some two orders of magnitude 
larger than the variance of any consumption-
dividend-like fundamental in the real economy 
that might possibly be driving them or that might 
be relevant for welfare calibration. If compre-
hensive or representative equity is conceptual-
ized (at a very high level of abstraction) as if 
acting like a surrogate claim on the consump-
tion dividend produced by the macroeconomy 
itself, then returns on aggregate equity should 
(at least very roughly) reflect more-fundamental 
growth expectations for the underlying real 
economy. Even allowing, however, for leverage 

and other actual complications, the way-too-
large empirical volatility of equity prices seems 
badly disconnected from the basic spirit of a 
real-economy-driven REE. Instead of self-con-
fident REE investors with sure expectations of 
objective frequencies generated by an already 
known stochastic structure (about which nothing 
further remains to be learned), the whole situa-
tion looks and feels more like skittish investors 
nervously reacting with unsure expectations to 
unknown deeper forces of shifting structure.

In a nonergodic situation where hidden param-
eters are evolving, everyone is perennially uncer-
tain about current structure and learning is not 
converging to a REE because no matter how the 
data are filtered there are not “true” REE struc-
tural-parameter values to converge to.� By postu-
lating known stable structural parameters, REE 
makes the probability density of future growth 
rates seem more centered and more thin-tailed 
than it actually is—other things being equal. 
But integrating out Bayesian uncertainty about 
parameters controlling the degree of tail-spread 
of any given “parent distribution” inevitably 
broadens and thickens the tails of the subjective 
posterior-predictive “child distribution” that goes 
into the Euler equation determining asset prices.� 
The point is general, but the particular example 
carried throughout this paper is of a thin-tailed 
normal parent distribution that becomes a thick-
tailed Student-t child distribution from uncer-
tainty about the variance parameter.�

A derived implication of the expected-util-
ity hypothesis is that agents having any util-
ity function with everywhere-positive relative 
risk aversion especially dislike uncertainty in 
the key structural parameters of the stochastic 

� More technically, this paper shows that when agents 
are experiencing a dynamically evolving stochastic process 
that is relevant to asset pricing, the subjective probability 
measures from Bayesian learning stay uniformly bounded 
away from the actual data-generating process—even with 
asymptotically infinite past observations.

� An Euler equation is the first-order condition reflecting 
intertemporal consumption trade-offs that is used to price 
assets. Euler equations are intended to hold only in sub-
jective expectations, as opposed to holding in large-sample 
frequencies, a distinction that gets obscured under REE.

� The Student-t density from a large number of obser-
vations looks almost exactly like its bell-shaped normal 
parent, except that the probabilities are somewhat more 
spread apart, making the tails appear relatively thicker at 
the expense of a slightly flatter center.
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consumption-growth process. An interpreta-
tion of why people especially dislike structural 
ignorance about future consumption is that they 
dread the thickened-left-tail heightened prob-
ability of a negative-growth disaster that they 
find scary, disruptive, and without precedent. 
Aversion to structural uncertainty increases 
both the equity premium and equity volatility, 
while simultaneously decreasing the riskfree 
interest rate. The potential influence of tail-
thickened growth rates representing structural 
uncertainty is confirmed just by plugging a 
Student-t distribution into standard asset pric-
ing formulas where a normal usually goes and 
then noting the reversal of all puzzle-discrep-
ency inequalities requiring explanation. This 
tail-thickening reversal of what is considered 
“puzzling” (which is therefore simultaneously 
a reversal of what needs to be “explained”) is 
a strong force. The same anti-puzzle pattern is 
shown to occur even with unlimited data from 
a stochastic growth process whose structural 
parameters are evolving arbitrarily slowly. Such 
a degree of nonrobustness means that the usual 
calibration of asset prices to the standard model 
of a steady-state-distributed REE is questionable 
because REE asset-return outcomes and conclu-
sions are fragile to even the tiniest evolutionary-
structural perturbations.

Within REE, the financial equilibrium of a 
small-sample situation having a remote chance of 
a disastrous out-of-sample happening is dubbed 
the “peso problem.”� In a peso problem, possible 
future occurrences of unlikely bad events that 
are not included in the too-small sample (such 
as the presumed structure being undermined by 
a natural or socioeconomic disaster) are taken 
into account by real-world investors who know 
the true REE data-generating process. Naturally, 
these rare out-of-sample disaster possibilities 
are missed by unknowing calibrators simulat-
ing past sample frequencies. An artificial REE 

� The name “peso problem” comes from the once 
puzzlingly high empirical yields on Mexican bonds during 
a time when the Mexican peso had been pegged to the US 
dollar at the same fixed exchange rate for decades. Then 
one day there was a sudden sharp devaluation of the peso 
against the dollar. After the collapse of the peso, the pre-
vious in-sample “peso premium” was explained ex post 
factum by the small probability of a huge out-of-sample 
devaluation that investors had understood to be a possibil-
ity all along.

peso premium then appears in the data because 
to an outside observer it looks like inside inves-
tors are being rewarded by an inexplicably high 
empirical asset return, while actually they are 
bearing the extra risk of rare disasters in the left 
tail of the distribution that happen not to have 
materialized within the limited sample. This 
paper shows that an asset-pricing equilibrium 
with a peso problem is not just a hypothetical 
possibility, but rather it is a generic inevitability 
that must accompany a learning situation where 
agents are interchangeable with econometri-
cians trying to infer tail structure from the same 
incomplete information. A Bayesian translation 
of a peso problem is that there are insufficient 
data to construct a reliable posterior distribution 
based solely upon sample frequencies—i.e., a 
posterior that is independent of imposed priors. 
In a Bayesian-learning equilibrium where hid-
den structural parameters are evolving stochasti-
cally, it turns out that asset prices always depend 
critically upon subjective prior beliefs and there 
are never enough data on frequencies of rare tail 
events for asset prices to depend only upon the 
empirical distribution of past observations.

The pioneering model of Thomas A. Rietz 
(1988), later extended by Robert J. Barro (2006), 
attempts to explain the equity-premium puzzle 
from within a REE framework by thickening 
the tails of the distribution of growth rates via 
directly inserting a discrete i.i.d. rare-disaster 
state having a known proportional reduction 
of consumption occur with known probability. 
This method can be interpreted as essentially 
arguing through suggestive numerical examples 
(without abandoning objective-frequency-based 
REE) that a peso problem may apply because 
the data sample being used in the traditional 
puzzles literature, which is taken from relatively 
tranquil historical periods and countries, may 
be understating the potential for a worst-imag-
inable-case scenario of large negative future 
growth rates. A drawback of this approach is the 
inherent implausibility of being able to mean-
ingfully calibrate REE objective frequency dis-
tributions of rare disasters (such as world wars, 
great depressions, global pandemics, geophysi-
cal catastrophes, or the like) because the rarer 
the event the more uncertain is our estimate 
of its probability. I return to the Rietz-Barro 
model later when, after formally developing the 
evolutionary-learning apparatus in this paper, a 
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more meaningful comparison of the two meth-
ods can be made that assesses their very dif-
ferent approaches to statistical inference in the 
presence of a commonly shared peso problem.

This paper is not the first to investigate the 
effects of subjective uncertainty on asset pric-
ing. There are several earlier examples having 
some Bayesian features or overtones.� Broadly 
speaking, these papers explicitly or implicitly 
suggest that the need for transient Bayesian 
learning about structural parameters along 
the path to a REE may temporarily reduce the 
degree of one or another asset-return anom-
aly. What seems to be missing from previous 
Bayesian-learning literature, however, is a sense 
of the sheer power that distribution-spreading 
structural parameter uncertainty can bring to 
bear on equilibrium asset pricing, especially 
when an evolving structure keeps learning rel-
evant forever. In effect, some qualitative impli-
cations of structural uncertainty are appreciated 
in this literature, but not the quantitative mag-
nitude of its permanent dominance over asset-
pricing Euler-equation formulas via thickened 
posterior-predictive tails.

An exception in the vast puzzle-related lit-
erature is the admirably terse five-page commu-
nication by John Geweke (2001) that applies a 
Bayesian framework to the most standard model 
prototypically used to analyze behavior toward 
risk and then notes the curious fragility of the 
existence of finite expected utility itself.� In a 
sense the present paper begins by accepting this 
important nonrobustness insight, but pushes it 
further to argue that the inherent sensitivity of 
the standard prototype formulation constitutes 
a significant clue for unraveling what is driving 
the asset-return puzzles and for giving them a 
unified general-equilibrium interpretation that 
parsimoniously links the stylized facts.

� Such earlier papers include Robert B. Barsky and J. 
Bradford DeLong (1993), Allan G. Timmermann (1993), 
Peter Bossaerts (1995), Michael J. Brennan and Yihong Xia 
(2001), Andrew Abel (2002), Alon Brav and J. B. Heaton 
(2002), Jonathan Lewellen and Jay Shanken (2002), and 
several others.

� I am grateful to two readers of an early draft of this 
paper for informing me of Geweke’s pioneering note. 
Geweke found that a Bayesian formulation similar to what 
underlies this paper can cause serious convergence prob-
lems for indefinite integrals representing expected utility.

This paper argues that the three macrofinance 
asset-return puzzles are not nearly so puzzling 
in a nonergodic Bayesian-learning formula-
tion whose unknown structural parameters are 
evolving. Instead, the arrow of causality in this 
unified Bayesian explanation is reversed; the 
puzzling numbers being observed empirically 
are trying to tell a parsimoniously consistent 
story about the subjective revealed-prior dis-
tribution of growth-structure uncertainty that 
investors must implicitly have in their minds 
to generate such puzzling data patterns. This 
paper suggests that the “strong force” of evolu-
tionary-structural uncertainty is empirically a 
far more powerful determinant of asset prices 
and returns than the “weak force” of known-
fixed-structure REE-type pure risk. Measured 
in marginal-utility-weighted units, the subjec-
tive probability distribution of tail-thickened 
posterior-predictive growth prospects is in some 
critical respects closer to the relatively stormy 
volatility record of stock market wealth than 
it is to the far more placid smoothness of past 
consumption.

I.  The Family of REE Asset-Return Puzzles

The core issue for this paper is whether the 
three asset-return puzzles can be explained by the 
subjective beliefs of agents regarding structural 
uncertainty. This section frames the puzzles in a 
simple REE format that is particularly amenable 
to easing the later transition into a generalization 
whose nonergodic structure is allowed to evolve 
over time. For this purpose, a stark endowment-
production dual-canonical model is used where 
everything but the most basic architecture of 
the model has been set aside. To focus on the 
big picture, this paper heroically assumes away 
the details in such diversionary complications 
as defaults, leverage, illiquidity, taxes, autocor-
relation, irrationality, heterogeneous agents, 
exotic preferences, changing tastes, borrowing 
constraints, adjustment costs, business cycles, 
timing frictions, human capital, incomplete 
markets, idiosyncratic risks, and the like.

Let t denote the present period. From the 
present perspective, consumption Ct1 j in future 
period t 1 j (with j $ 1) is a random variable, 
which, for the time being at least, comes from 
a very general evolutionary stochastic process. 
The population consists of a large fixed number 
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of identical people who live forever. The utility 
U of consumption C is specified by the isoelastic 
power function

(1) 	  U 1C 2  5 
C12g

1 2 g

with corresponding marginal utility

(2) 	  U r 1C 2  5 C2g,

where the coefficient of relative risk aversion is 
the positive constant g.

The pure-time-preference multiplicative fac-
tor for discounting one-period utility into pres-
ent utility is b , 1. At the present time t the 
representative agent’s welfare is

(3) 	  Vt 5 Et c
1

1 2 g a
`

j50
bj 1Ct1j 2 12g d  ,

where throughout this paper the expectation 
operator Et is understood as being taken over a 
subjective distribution of future growth rates, 
conditioned on all information available at time 
t. The “stochastic discount factor,” or marginal 
rate of substitution between Ct and Ct11, is 
Mt11 ; bU r 1Ct11 2 /U r 1Ct 2 , and for any asset a 
whose gross return in period t 1 1 is Ra

t11, the 
relevant Euler equation is

(4) 	  bEt c a
Ct11

Ct
b

2g

Ra
t11 d  5   1.

Later this section will also deal with an AK-
type linear-production version (with capital K 
and uncertain aggregate productivity A), but first 
begins with the simplest example of the text-
book workhorse formulation of a Lucas-Mehra-
Prescott endowment-growth economy, which is 
ubiquitous as a benchmark point of departure 
throughout the finance-macroeconomics litera-
ture.� In this pure exchange model of dynamic 

� The famous fruit-tree model of asset prices in a grow-
ing economy traces back to two seminal articles: Robert E. 
Lucas Jr. (1978) and Rajnish Mehra and Edward C. Prescott 
(1985). For applications, see the survey articles of John Y. 
Campbell (2003) or Mehra and Prescott (2003), both of 
which also give due historical credit to the other pioneering 
originators of the important set of ideas and the stylized 
empirical facts used throughout this paper. Citations for the 
many sources of these (and related) seminal asset-pricing 

general equilibrium, consumption growth is 
given by an exogenous stochastic process and all 
asset markets are like phantom entities because 
no one actually ends up taking a net position in 
any of them. The paper concentrates on three 
basic investment vehicles: a “riskfree” asset, 
“one-period” equity, and “multi-period” equity, 
all of which are abstractions of reality. In all 
cases gross returns are asset payoffs divided by 
asset price, with consumption as numeraire.

The riskfree asset effectively guarantees that 
this period’s consumption will also be paid in 
the next period, and is approximated in an actual 
economy by a portfolio of the safest possible 
stores of value, including hard currency, Swiss 
bank accounts, US Treasury bills, and invento-
ries of real goods.� In the theoretical fruit-tree 
economy, substituting the payoff of this period’s 
consumption into the Euler equation (4) gives 
the price of the riskfree asset (normalized for 
commensurability with equity payoffs to pay 
out period-t consumption in period t 1 1) as

(5) 	  Pf
t   5  1Ct 2 11gbEt 3 1Ct11 22g 4,

while the gross one-period return on the risk-
free asset Rf

t11 in period t 1 1 is

(6) 	  Rf
t11 5 

Ct

Pf
t
 5 

1
bEt 3 1Ct11/Ct 22g 4 .

One-period equity is a hypothetical asset that 
pays only next period’s consumption endowment 
and thereafter expires. The price of this risky 
asset at time t is

(7) 	  P1e
t    5  1Ct 2gbEt 3 1Ct11 2 12g 4,

ideas are omitted here only to save space and because they 
are readily available, e.g., in the two review articles above 
and in the textbook expositions of John H. Cochrane (2001) 
or Darrell Duffie (2001).

� The literature concentrates on very short-term US 
Treasury bills, but I think this interpretation of a “riskfree” 
asset is much too narrow. Of course, no asset is completely 
safe—not even inventories of stored food or medicine. 
The analysis in Barro (2006), however, seems to suggest 
that accounting for probabilities of events like defaults on 
government bonds has little effect on asset prices, at least 
within his model.
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with gross return

(8) 	  R1e
t11 5 

Ct11

P1e
t

 5 
Ct11/Ct

bEt 3 1Ct11/Ct 2 12g 4 .

Multi-period equity is approximated in the 
real world by a broad-based representative index 
of publicly traded shares of stocks whose aggre-
gation weights mimic the comprehensive wealth 
portfolio of the entire economy. In the theoreti-
cal fruit-tree endowment economy, multi-period 
equity is modeled abstractly as a claim on the 
stream of all future consumption dividends. 
Thus, in period t, the ex-dividend price of equity 
Pe

t  is the price of fruit trees claiming owner-
ship of all dividends accruing from time t 1 1 
onward, which by repeated use of the Euler con-
dition can be written as

(9) 	  Pe
t  5 1Ct 2g

 a
`

j51
 b  j

 Et 3 1Ct1j 2 12g 4 .

The realized gross return on multi-period 
equity between periods t and t 1 1 is

(10) 	  Re
t11 5  

Ct11 1 Pe
t11

Pe
t

.

Combining (7), (8) with (9), (10) and rewriting 
terms gives a tight general connection between 
the two realized equity returns, expressed sym-
metrically in welfare-utility fundamentals as

(11) 	
Re

t11

R1e
t11

 5 
Vt11

Ut11
 e Et 3Ut11 4

Et 3Vt11 4 f
 .

For any time t, multi-period financial wealth 
in this endowment-exchange economy is

(12) 	  Wt   5   Ct 1 Pe
t .

Substituting (1), (3), (9) into (12) and cancel-
ling redundant terms gives

(13) 	
Vt

Ut
   5  

Wt

Ct
,

which suggests that volatile wealth and volatile 
consumption have a symmetric relationship to 
welfare, an important theme that will be pur-
sued further in Section V of the paper.

Everything up to this point works with a very 
general (REE or non-REE) stochastic process. 
For all times t, let

(14) 	  Xt 5 ln Ct11 2  ln Ct

be the geometric growth rate of consumption 
during period t. In the rest of this section, I 
develop the model’s implications under the sim-
plifying assumption that growth rates 5Xt6 are 
i.i.d. with known distribution. In later sections, I 
relax the assumption of a known fixed structure 
to show that the conclusions are very different 
under evolutionary uncertainty.

In the special REE-i.i.d. known-distribution 
case, the riskfree-rate formula (6) in logarithmic 
form becomes

(15)  	 r f 5 r 2 ln E 3exp 12gX2 4 ,
where r ; 2  ln b is the instantaneous rate of 
pure time preference and r  

f
t11 ;  ln R 

f
t11.

When the random variable realizations 5xt6 
are i.i.d., it is readily shown from (7) and (9) that 
the price-earnings ratios P1e

t /Ct and Pe
t /Ct for 

both forms of risky-asset equity are constants 
independent of t and (from combining (8), (10), 
(11), (14)) that

(16) 	 Re 1x 2  5 R1e 1x 2  5 
exp 1x 2

bE 3exp 1 11 2 g 2X 2 4  .

Taking the natural logarithm of the expected 
value of (16) and subtracting (15), the average 
equity premium in each period (under the i.i.d.-
growth assumption) is

(17) 	 ln E 3Re 4 2 r f 

	     5 ln E 3R1e 4 2 r f 

	     5 ln E 3exp 1X2 4 1 ln E 3exp 12gX2 4
	       2 ln E 3exp 1 11 2 g 2X2 4 .

Equation (17) is a theoretical formula for 
calculating the equity risk premium, given any 
coefficient of relative risk aversion g, and, more 
importantly here, given the known i.i.d. proba-
bility distribution of the uncertain future growth 
rate X. Concerning the relative-risk-aversion 
taste parameter g, there seems to be some rough 
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agreement that it is somewhere between about 
one and about three. More precisely stated, 
any proposed solution which does not explain 
the equity premium for g # 4 would likely be 
viewed suspiciously by most members of the 
broadly defined community of professional 
economists as being dependent upon an unac-
ceptably high degree of risk aversion.

Preferences are standardly conceptualized as 
being fixed over time. By contrast, much less is 
known about what is the appropriate probability 
distribution to use for representing future growth 
rates. Even under the best of circumstances 
(with a known fixed stochastic specification that 
can accurately be extrapolated from the past 
onto the future), no one can know with certainty 
the critical structural parameters of the distribu-
tion of X. The best that anyone can do is to infer 
from the past some estimate of the probability 
distribution of X. The rest of the story hinges on 
specifying the form of the assumed probability 
density function of X, and then looking to see 
what the data are actually saying about its likely 
parameter values. The functional form that nat-
urally leaps to mind is the normal distribution

(18) 	  X , N 1m,V 2 ,
which is the ubiquitous benchmark case assumed 
throughout the asset-pricing literature.

The expository literature proceeds by implic-
itly presuming that the “true” structural param-
eters m and V are constants already learned by 
the agents inside the economy (although perhaps 
not yet learned by an outside observer), and then 
continues on by substituting the normal distri-
bution (18) into formula (17), which reduces (17) 
to a simple analyzable expression. Instead of 
allowing representative agents in the economy 
to be aware that m and V are unknown random 
variables, the standard practice essentially uses 
the first two sample moments and then goes on 
pretending that normality still holds—in place 
of substituting into (17) a distribution account-
ing for structural-parameter sampling error 
(like the Student-t).

Let x̂ be the sample mean and V̂ be the sam-
ple variance of a long time series of past growth 
rates. Implicitly in the REE interpretation, the 
sample size is presumed large enough to make 
x̂ and V̂ be “sufficiently accurate” estimates of 
their underlying “true” values m and V so that 

agents inside the economy can be imagined as 
having substituted 1x̂, V̂ 2 for 1m,V 2  in their sub-
jective Euler equations. With (18), using the for-
mula for the expectation of a lognormal random 
variable and cancelling redundant terms simpli-
fies (17) into the standard expression

(19) 	  ln E 3Re 4 2 r f 5 gV 3X4 ,
and for this special known-structure case the 
equity-premium puzzle is readily stated.

Considering the United States as a prime 
example, in the last century or so the average 
annual real arithmetic return on the broadest 
available stock market index is taken� to be 
ln E 3Re 4 < 7 percent. The historically observed 
real return on an index of the safest available 
short-maturity bills is less than 1 percent per 
annum, implying for the equity premium that 
ln E 3Re 4 2 r f < 6 percent. The mean yearly 
growth rate of US per capita consumption over 
the last century or so is about 2 percent, with a 
standard deviation taken here to be about 2 per-
cent, meaning V̂ < 0.04 percent. Suppose g < 2.  
Plugging these values into the right-hand side of 
(19) gives gV̂ < 0.08 percent.

Thus, the actually observed equity premium 
on the left-hand side of equation (17) exceeds 
the estimate (19) of the right-hand side by some 
75 times. If this were to be explained with the 
data above by a different value of g, it would 
require the coefficient of relative risk aversion 
to be 150, which is away from acceptable real-
ity by about two orders of magnitude. Plugging 
in some reasonable alternative specifications or 
different parameter values can have the effect of 
chipping away at the puzzle, but the overwhelm-
ing impression is that the equity premium is off 
by at least an order of magnitude. There just 
does not seem to be enough variability in the 
recent past historical growth record of advanced 
capitalist countries to warrant such a high-risk 

� The following numbers are from Mehra and Prescott 
(2003) and/or Campbell (2003), who also show roughly 
similar summary statistics based on other time periods 
and other countries. Too short a time series prevents treat-
ment as a stylized fact of an “overpriced portfolio-insur-
ance puzzle” (empirically, paper profit-returns from selling 
unhedged out-of-the-money index put options would have 
been extraordinarily high over the restricted sample period 
for which data are available), which is consistent with the 
model of this paper.
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premium as is observed. Of course, the underly-
ing model is extraordinarily crude and can be 
criticized on any number of valid counts. Still, 
two orders of magnitude seems like an awfully 
large base-case discrepancy to be explained 
away ex post facto, even coming from a very 
primitive model.

Turning to the riskfree-rate puzzle, the mean-
ing given in the asset-pricing literature to equa-
tion (15) parallels the interpretation given to 
the equity premium formula. The expository 
literature postulates the normal distribution 
(18), but then imagines that the representative 
agent ignores the statistical uncertainty inher-
ent in estimating the “true” values of E 3X 4 5 m 
and V 3X 4 5 V. Using in (15) the formula for the 
expectation of a lognormal distribution gives

(20)  	 r f 5   r 1 gE 3X 4 2
1
2

g2V 3X 4,

which is a familiar generic equation appearing in 
one form or another throughout equilibrium sto-
chastic-growth interest-rate theory. (Its origins 
trace back to the famous neoclassical Ramsey 
optimal-growth model of the 1920s.)

Noncontroversial estimates of the relevant 
parameters appearing in (20) (calculated on 
an annual basis) are: x̂ < 2 percent, V̂ < 0.04 
percent, r < 2 percent, g < 2. With these rep-
resentative parameter values plugged into the 
right-hand side of (20), the left-hand side of (15) 
becomes r f  < 5.9 percent. When compared with 
an actual real-world riskfree rate r̂ f  < 1 per-
cent, the theoretical formula is too high by < 4.9 
percent. This gross discrepancy is the riskfree-
rate puzzle.

As if all of the above were not vexing enough, 
there is also the enigmatic appearance in the 
data of what I am calling the “equity-volatility 
puzzle.” From (16) it must hold identically for 
all j that

(21) 	  re
t1 j 2 E 3re 4   5 xt1 j 2 E 3X 4,

and therefore in this ultra-simplified i.i.d. REE 
economy the entire financial-economic system 
vibrates in unison. According to (21), the real-
ized deviation from the mean of continuously 
compounded financial returns on multi-period 
equity-wealth re 2 E 3re 4 should coincide exactly 
with the realized deviation from the mean of its 

underlying real fundamental x 2 E 3X 4, imply-
ing that all higher-order moments of the two 
distributions should match. An exact lock-step 
coincidence is asking way too much, but it is 
painfully obvious that even just the two empiri-
cal second moments are very badly mismatched 
in the time-series sample because the standard 
deviation of equity returns ŝ 3re 4 < 17 percent 
is much bigger than the standard deviation of 
growth rates ŝ 3x 4 < 2 percent. This is taken to 
be the “equity-volatility puzzle.”

Equity returns are volatile relative to almost 
anything else in the economy. For the model of 
this paper, I understand the “equity-volatility 
puzzle” to be the stylized fact that, contrary 
to the simple theory, the variance of historical 
returns to a broad-based stock market index is 
about two orders of magnitude greater than the 
variance of the welfare-relevant fundamental 
of a consumption payout, for which represen-
tative equity is supposed to be the surrogate 
claimant. Conforming once again here with the 
familiar macro-asset-pricing puzzle pattern, it 
turns out that substituting alternative formula-
tions (including an equity claim on consumption 
dividends that is leveraged to an empirically 
plausible degree) can lessen the initial orders-
of-magnitude discrepancy (here of the degree of 
variance mismatch between the welfare-relevant 
real-production side of an economy and its dual 
financial-wealth side), but, as usual, something 
central of the mystery remains that still seems 
way off base.

Comprehensive financial wealth W in an 
endowment-exchange REE is mathematically 
equivalent to comprehensive production capital 
K in the optimal stochastic growth problem of a 
linear-production AK-type model with uncertain 
aggregate productivity A. Leaving aside details 
of a rigorous proof, the identification key to 
this endowment-production duality principle is 
Re

t1 j 4 At1 j (or re
t1 j   

4 ln At1 j) and Wt1 j  
4 Kt1 j , 

where the symbol “4” means mathemati-
cal equivalence for all j $ 0. “Comprehensive 
production capital” K is intended here to repre-
sent the capitalized value (at stochastic general 
equilibrium prices) of returns to all factors of 
production in the economy—not only reproduc-
ible capital like equipment and structures, but 
also human and intangible capital, as well as 
labor, land, minerals, and so forth. In the AK 
production version with comprehensive K and 
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stochastic A, the control variable Ct1 j is chosen 
(just before At1 j11 is realized) to maximize Vt1 j 
in an expression of the form (3). The system’s 
state-transition equation is

(22) 	 Kt1 j11 5 At1 j11 3Kt1 j 2 Ct1 j 4  4 Wt1 j11 

	 5 Re
t1 j11 3Wt1 j 2 Ct1 j 4,

where the dual-equivalent comprehensive-wealth 
equation of motion in (22) comes from (12), 
(10). Therefore, it matters not whether stochastic 
consumption 5Ct1j6 is first taken as the primi-
tive driver in the endowment economy while 
stochastic returns 5Re

t1j6 are derived and sub-
sequently taken as primitive-driver stochastic 
productivity 5At1j6 (5 5Re

t1j6) for the production 
economy, or whether stochastic productivity 
5At1j6 (5 5Re

t1j6) is first taken as the primitive 
driver in the production economy while stochas-
tic optimal consumption 5Ct1j6 is derived and 
subsequently taken as primitive driver for the 
endowment economy, because the two stochas-
tic equilibria are not operationally distinguish-
able to an outside observer.

Why is the duality between endowment and 
production formulations of the same underly-
ing model important for this paper? Because 
the venerable “discipline imposed by general 
equilibrium modeling” (which is an important 
rationale for using the Lucas-Mehra-Prescott 
fruit-tree format in the first place rather than 
some partial-equilibrium format) here is prac-
tically shouting at us that W and K (as well as 
R and A) are identical under REE, or at most 
they are two sides (financial and real) of the 
same coin. Therefore, if the REE equivalence 
between comprehensive financial-wealth and 
aggregate production-capital does not show up 
anywhere in the real economy—because the 
empirical variance of financial equity-wealth is 
two orders of magnitude bigger than the empiri-
cal variance of practically anything in the real 
economy—then from the “discipline imposed 
by general equilibrium modeling” it is simply 
unclear (under REE) which interpretation (the 
“comprehensive wealth-capital of consumption” 
or the “consumption of comprehensive wealth-
capital”) should take precedence for calibrating 
welfare—a consequential theme stressed repeat-
edly throughout the paper.

Summing up the scorecard for this super-sim-
ple i.i.d.-normal application of a dual-canonical 
endowment-production REE model, we have 
three strong orders-of-magnitude contradictions 
with reality. Some heuristic intuition for what is 
coming up next in the paper can be gleaned sim-
ply by performing the experiment of substitut-
ing a Student-t distribution from any large (but 
finite) sample of observations for the normal 
distribution in formulas (15) and (17). When the 
limits of the relevant indefinite integrals contain-
ing the Student-t distribution are evaluated, it is 
readily seen from formula (15) that r f S 2 ,̀ 
while from (17) careful limit calculations show 
that ln E 3Re 4 2 r f S 1 .̀ These extreme limiting 
values hint at the potentially enormous power of 
the “strong force” of structural parameter uncer-
tainty to reverse categorically the asset-pricing 
puzzles, thereby raising into sharp prominence 
the core question: what are we supposed to be 
explaining here? Should we be trying to explain 
the puzzle pattern: why is the actually observed 
equity premium so embarrassingly high while 
the actually observed riskfree rate is so embar-
rassingly low (relative to a theoretical formula 
based on the normal distribution)? Or should 
we be trying to explain the opposite antipuzzle 
pattern: why is the actually observed equity 
premium so embarrassingly low while the actu-
ally observed riskfree rate is so embarrassingly 
high (relative to a theoretical formula based on 
a Student-t distribution that is operationally 
indistinguishable from the normal, for which it 
is a sufficient statistic)? It seems difficult not to 
conclude that something fundamental is deeply 
wrong in the underlying REE formulation when 
the contradictions are so unsettling from simply 
recognizing that the distribution implied by the 
normal conditioned on finite realized data is the 
Student-t.

Intuitively, a normal density “becomes” a 
Student-t from a tail-thickening spreading-apart 
of probabilities caused by the variance of the 
normal having itself an (inverted gamma) prob-
ability distribution. There is then no surprise 
from expected utility theory that people are 
more averse qualitatively to a relatively thick-
tailed Student-t child distribution than they are 
to the relatively thin-tailed normal parent which 
begets it. A much more surprising consequence 
of expected utility theory is the quantitative 
strength of this endogenously derived aversion 
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to the effects of unknown variance-structure. 
The story behind this quantitative strength is 
that thickened posterior left tails represent struc-
tural uncertainty about rare disasters that terrify 
people. This fear-factor effect holds for any util-
ity function having everywhere-positive relative 
risk aversion. The next section formalizes the 
idea that nonergodic parameter uncertainty leads 
to a permanently tail-thickened distribution of 
growth rates that can cause expected marginal 
utility to blow up—and shows a rigorous sense 
in which “containing the Student-t-explosion” 
necessitates an unavoidable dependence of asset 
prices upon some form or another of exoge-
nously imposed subjective beliefs.

II.  Hidden-Structure Expectations of  
Future Growth

Perhaps surprisingly, it turns out for asset-
pricing implications that the most critical issue 
involved in Bayesian learning about the prob-
ability density of future growth rates is the 
unknown variance (whose role in this context 
is to represent more generally all parameters 
influencing the tail-spread of any distribution). 
The case of the mean unknown but variance 
known garners the lion’s share of attention in the 
asset-price learning literature, partly because 
of its greater analytical tractability and partly 
because of a widespread impression that with 
large samples in continuous time it is relatively 
easy to learn the true variance. For simplifica-
tion, it is convenient here to be able to postulate 
straightaway a situation where E 3X 4 is a given 
known constant m, so that the only genuine sta-
tistical uncertainty in the system concerns the 
estimation of the hidden value of the variance 
V 3X 4. The analysis when E 3X 4 and V 3X 4 are both 
unknown involves more notation but is essen-
tially the same.

To indicate where the argument is now and 
where it is leading, the assumptions behind the 
core model to be used throughout the rest of 
the paper are stated formally here. The Euler 
equation (4) holds for the utility function (1) in 
ex ante subjective expectations (as contrasted 
with holding in ex post realized frequencies—
more on this distinction later). The presumed 
conditional-i.i.d. probability distributions are: 
X , N 1m,V 2  and re , N 1E 3re 4,V 3re 4 2 . Six con-
stants of the model are effectively assumed 

known: E 3re 4, V 3re 4, r f, r, g, m. Only one struc-
tural parameter is evolving and must be esti-
mated statistically: V 5 V 3X 4.

The first order of business in this section is 
to show that the startling asset-pricing antipuz-
zle pattern (from Student-t-distributed growth 
rates, described at the end of the last section of 
the paper) persists when there are tiny variance 
shocks—even with infinite data.

If there were an infinite sample of bygone 
observations, then, at any time t,

(23) 	 nt 5 
1
k

 a
`

j51
a1 2

1
k
b

j21

 1xt2j 2 m 2 2

would represent an exponentially weighted 
average back to the remotest past of all realized 
variances of previous growth rates, which gives 
progressively greater influence to more recent 
events. The parameter k appearing in (23) is 
treated throughout this paper as a known posi-
tive constant called the effective sample size. It 
would be neat if we were able to show that the 
standardized random variable 1Xt 2 m 2 /!nt is 
distributed as Student-t with k degrees of free-
dom, which would make the probability density 
function of xt be

(24)  	f 1xt Z nt, k 2 ~ a1 1
1xt 2 m 2 2

k nt
b

21k112/2
 ,

because then we might have some literary 
license to tell a simple story as if just before it 
is observed the random variable Xt is distributed 
as the Student-t statistic naturally associated 
with the outcome of “running a regression” on 
a sample of k 1 1 past realizations to estimate 
and predict xt. Having (24) hold for all peri-
ods t is heuristically like randomly losing one 
of k 1 1 fictitious observations during each 
period, which is replaced by a new observation 
at the period’s end—thus making the Student-t 
distribution always have k degrees of freedom. 
Intuitively, the effective sample size k might 
remain constant over time (instead of increas-
ing with the actual sample size, thereby forc-
ing the Student-t child distribution to converge 
to its parent normal) if the information gained 
from a new realization of xt in (24) is counter-
balanced by the information lost from a hidden 
shock to the latent variance. What comes next 
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well-defined conditional probability distributions 
as follows. Suppose that, at the end of period 
t 2 1 (or the beginning of period t), the situation 
is as if (in classical-frequentist terms) the hidden 
value of the precision were hit by an unobserved 
nonnegative multiplicative i.i.d. shock zt, mak-
ing the transition equation be

(26) 	  ut 5 zt ut21,

except when (26) conflicts with the a priori–
restricted (by the Bayesian prior) range of ut 
being u

¯
  # ut # ū, which always takes prece-

dence. Formally, this is implemented in the 
model by placing two inward-reflecting barri-
ers at u 5 u

¯
 and u 5 ū, which prevent exces-

sively extreme values of ut from ever emerging 
by trimming at both ends the distribution of 
zt 0ut21, thereby imposing the restriction zt Z ut21 
[ 3u

¯
/ut21, ū/ut214 . If the probability density func-

tion of ut21 at time t 2 1 is pt211ut21 Z xt11, … , xt212 
and the i.i.d. density of zt in (26) is p 1z2 , then 
from Bayesian updating the distribution at time 
t of ut Z xt11, … , xt is here

(27) 	 pt 1ut Z … , xt 2 ~ 

	     !ut exp a2
ut 1xt 2 m 2 2

2
b

	     3  pt211ut21 Z  … , xt212p a ut

ut21
b dut21

for u
¯
 # ut # ū, and is pt 1ut 2 5 0 elsewhere.

For the sake of analytical tractability—in order 
to be able to take advantage of the convenient 
closed-form properties of the noncontroversial 
family of normal-gamma-beta self-conjugate 
distributions—the i.i.d.-multiplicative-shock 
density function p 1z 2  needs to be a (trans-
formed) beta distribution (because the product 
of a gamma r.v. with a beta r.v. is a gamma r.v.). 
But then simply to have notation compatible 
with equation (23) requires the particular form

(28) 	  p 1z Z k 2 ~ c ak 2 1
k

bz d
k 2 3

2

	 3 c1 2 ak 2 1
k

bz d
21

2

ūū

u
¯
u
¯

gives a rigorous Bayesian-learning rationale for 
this intuitively appealing story about Student-t-
distributed growth rates having an unchanging 
number of degrees of freedom. The basic under-
lying analytical strategy here is simple: take 
advantage of the fact that gamma-normal con-
jugacy under multiplicative beta shocks to the 
gamma generates Student-t distributions, even 
with infinite data. However, the detailed archi-
tecture of the model that follows is intricate and 
may be challenging even for someone acquainted 
with Bayesian methods. A reader willing to take 
this Student-t story on faith may wish to skim 
over mathematical details in favor of a general 
impression of how it all hangs together.

Presuming the normal specification (18), for 
analytical convenience, the Bayesian literature 
tends to work with the random variable u ; 1/V, 
called the precision. Assume at any time t that, 
conditional on ut, the random-variable growth 
rate Xt is independently drawn from a normal 
distribution,

(25) 	  Xt 0ut , N 1m,1/ut 2 .
The stochastic growth process is conceptual-

ized as if having started at time t, where t is an 
arbitrarily large negative number. A joint distri-
bution for 5Xt11, … 6 is constructed by first condi-
tioning on some latent process 5ut11, … 6, which 
is never observed, and subsequently integrating 
out the u’s to get an unconditional distribution 
for the X process. At any time t the agent can 
then form a conditional distribution for 5Xt, … 6 
conditioned on realizations 5… , xt216, which is 
the reduced-form distribution that ultimately 
matters for the model.

Let u
¯
 and ū be a priori–imposed positive lower 

and upper bounds on u. Their values will later 
be explained, but for now u

¯
 . 0 is a given arbi-

trarily small number while ū , ` is a given arbi-
trarily large number. A condition like u

¯
 # ut # ū 

is needed for technical reasons to keep expected 
utility bounded, and this mathematical need to 
prevent unbounded utility in key asset-pricing 
formulas necessitates the intricacy of the analysis 
undertaken here. Given the prior density pt 1ut2 
(conceptualized as if imposed at initial time t, 
which is positive for u

¯
 # ut # ū and is dogmati-

cally set to zero elsewhere), the joint probability 
distribution of the whole sample of 5ut11, … , ut6 
taken together is generated recursively from  
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for 0 , z , k/ 1k 2 1 2 , where k is some extremely 
large number interpreted as a known constant 
parameter. From applying standard textbook 
formulas it can readily be confirmed that E 3z 4 
5 1 and V 3z 4 5 2/ 1k 1k 1 1 2 2 2 2 , so that k is 
an inverse measure of the variance V 3z 4 of the 
multiplicative shock (26), (28).10

While it is possible to construct the prior dis-
tribution pt 1ut2 around a quite general specifi-
cation of a priori information and to show that 
conclusions are robust to a much broader class 
of priors, it comes at some cost in required 
mathematical detail. Instead, this paper opts 
for maximum analytical transparency under the 
circumstances by working directly with a par-
ticularly simple and very intuitive parametric 
family of prior distributions created as follows. 
Let Y be a uniformly distributed random vari-
able normalized so that E 3Y 4 5 0 and V 3Y 4 5 1, 
meaning the probability density function of y is 
c 1y 2 5 1/!12 for 2!3 # y # 1!3 and c 1y 2 
5 0 elsewhere. For any given positive param-
eters I and n introduce the random variable ut 
defined by the equation

(29) 	  ln ut 5 y/I 1 ln 11/n 2 ,
so that ln ut has a uniform distribution of width 
!12 /I centered on ln 11/n 2 . It is important to 
note for future reference that E 3 ln ut4 5 ln 11/n 2 
and V 3 ln ut4 5 1/I2. From the Jacobian inverse 
formula, the probability density of ut corre-
sponding to the transformation (29) is

(30) 	 pt 1ut Z n, k, I2 5    c 1 1 ln ut 1 ln n 2I2 ,

10 Under the extreme case u
¯ 

5 0, standard limit theory 
of stochastic processes implies here for k , ` that ut S 0 
almost surely as t S ,̀ so that “eventually” an implausibly 
extreme equilibrium will emerge. However, this stochastic 
limit result is only pointwise convergent (as opposed to being 
uniformly convergent for all k , `), meaning the effect can 
be postponed indefinitely simply by choosing a sufficiently 
big value of k. (Arbitrarily large k is taken as the base case 
throughout the paper.) Results in Neil Shephard (1994) 
indicate how this problem might be eliminated altogether 
for any given k , ` (when u

¯ 
5 0) by a slight transforma-

tion that turns (26) into a random walk in ln ut—a strategy 
not followed here only because it needlessly complicates 
the notation and analysis without altering the fundamen-
tal insights or conclusions. As will later be elaborated, the 
strong prior-sensitive results of this paper are robust and 
they do not depend on specification (26)–(28), which has 
been chosen primarily for relative ease of manipulation.

I

ut

I

ut

which means that pt 1ut2 is a proper reference 
prior of the well-known form ~ 1/ut within 
its range 3u

¯
1n, I2 , ū 1n, I2 4 , where u

¯
1n, I2 K 

exp 12!3 /I2 /n and ū 1n, I2 K exp 11!3 /I2 /n. 
If a reader desires to understand on a rigor-
ous mathematical level where the results of 
this paper are coming from, then it is critical 
to see clearly that since specification (29), (30) 
dogmatically restricts the prior ut to have posi-
tive probability only within the closed interval 
3u
¯
1n, I2 , ū 1n, I2 4 , the same dogmatic restriction 

is inherited forever thereafter by all subsequent 
Bayesian-updated posteriors of ut 0 t . t.

For expositional simplicity and without sig-
nificant loss of generality, the paper pretends 
that there are infinite past data-observations, 
meaning here the limiting case t S 2` is 
imposed. Priors in standard usage are often 
taken as given at the beginning of the stochas-
tic process and agents don’t later get to change 
the prior, but this strict temporal order is more 
of a modeling convention than any kind of fun-
damental consistency requirement of Bayes’s 
theorem itself—which formally allows “prior” 
beliefs to be influenced by inspecting “later” 
data.11 Especially for large time series, the 
prior should not be envisioned literally as hav-
ing once upon a time been carved in stone and 
rigidly thereafter as being forever immutable. 
The most relevant use of a prior is for sensitivity 
analysis: to show the range of possible posterior-
predictive inferences or outcomes that the data 
can support. The prior is best conceptualized as 
an inherently flexible instrument representing 
nondata judgements whose primary purpose is 
to aid the decision maker by helping to answer 
what-if back-and-forth hypothetical questions 
of the form: if with my present state of mind 
I had (in predata times, here in eons long past) 
hypothesized thus and such parameter values 
for my prior distribution, then later, conditioned 
upon the realized data (here a huge sample of 
past growth rates), what are these hypothesized 
prior parameter values now saying about what 
I might expect from the future? In this spirit I 

11 In practice of course, this approach is routine because 
as Sherlock Holmes explained to Watson: “It is a capi-
tal mistake to theorize before one has data.” Otherwise, 
Bayesian updating is too mechanically predetermined 
to be a realistic description of how people actually make 
inferences.
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basic recursive property of the family of normal-
gamma-beta conjugate distributions (when I 5 
0) to the particular situation of this paper.

Theorem 0: Conditioned on infinite real-
ized past data, at time t the posterior-predictive 
probability density function pt 1ut Z n, k, I2 is con-
tinuous in n, k, I and as I S 0 has the following 
limiting distribution for all positive n and k:

(31) 	 pt 1ut Z n, k, I S 02 ~ u
k
221
t  expa2

knt

2
 utb,

when ut . 0 (and pt 1ut 2 5 0 elsewhere), where 
the state variable nt is defined by (23).

Proof:
See the Mathematical Appendix.

The gamma distribution (31) has mean 1/nt 
and variance 2/kn2

t , so that for I S 0 the value 
of k selected as a primitive in (28) ultimately 
ends up controlling the variability of the pos-
terior distribution of the precision. A nonevolv-
ing structure corresponds here to the special 
situation k S `, for which case a conventional 
application of Bayes’s rule allows the “true” pre-
cision to be learned exactly (for any given I . 
0) as the asymptotic-ergodic limit of the average 
from an infinite number of past observations, 
representing an idealization perhaps most easily 
imagined in continuous time.

After integrating out the precision from the 
conditional-normal distribution (25), the uncon-
ditional or marginal posterior-predictive prob-
ability density function of the future growth rate 
Xt is:

(32) 	 gt 1xt Z n, k, I2 ~ 

	    3
`

0
!u exp 12u 1xt 2 m 22/22pt 1u Z n, k, I2 du.

For any given positive k, as I S 0, straightfor-
ward brute-force integration of (32) for the situ-
ation (31) shows that gt 1xt Z n, k, I S 02 converges 
to the Student-t distribution (24) with k degrees 
of freedom. (Any Bayesian textbook shows 
that a normal with gamma precision becomes 
a Student-t). Speaking generically, with power 
utility the formula for “expected future mar-
ginal utility” or “expected stochastic discount 

is a quasi-parameter that, while formally fixed, 
is here actually intended to be varied to test the 
robustness of asset prices.

The quasi-constant parameter I 5 1/s 3 ln u2`4 
is called the information content of the prior 
because (when evaluated at n 5 nt) I quanti-
fies how informative (or precise) the currently 
selected prior distribution is in pinning down 
the subjective predata prior estimate of u2` as 
being “close” to the point estimate of what was 
subsequently observed in an unboundedly large 
sample of data. The role of I here is to guide 
the decision-making agent by prompting the 
thought-experimental sensitivity-analysis ques-
tion: after centering my hypothetical prior on 
the point estimate ût 5 1/nt from an infinite time 
series of past observations, how much does my 
posterior prediction of future growth rates now 
depend upon the imposed spread of this prior, 
which was hypothetically as-if-fixed infinitely 
long ago? An implicit subtext is that nobody 
has the foggiest notion in the world about what 
is actually an a priori–appropriate value of the 
information content I, which hypothetically 
reflects underlying nondata prior thoughts at 
some infinitely remote past time, so that, by the 
logic of REE, its value had better not matter in 
the slightest. A favorite default setting would 
be the case I S 0 representing the well-known 
textbook statistical situation of a “noninforma-
tive” (or “diffuse” or “vague”) prior for the pre-
cision u2` , which turns (30) into the popular 
parameterization-invariant improper reference 
prior p2` 1u2` Z n, k, I S 02 ~ 1/u2` for all u2` 
. 0 and is then the exact Bayesian counterpart 
to the standard classical normal-linear regres-
sion case (for which it will be shown that the 
distribution of Xt approaches the Student-t form 
(24) as I S 0). The extreme opposite situation 
of infinite informativeness I S ` corresponds 
to the perfect-knowledge a priori, no-learning-
required situation where X , N 1m, n 2 . Note that 
within this Bayesian-learning setup the value of 
ut is always obscured by hidden uncertainty, but 
n, k, and I are treated as if they are known posi-
tive parameters.

Conditioned on (here infinite) realized past 
data 5xt2j6 for j $ 1, let the posterior subjec-
tive probability density function of the precision 
under Bayesian iterative-updated learning at 
time t be pt 1ut Z n, k, I2 as defined by the stochastic 
system (25)–(30) (for t S 2 )̀. We next apply a 



VOL. 97 NO. 4 1115Weitzman: Subjective Expectations and Asset-Return Puzzles

factor” or “expected pricing kernel” reflects the 
mathematical properties of the moment gen-
erating function of X. The moment generating 
function (m.g.f.) of a Student-t distribution such 
as (24) is unboundedly large because the defin-
ing integral diverges to plus infinity as I S 0 
in (32), which causes the explosion of expected 
marginal utility, which creates the startling 
antipuzzle pattern (described at the end of 
Section I), by reversing dramatically what needs 
to be explained—only the same thing is happen-
ing here with infinite data and, when k is indefi-
nitely big, with super-slow-motion evolutionary 
change unfolding at an infinitesimal pace. A 
situation can therefore always be synthesized 
where the expected stochastic discount factor 
is made to become arbitrarily large simply by 
choosing for (32) a sufficiently small value of I, 
no matter what value of k , ` has been given. 
Note that as k S ` for any given I . 0, the 
moment generating function of the distribution 
gt 1xt Z n, k, I2 converges pointwise to the m.g.f. of 
N 1m, nt 2 , but this convergence is not uniform for 
all I . 0, which accounts for the counterintu-
itiveness of the central finding of this paper that 
innocuous changes in subjective prior beliefs 
can have more effect on asset prices than huge 
samples from a REE data-generating process. It 
is important (for appreciating this paper’s gen-
erality) to know that the unboundedness poten-
tial for Et 3Mt1 j 4 5 Et 3bjU r 1Ct1 j 2 /U r 1Ct 2 4 (with 
j $ 1) is generic by comprehending that utility 
isoelasticity per se is inessential to the argu-
ment, because as I S 0 the expected stochastic 
discount factor E 3M4 S 1` for any relatively 
risk-averse utility function—i.e., for any U 1C 2  
satisfying the minimal curvature requirement: 
infC.052CU0 1C 2 /U9 1C 2 6 . 0.

Expressed in Bayesian asset-pricing language, 
there is one especially crucial bare-minimum 
prerequisite for the frequentist law-of-large-
numbers justification behind calibration or 
inference to be valid. The critical Bayesian-
translated prerequisite behind the classical 
notion to “just let the data speak for themselves” 
is that as the number of observations increases 
without bound, asset-pricing expectation formu-
las involving marginal utility should become 
uniformly free of the prior, no matter how 
uninformative it may be. To have REE serve as 
a robust and trustworthy basis upon which to 
understand asset returns presupposes that the 

observed data should asymptotically dominate 
uniformly (in marginal utility space) any rea-
sonable representation of a not-very-informa-
tive prior distribution of beliefs—meaning here 
that the past data information should asymp-
totically override the influence of any positive 
value of I. Asymptotic dominance of the data 
over the prior often accompanies an unchang-
ing-structure environment, but such ergodicity 
does not emerge here, essentially because the 
stochastic process is evolutionary and learning 
never “catches up” with the moving target of the 
unobservable “true” value of u (except for the 
extreme case k 5 `). From its very first applica-
tion to a macroeconomic finance model, there-
fore, REE is a seriously misleading equilibrium 
concept for pricing assets because it is describ-
ing an unstable knife-edge balance in price 
distributions, having probability-of-existence 
measure zero, which unravels completely in 
the presence of even an infinitesimally small 
bit of evolutionary-structural uncertainty. For 
any given k , `, the informativeness param-
eter I chosen for the prior manifests itself as 
a smear of background uncertainty that refuses, 
even with the interdiction of infinite past data, to 
relinquish its potentially decisive hold on influ-
encing present expectations of future stochastic 
discount factors.

Because they can be driven to an arbitrary 
extent by tiny changes in the assumed informa-
tion content of subjectively imposed prior beliefs, 
even with infinite data, asset returns are highly 
reactive to the sentiment fluctuations and mood 
swings of fickle investors. Very slight shifts in 
I can make answers to basic asset-pricing ques-
tions come out very differently. Asset prices are 
in this sense always peculiarly vulnerable to sub-
jective judgements about the possibilities of bad 
future evolutionary mutations of history and can 
never rely solely on the frequency distribution of 
past events. It follows that classical asset-pricing 
regressions (and calibrations) trying to fit ex 
post empirical realizations of an Euler condition 
in REE may be fundamentally misspecified, and 
perhaps it becomes more understandable that 
such a stationary-frequency pure-recurrent-risk 
methodology often ends up effectively rejecting 
the Euler equation itself by producing pricing 
errors and paradoxes. The basic message of this 
paper is that an asset-pricing equilibrium must 
of necessity be based upon sensitivity to nondata 
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beliefs on asset prices is potentially so power-
ful that it could by itself quite easily generate 
the observed patterns—and therefore it seems 
highly unlikely that prior beliefs do not play a 
major role. For each such “suggestive example” 
the sharpest insight comes from having in mind 
the mental image of a double-limiting situation 
where k S ` and I S 0 simultaneously, so that 
the value of nt defined by (23) approaches some 
known fixed constant and the probability den-
sity function g 1x Z n, k S ,̀ I S 02 defined by 
equation (32) converges to the normal distribu-
tion x , N 1m, nt 2 . Operationally, this prototype 
double-limiting situation comes arbitrarily close 
to the standard familiar textbook-workhorse 
REE case of growth-rate risk appearing to be 
i.i.d. normal with known parameters—only the 
model never quite gets to such an i.i.d.-normal 
distribution because some very small (but nev-
ertheless consequential for asset pricing) new 
uncertainty evolves whenever k , `.

Such an extreme thought experiment forces 
most of the “action” to occur in the farthest 
reaches of the left tail of the distribution of x, and 
may be literally unbelievable in such a restric-
tive one-dimensional model while figuratively 
symbolizing an all-too-real situation of extreme 
sensitivity to higher-dimensional nonergodic 
low-utility states of the world that are visited 
infrequently in history and can be learned about 
only very gradually. By the time it takes to learn 
about one region of the higher-dimensional rare-
disaster space, the ever-evolving world has wan-
dered off into a different higher-dimensional 
region with different structural parameter values 
representing “new,” previously unforeseen rare 
low-utility possibilities that have subsequently 
evolved. The actual higher-dimensional extreme 
events, whose occurrence probabilities are con-
trolled by unknown tail-spread parameters, 
occur exceedingly infrequently. Other things 
being equal, the rarer is an event the more vague 
must be the inferred probability of its occur-
rence. In a truly ergodic world, agents would 
eventually learn everything there is to know 
about all regions of the higher-dimensional 
space representing rare tail-possibilities, but it 
would take a very long time—so long that even 
very slow random evolutionary changes would 
abort any nascent would-be-ergodic knowledge-
accumulation process. The net result is thicker 
tails in an evolutionary world than in the 

judgements for which a change in the informa-
tion content of subjective prior beliefs always has 
the potential to trump objective data-evidence, 
even with infinite data. This basic message pro-
vides the missing link in a unified Bayesian-
evolutionary approach capable of connecting 
parsimoniously the three asset-pricing puzzles. 
Whether such a theory is better labeled station-
ary or nonstationary in one or another particular 
state-space of underlying structure (or meta-
structure) is essentially beside the point here. 
The substantive issue is that no amount of data 
generated by this model could ever enable a cali-
brator or econometrician to disconnect the pos-
terior-predictive stochastic discount factor from 
the effects of subjective prior information in 
order to recover some hypothetical prior-belief-
free, purely data-determined value of Et 3Mt1 j 4 
5 Et 3bjU r 1Ct1 j 2 /U r 1Ct 2 4 (with j $ 1).

An outside observer cannot know directly 
what value of I describes an investor’s prior 
beliefs, as I can at best be inferred only indi-
rectly from the data (given k). At any time t 
the state variable for the stochastic process 
(25)–(28) is considered to be nt defined by (23). 
Throughout the rest of this paper we will “just 
let the data speak for themselves” in a subjec-
tive Bayesian (as opposed to objective frequen-
tist) sense by telling us in effect what is the 
revealed-prior information content I1n 2 that 
real-world investors must implicitly be using 
for their priors in state n 5 nt to replicate (in 
an artificially simulated data-generating process 
based upon this model) the empirical pattern of 
one or another “stylized fact” observed in real-
world data. Taking (32) as the representative 
agent’s posterior-predictive probability density 
function for future growth rates, the next three 
sections of the paper are devoted to exploring 
what are intended to be applications to an ana-
lytically tractable partial-equilibrium sugges-
tive example of the general theme that (contrary 
to REE) subjective prior beliefs inhabit such a 
large state-space in marginal utility that a data-
generating process based on the evolutionary 
model of this paper could readily be made to 
generate the asset-return patterns observed as 
stylized facts in the data. The examples are 
just “suggestive” because many other factors 
may also be involved in explaining the puzzles. 
The only position being taken here is that with 
evolutionary uncertainty the effect of prior 
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corresponding stationary-distribution world, but  
without the literal tail extremeness of the double-
limiting situation taken here as a prototype 
where g 1x Z n, k S ,̀ I S 02 S N 1m, nt 2 . If the 
kind of evolutionary scenario just described 
seems counterintuitive or difficult to envision, it 
is largely because there is no proper analogue in 
a REE world having a constant learnable “true” 
variance-like parameter controlling the tail fre-
quency of extreme rare events.

III.  The Hidden-Structure  
Equity Premium

Rewriting (5) in compressed notation that sup-
presses time subscripts, the price of the riskfree 
asset (normalized per unit of consumption) is 
Pf 1n, k, I2 5 bE 3exp 12gX2 4 . From (7), the price 
of one-period equity (normalized per unit of 
consumption) is P1e1n, k, I2 5 bE 3exp 1 11 2 g2 X2 4 . 
In both cases X is a random variable whose 
probability density function g 1x Z n, k, I2 is given 
by (32) for x 5 xt. The realized one-period  
equity premium in ratio form is then

(33)   	             5            exp 1x 2 ,

where

(34) 	            

	     5                            .

The following proposition contains two related 
types of results. First, for all k , ` (and n . 0) 
some value of I matches any given feasible one-
period asset-price ratio (34). Second, by choos-
ing carefully the function I1k, n 2 and then going 
to the limit k S ,̀ essentially any desired one-
period equity premium (33) can be replicated in 
a simulated data-generating process as if it came 
from the super-simple i.i.d.-normal REE model 
of Section II. (In all three theorems that follow, 
n plays the role of representing the current value 
of the state variable nt, while n r plays the role of 
representing future values of nt1 j for any j $ 1.)

Theorem 1: First part: let g . 1/2. Let q̄ be 
any given value of the equity premium needing 

R1e 1x|n, k, I2
Rf 1n, k, I2

R1e 1x|n, k, I2
Rf 1n, k, I2

Pf 1n, k, I2
P 1e 1n, k, I2
Pf 1n, k, I2
P 1e 1n, k, I2

Pf 1n, k, I2
P 1e 1n, k, I2
Pf 1n, k, I2
P 1e 1n, k, I2

e
`

2`
 exp 12gx 2g 1x Z n, k, I2 dx

e
`

2`
 exp 1 112g 2x 2g 1x Z n, k, I2 dx

e
`

2`
 exp 12gx 2g 1x Z n, k, I2 dx

e
`

2`
 exp 1 112g 2x 2g 1x Z n, k, I2 dx

to be “explained.” Then, for every k , ` and 
n r satisfying gn r , q̄, there exists a Iq 1k, n92 . 
0 such that

(35) 	                 

	     5 exp 1q̄ 2 m 2 12 n92 .
Second part: suppose n 5 nt , q̄/g. Then, 

for any positive integer j, as k S ,̀ the ran-
dom variable Xt1 j converges to the i.i.d. ran-
dom variable m 1 !n Z with Z , i.i.d.N 10, 12 , 
where the convergence is uniform for all I $ 
0 and of the same strength as the convergence 
of a Student-t child distribution to its normal 
parent when the number of effective observa-
tions k  approaches infinity. Furthermore, if 
I is chosen as Iq 1k, n92 for 0 , n r , q̄/g and 
simultaneously k S ,̀ then the limiting realized 
equity premium R1e

t1 j/Rf
t1 j in (33) converges in 

probability to the i.i.d. lognormal random vari-
able  exp 1q̄ 2 12 n 1 !n Z 2 .
Proof:

Using (25) and the formula for the expecta-
tion of a lognormal random variable, rewrite 
(34) (after cancelling redundant terms in m) as

(36) 

    5 exp 12m 2

	 3                                    .

As I S 0, the probability density function 
g 1x Z n, k, I2 defined by (32) approaches the 
Student-t distribution (24), whose moment gen-
erating function is unbounded. Consequently, as 
I S 0 both integrals in (34) and in (36) approach 
1 .̀ Therefore, from (36),

(37) 	                    

           5 exp 12m 2 lim
uS0

 
exp 1g2/2u 2

exp 1 11 2 g 2 2/2u 2  
.

Pf 1n9, k, Iq 1k, n92 2
P 1e 1n9, k, Iq 1k, n92 2
Pf 1n9, k, Iq 1k, n92 2
P 1e 1n9, k, Iq 1k, n92 2

Pf 1n9, k, I2
P 1e 1n9, k, I2
Pf 1n9, k, I2
P 1e 1n9, k, I2

e
`

2`
 exp 1g2/2u 2c 1u Z n9, k, I2 du

e
`

2`
 exp 1 11 2 g 22/2u 2c 1u Z n9, k, I2   du

e
`

2`
 exp 1g2/2u 2c 1u Z n9, k, I2 du

e
`

2`
 exp 1 11 2 g 22/2u 2c 1u Z n9, k, I2   du

lim
IS0
lim
IS0

Pf 1n9, k, I2
P 1e 1n9, k, I2
Pf 1n9, k, I2
P 1e 1n9, k, I2
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and I tiny, the central part of the Student-t-like 
distribution (32) is approximated extremely well 
by a normal curve with mean m and variance 
nt fitting the data throughout its middle range. 
However, for applications involving the implica-
tions of aversion to uncertain evolving structure 
(such as calculating the nonergodic equity pre-
mium), to ignore what is happening away from 
the center of the distribution has the potential 
to wreak havoc on subjective expectation-based 
asset-price calculations. With these applica-
tions in mind, such a normal distribution may 
be a terrible approximation indeed, because the 
more-spread-out dampened-t distribution (32) is 
capable of producing an explosion in asset pric-
ing formulas like (34), implying for the limit as 
I S 0 an unboundedly large equity premium.

The statistical fact that the moment-
generating function of a Student-t distribution 
is infinite has the important economic inter-
pretation that, at least hypothetically, evolving-
model-structure uncertainty has the potential in 
a normal-gamma-beta Bayesian-learning world 
to be a far more significant determinant of asset 
prices than the pure risk embodied in a station-
ary-distributed normal random growth variable 
with known mean and variance. In the limit, as 
I S 0 (for fixed k , `), the representative agent 
becomes explosively more averse to the “strong 
force” of statistical uncertainty about the future 
growth process, whose structural parameters 
are unknown and must be estimated, than is this 
agent averse to the “weak force” of the pure risk 
per se of being exposed to the same underlying 
stochastic growth process, except with known 
fixed structural parameters. The key to under-
standing the REE dilemma concerning how to 
interpret the “equity-premium puzzle” is that 
the “premium” is not on pure known-structure 
risk alone, but rather it is a combined premium 
on known-structure risk plus (potentially vastly 
more significant) recognition of, and adaptation 
to, unknown evolving structural uncertainty.

An explosion of the equity premium does not 
happen in the real world, of course, but a con-
tained potentially explosive outcome remains 
the mathematical driving force behind the 
scene, which imparts the statistical illusion of 
an enormous equity premium incompatible with 
the standard neoclassical paradigm. When peo-
ple are peering forward into the future they are 
also looking backward at their own prior, and 

Because

(38) 	 ln  
exp 1g2/2u 2

exp 1 11 2 g 2 2/2u 25  
g 2 1

2

u
,

plugging (38) into (37) for g . 1/2 gives

(39) 	                    5 lim
uS0

 
g 2 1

2

u
5 1 .̀

At the other extreme of I, from (34) it is 
apparent that as I S ,̀ then Pf 1n9, k, I2 /
P 1e 1n9, k, I2Sexp 1gn9 2 m 2 1/2 n92 , because 
the economy is then effectively in the con-
ventional lognormal case (18). The function 
Pf 1n9, k, I2 /P 1e 1n9, k, I2 defined by (34) is con-
tinuous in I. Since

(40) 	                  , exp 1 q̄  2 m 2 12 n92

	   ,

for q̄ . gn9 with g . 1/2, condition (35) follows 
and the first part of the theorem is proved.

Turning to the second part of the theorem, to 
save space this notation-intensive section of the 
proof is only sketched here. The fact that as k 
S ` the random variable Xt1 j converges uni-
formly (for all I near zero) to the i.i.d. random 
variable m 1 !n Z with Z , i.i.d. N 10, 12 , in the 
same mode as a Student-t distribution converges 
to a normal as k S ,̀ essentially comes from 
(24). As k S ,̀ from (23) n r ; nt1 j S n 5 nt, 
implying n r , q̄/g with probability S 1. If I 
is chosen to be Iq 1k, n92 , it then follows (from 
(33), (35), and X S m 1 !n Z ) that as k S ` 
the realized one-period (ratio) equity premium 
converges to the i.i.d.-lognormal random vari-
able exp 1q̄ 2 1/2 n 1 !n Z 2 .

The essence of the Bayesian statistical mech-
anism driving the first part of Theorem 1 can 
be intuited by examining what happens in the 
limiting case. As I S 0 for any fixed k , `, n 
. 0, the limit of (32) is a Student-t distribution 
of the form (24), the same as would emerge if a 
regression had been run on k 1 1 data points. 
With the presumed prototype case of k huge 

lim
IS0
lim
IS0

Pf 1n9, k, I2
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what they are seeing there is a spooky reflection 
of their own present insecurity in not being able 
to judge accurately the possibility of unforeseen 
bad evolutionary mutations of future history 
that might conceivably ruin equity investors by 
wiping out their stock market holdings at a time 
when their world has already taken a very bad 
turn. This eerie sensation of low-I diffuse back-
ground shadow-uncertainty may not be simple 
to articulate, yet it frightens investors away from 
taking a more aggressive stance in equities and 
scares them into a more apprehensive position of 
wanting to hold instead (on the margin) a port-
folio of some much safer stores of value, such as 
hard-currency cash, inventories of durable real 
goods, Swiss bank accounts, US or UK short-
maturity treasury bills, perhaps precious met-
als or rare gems, or maybe even stockpiles of 
storable foods or medicines—as a hedge against 
unforeseen bad future mutations of history. 
Consequently, in an evolutionary equilibrium 
where there is zero net demand for them, these 
relatively safe assets bear very low, even nega-
tive, real rates of return.

Such a Bayesian evolutionary-learning thick-
ened-tail explanation is not easily dismissed. 
The equity-premium puzzle is the quantitative 
paradox that the observed value of ln E 3R e 4 2 
r f is too big to be reconciled with the standard 
neoclassical stochastic growth paradigm hav-
ing familiar parameter values. But compared to 
what is the observed value of ln E 3R e 4 2 r f “too 
big”? Essentially, the answer given in the equity-
premium literature is: “compared to the right-
hand side of formula (19) when V̂  < 0.04 percent 
and 1 # g # 4.” Unfortunately for this logic, the 
point-calibrated right-hand side of (19) gives a 
terrible prediction for the observed realizations 
of Re/Rf because in the underlying calculation 
all assets have been priced by a REE formula 
that makes the future seem far less uncertain 
than it actually is. Those wishing to downplay 
this line of reasoning in favor of the REE status 
quo ante might be hard pressed to come up with 
their own Bayesian rationale for parameterizing 
tail behavior by calibrating moments of unob-
servable, subjectively distributed future growth 
rates with point estimates equal to past sample 
averages. In essence, the REE approach that pro-
duces the family of asset-pricing puzzles avoids 
the consequences (on marginal-utility-weighted 
asset-pricing stochastic discount factors) of 

overpowering sensitivity to low values of prior 
I only by effectively imposing from the very 
beginning the fragile pure-recurrent-risk case k 
5 ` of a normal distribution with known struc-
tural parameters.

Returning here to the Rietz-Barro REE for-
mulation described in the introduction, it gen-
erates more-spread-apart growth rates and 
simultaneously imposes a cutoff on the allowed 
extent of what might be called (in the terminol-
ogy of this paper) “thickened-tail damage to 
expected utility” by adding an extra discrete 
i.i.d. rare-disaster state having a known pro-
portional reduction of consumption occur with 
known probability. The Rietz-Barro REE mod-
eling approach is greatly appealing because of 
its simplicity and its tractability in connecting 
the model directly with data. Such a strategy 
seemingly circumvents the need to consider the 
tricky analytical and conceptual issues involved 
in specifying learning-inference mechanisms 
or understanding subjective-probability beliefs. 
But this also comes with the drawback of rely-
ing upon a method that does comparative statics 
on sensitivity to parameter values by assuming 
that agents always know—immediately and 
forever—which one of a continuum of possible 
REE steady-state distributions they are currently 
occupying, and also that transition dynamics are 
inessential for such comparative-steady-state 
calibration exercises. However, a serious attempt 
to specify how agents actually traverse an infin-
ity of possible REEs, or even how they know 
which REE they are now in, will involve learn-
ing and is likely to have strong tail-thickened 
transition-dynamics consequences similar to 
what emerges from the model of this paper—the 
full implications of which cannot be remotely 
appreciated by examining only the behavior of 
REE steady-state distributions.

With the Rietz-Barro REE formulation, it 
appears that speculative but not unreasonable 
parameter values may explain various puzzles. 
Although these calibration exercises seemingly 
relate the structural parameters of the model to 
a century or so of real-world data, such numeri-
cal specifications nevertheless rely ultimately 
upon subjective prior beliefs to a degree per-
haps not apparent at first glance. For example, 
Barro postulates a rare catastrophic contraction 
of consumption between 15 percent and 64 per-
cent with i.i.d. probability around 1.5 percent 
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of the rare disasters being taken implicitly as 
massed at a single known point. This paper is 
saying that the real issue is not so much to find 
comforting suggestive-example REE point cali-
brations of rare disasters that resolve the asset-
return puzzles as it is to grasp the more essential 
idea that the asset-return puzzles dissolve when 
the Bayesian thickened tail issue is confronted 
directly and rare-disaster Dirac-point-mass dis-
tributions are replaced by nondogmatic densi-
ties having everywhere-positive probabilities. 
In both approaches, subjective prior beliefs con-
trolling the allowable variability of growth rates 
are prominent features of the landscape—it is 
just more difficult to see them (and the critical 
role they are playing) in the REE map. Contrary 
to the prevailing impression from consumption-
based REE-inspired calculations, the actual big 
picture is that a realized-frequency application 
of expected utility theory by itself does not 
allow us to determine asset prices or returns 
to the (tail-specification independent, subjec-
tive-judgement free) degree that we might have 
preferred or that calibration exercises might 
seem to be suggesting. Explicitly modeling the 
underlying learning process—which in any case 
is required to justify REE in the first place—just 
makes this central issue (of thickened-tail pos-
terior expectations depending hypersensitively 
upon seemingly innocuous subjective prior 
information) so prominent that it simply cannot 
be avoided.

This “Bayesian peso problem” means that for 
asset pricing applications it is not at all unsci-
entific to adhere to the non-REE idea that no 
amount of past data can be nearly large enough 
to identify the relevant structural uncertainty 
concerning future economic growth. Moreover, 
as a corollary, REE calibrations ignoring this 
basic principle of learning about hidden evolv-
ing parameters may very easily end up badly 
underestimating the comparative utility-risk of 
a real-world gamble on the unknown structural 
potential for future economic growth, relative 
to a nearly-safe investment in a nearly-sure 
thing. Extreme sensitivity to subjective judg-
ments, even with unlimited data, could make 
some aspects of the conventional REE-inspired 
research program for explaining asset returns 
seem like overreaching. What might be appro-
priate is a scaling back to a less sharp research 
strategy than REE, which begins by recognizing 

per year, which might just as well be interpreted 
to imply an extraordinarily fuzzy equity pre-
mium—via highly nonlinear hypersensitivity to 
the contraction percentage that is subjectively 
being assumed—even when this shrinkage fac-
tor is arbitrarily limited to be in the range [264 
percent, 215 percent]. A subjectively imposed 
contraction possibility of 15 percent has little 
effect on the equity-premium puzzle but a sub-
jectively imposed contraction possibility of 64 
percent implies an equity premium antipuzzle. 
Given that the allowable range itself is uncer-
tain and, as then seems appropriate, a non-
dogmatic (i.e., positive) subjective probability 
density needs to be placed on its supports, we 
are essentially back in the continuously thick-
tailed unknown-structure almost-full-support 
world of Bayesian learning and inference that 
this paper is attempting to model—along with 
its inevitable sensitivity to fear-factor tail effects 
controlled by subjective beliefs about the a priori 
possibility of bad events.

At the end of the day, the Rietz-Barro REE 
formulation and the I-based subjective-prior 
evolutionary-learning formulation of this paper 
both make roughly the same qualitative predic-
tions (from the commonly shared mechanism 
of thickened tails), while neither model can 
explain quantitatively such asset-return puzzles 
as the observed equity premium without rely-
ing on marginal utility to become very high 
at increasingly disastrous consumption levels. 
Both modeling approaches depend hypersen-
sitively upon ad hoc truncation mechanisms to 
cut off the thickened-tail damage in low-utility 
states, which seems unavoidable for this kind of 
analysis of subjective expectations concerning 
rare disasters but is very hard to test directly. 
The Rietz-Barro REE-based approach “works” 
empirically in the sense that disaster-parameter 
values point-calibrated to plausible data seem to 
“explain” asset-return puzzles. This is perhaps 
comforting as a suggestive example which indi-
cates that a thickened-tail explanation is at least 
capable of passing a first-round plausibility test 
when one ignores the inherent diffuseness of the 
uncertainty about rare events. Such an atheoreti-
cal point-calibration approach, however, “does 
not work” at all in a sensitivity-analysis sense 
because its power to explain puzzle patterns is 
overwhelmingly fragile to hidden subjective 
judgements about the underlying distribution 
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that in a nonergodic world asset prices legiti-
mately depend upon subjective fuzziness about 
the future. In this subjectivity-dominated world, 
equity returns cannot be fully understood as a 
function of past data scaled by a randomness 
term, whose volatility essentially reflects the 
recurrent volatility of some objective-frequency-
based, statistically identifiable distress factor in 
the real economy.

Translated into classical-frequentist statisti-
cal language, the second part of Theorem 1 has 
the following rigorous interpretation. For given 
n 5 nt, pick any equity premium q̄ . gn, name 
any sample size n, and choose any desired level 
of statistical confidence relative to the suppos-
edly “true” data-generating process. Then there 
exists some sufficiently large k and accompany-
ing function I 5 Iq 1k, n92 (where for n r will be 
substituted future realizations of nt1 j, with 1 # 
j # n) such that the empirically observed fre-
quency distribution of the n realized values of 
the one-period equity premium simulation-gen-
erated by this hidden-structure model is guar-
anteed to differ only insignificantly (in terms 
of the desired level of statistical confidence) 
from the sampling distribution that would be 
simulation-generated in a sample of size n if 
the “true” equity premium r1e 2 r f were i.i.d. 
N 1q̄ 2 n/2, n 2 . (Note that the data-generating 
process being described here makes the first 
moment of the equity premium match statisti-
cally the empirical data, but it counterfactually 
makes the second moment be n 5 V̂ 3x 4 instead 
of n 5 V̂ 3re 4—more on this mismatched equity 
volatility later.)

What is being presented here is but one illus-
trative normal-gamma-beta example of the eco-
nomic consequences of an evolving-structure 
tail-thickening effect, but it seems to be very 
difficult to get around the moral of this story. For 
any finite value of k, however large, Bayesian 
distribution-spreading will cause the observed 
equity premium to be exceedingly sensitive to 
tiny, seemingly negligible changes in the subjec-
tively assumed information content of the prior 
distribution when, according to the key assump-
tion behind REE, such innocuous changes in 
the informativeness of prior beliefs should have 
been rendered irrelevant by the infinite data-
evidence. The dominant statistical-economic 
force behind the puzzles in this paper’s way of 
looking at things is that seemingly thin-tailed 

probability distributions (like the normal), 
which are actually only thin-tailed conditional 
on known structural parameters of the model, 
become tail-thickened (like the Student-t) after 
integrating out the parameter uncertainty. Intui
tively, no finite sample of effective size k , ` 
can accurately assess tail thickness, and there-
fore the attitudes of a risk-averse Bayesian agent 
toward investing in various risk-classes of assets 
may, at least in principle, be driven to an arbi-
trarily large extent by this unavoidable feature 
of Bayesian expectational uncertainty.

The important generic result in Michael 
Schwarz (1999) can be interpreted as saying that 
with a prior that is scale-invariant to measure-
ment units, the moment-generating function 
of the posterior distribution is infinite (i.e., the 
posterior distribution has a “thickened” tail) for 
essentially any reasonably specified probability 
density function. This occurs even when the 
random variable is being sampled an arbitrarily 
large number of times from a thin-tailed parent 
distribution whose moment-generating function 
is finite. Such a result means that there is a very 
broad sense in which, at least hypothetically-
potentially, people are significantly more afraid 
of not knowing what are the structural-param-
eter settings inside the black box, whose data-
generating process drives the pure-recurrent-risk 
part of stochastic growth rates, than are they 
averse to the pure recurrent risk itself. When 
investors are modeled as perceiving and acting 
upon these inevitably spread-apart subjective 
posterior-predictive distributions, then a fully 
rational equilibrium interpretation can weave a 
parsimonious unifying Bayesian strand through 
the entire family of asset-return puzzles, as the 
next three sections of the paper (when combined 
with this section) will indicate.

IV.  The Hidden-Structure Riskfree 
Interest Rate

We can use the same mathematical-statistical 
apparatus to calculate the hidden-evolving-
structure riskfree interest rate. (Actually, the 
last section of the paper and this section might 
well have been reversed sequentially because 
the riskfree rate is much easier to calculate and 
understand than the equity premium.) For all 
other parameter values fixed, let f 1n, k, I2 be 
the value of r f that comes out of formula (15) 
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a Student-t distribution in its tails and carries 
with it a potentially explosive moment generat-
ing function reflecting an intense aversion to un-
foreseen low-precision evolutionary-mutational 
future histories. The bottom line once more 
is that a “Bayesian peso problem” can cause 
incorrect REE-based inferences about expected 
future utility, which are essentially mimicking 
the observed historical frequency of past growth 
rates, to underestimate enormously just how rel-
atively much more attractive are relatively safer 
stores of value when compared with a real-world 
Bayesian gamble on the uncertain growth-
structure of an unknown future economy.

The relevant classical-frequentist statistical 
statement here about the relationship between 
the riskfree rate that is actually observed and the 
data-generating process parallels the equity pre-
mium version. Pick r f 5 r̄  f , r 1 gm 2 1/2 g2nt, 
name some number n, and choose any desired 
level of statistical strength, here representing 
measurement accuracy. Then there exists some 
(large) k and accompanying I 5 If 1k, n92 such 
that the frequency distribution of the n riskfree-
rate realizations simulation-generated by this 
hidden-structure model is guaranteed statisti-
cally to differ only within measurement error 
from what would be generated in a sample of 
size n if the “true” riskfree rate were the con-
stant value r̄  f.

V.  Equity Volatility in an  
As-if-REE Parable

It has already been amply demonstrated that 
the dynamic evolution of future asset prices and 
returns is wickedly hyperreactive to nondata 
subjective prior beliefs, even with infinite past 
data. Such a complicated family of nonergodic 
prior-hypersensitive trajectories simply cannot 
be distilled down into the neat form of a rigor-
ous story about REE steady-state distributions. 
Yet it is only human nature to yearn deeply to 
be able to capture the essential spirit of a bewil-
dering real-world actuality by reformulating it 
in the more reassuring language of some famil-
iar—but necessarily oversimplified—paradigm. 
This section of the paper is different from the 
others in its methodology and in what it is try-
ing to do. Take as given the almost-inevitable 
fact that, no matter how much we are warned 

when the probability density function of X is 
g 1x Z n, k, I2 defined by equation (32) for x 5 xt. 
Plugging the subjective posterior-predictive dis-
tribution (32) into the right-hand side of equa-
tion (15), the result is

(41) 	 f 1n, k, I2 

	     K r 2 ln 3
`

2`

exp 12gx 2g 1x Z n, k, I2 dx.

Theorem 2: Let r f 1n92 be any given continu-
ous function of n9 satisfying r f 1n92 , r 1 gm 2 
1/2 g2n9 for all n9 . 0. Then, for every k , ,̀ n9 
. 0, there exists a If 1k, n92 . 0 such that

(42) 	  r f 1n92 5 f 1n9, k, If 1k, n92 2 .
Additionally, the limiting realized riskfree rate 
can be made to converge to the same constant 
value r̄  f , r 1 gm 2 1/2 g2nt if, in every future 
state n r 5 nt1 j, the value of I is chosen to be 
If 1k, n92 for r f 1n92 5 r̄  f while simultaneously 
the limit k S ` is taken.

Proof:
As I S 0, the probability density func-

tion g 1x Z n, k, I2 defined by (32) approaches the 
Student-t distribution (24), whose moment gen-
erating function is unbounded. From (41), there-
fore, f 1n9, k, 02 5 2 .̀ At the opposite extreme, 
as I S ,̀ then f 1n9, k, ̀ 2 5 r 1 gm 2 1/2 g2n9, 
because the economy is then effectively in the 
conventional lognormal case (18). Thus,

(43) 	  f 1n9, k, 02 , r f , f 1n9, k, ̀ 2 ,
and, since f 1n9, k, I2 defined by (41) is continuous 
in I, the conclusion (42) follows. The conver-
gence to a constant value for all future periods 
follows from the fact that n r 5 nt1 j effectively 
becomes constant because nt1 j S nt as k S ,̀ 
so that the condition r f 1n92 5 r̄  f , r 1 gm 2 
1/2 g2n9 holds on the future trajectory with prob-
ability S 1 as k S .̀

The discussion of Theorem 2 so closely paral-
lels the discussion of Theorem 1 that it is largely 
omitted in the interest of space. The driving 
mechanism again is that the random variable 
of subjective future growth rates behaves like 



VOL. 97 NO. 4 1123Weitzman: Subjective Expectations and Asset-Return Puzzles

against doing it, we still can’t help but visualize 
the evolution of an intricate nonergodic stochas-
tic economic process in terms of an oversimpli-
fied fable about a REE steady-state distribution. 
The question being addressed here can easily be 
posed but is very tricky to answer: if everyone 
is going to think in terms of REE anyway, what 
then is the least distortionary REE-type par-
able for conceptualizing the complicated reality 
behind the “equity-volatility puzzle”?

For the dual endowment-production i.i.d.-
normal REE in Section II, equity returns should 
vibrate consistently with growth rates as pre-
scribed by equation (21). According to (21), for 
an economy-wide comprehensive wealth index 
embodying an implicit claim on the future 
aggregate consumption of the underlying real 
economy, all higher-order central moments of re 
and x should match subjectively and objectively. 
Alas, the empirical second moments of re and x 
are not even remotely matched in the time-series 
data because V̂ 3re 4 /V̂ 3x 4 < 75. With the evolu-
tionary version of the model, however, future 
X is subjectively perceived “as if” it is much  
more variable than it seems to be from past 
time series data in the sense that for g . 1 the 
“true” value of EU 5 E 3exp 1 11 2 g 2X2 / 11 2 g 2 4  
is “felt” to be much lower than what would 
appear to be indicated by simply identifying the 
variance of future as-if-normal X with its past 
sample average V̂ 3x 4 , which, when mechanically 
plugged into the familiar formula for the expec-
tation of a lognormally distributed random vari-
able, would give the welfare value exp 1 11 2 g 2m  
1 1/2 11 2 g 22V̂ 3x 4 2 / 11 2 g 2 W EU. The stan-
dard welfare calibration “doesn’t work” here 
because the agent “feels” much worse than if X 
, N 1m, V̂ 3x 4 2 . The issue being addressed now 
is whether another i.i.d.-normal specification 
having the same mean but greater variance, 
whose i.i.d.-normal variance is calibrated to be 
welfare-equivalent to the actual Student-t-like 
distribution of X defined by (32), can be made 
to “work better”—if not perfectly—in a quick-
and-dirty heuristic as-if-REE story.

The price-earnings ratio Pe/C of equity 
implicit in (9) depends on expectations over an 
infinite future horizon, and is extraordinarily 
hyperreactive to low values of I (presumably 
even more so than the one-period riskfree rate, 
perhaps identifiable with a “storage technology”). 
Such extreme hypersensitivity to the information 

content of subjective prior beliefs suggests very 
strongly (at least to me) that a fuller, more-
complicated model might be built around tran-
scription errors that cause tiny contaminations 
of I to become amplified into arbitrarily large 
animal-spirit-like hyperreactive equity-price 
fluctuations, thereby introducing into the model 
extra volatility that could be made to match the 
stylized-fact data pattern. However that may 
be, as a practical matter (whatever is the causal 
mechanism actually producing the large swings 
in stock-market prices), to proceed further here 
analytically requires some simplifying assump-
tion about the reduced form of equity returns. 
The textbook benchmark assumption (which is 
ubiquitous throughout expository finance eco-
nomics and which is consistent with the time-
series data for low-frequency periods of a year 
or more) is that continuously compounded equity 
returns are i.i.d.-normal. For the purposes of 
analytical tractability, this section of the paper 
merely follows the literature blindly by accept-
ing as a given point of departure the workhorse 
reduced-form assumption that equity returns are 
independently normally distributed with known 
mean and variance. The rest of the general-
equilibrium system in the as-if-REE parable 
will now be made to revolve around this center-
piece assumption of known-fixed-structure i.i.d.-
normal equity returns.

From the basic duality equivalence between 
production and endowment versions of the same 
core REE model, and from the critical “disci-
pline imposed by general equilibrium model-
ing,” if the primitive real-productivity-return re 
(5  ln A) in the AK-production version is known 
to be i.i.d.-normal, then so too must the derived 
real growth rate of consumption X (5 ln A 1 
5E 3X4 2 E 3 ln A4 6) be i.i.d.-normal, and with the 
identical variance. In this case, equation (21) 
holds with the arrow of causal reasoning going 
from the presumed-known value of s 3re 4 to the 
implied value of s 3X 4 15 s 3re 4 2 . Equation (13) 
seems to be suggesting that volatile wealth is 
“welfare equivalent” to volatile consumption. 
This section of the paper is trying to answer the 
question: between the two observed variability 
alternatives (ŝ 3re 4 < 17 percent standing in for 
the left-hand side of equation (21) and repre-
senting the past variability of comprehensive-
wealth returns, or ŝ 3x 4 < 2 percent standing 
in for the right-hand side and representing the 
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there might be some rationale for telling an as-
if-REE parable wherein the representative agent 
has a subjective normally distributed welfare 
equivalent belief, which is consistent with (45) 
and the equity-return data, “as if” the future 
growth rate is XN with known variance equal 
to the observed variance of returns on wealth. 
In this subjective interpretation (“as if” growth 
rates are i.i.d.-normal with known mean and 
variance), the welfare situation of the agent is 
represented by the relatively high variance of 
returns on equity-wealth, rather than by the rela-
tively low variance of realized past growth rates. 
None of this really “explains” why V̂ 3re 4 /V̂ 3x 4 < 
75 in the first place. But because here s 3rN 4 5 
s 3XN 4 by construction, at least with this artifi-
cially synthesized REE-like as-if-i.i.d.-normal 
growth parable, there is no longer a jarring mis-
match of variabilities wanting to be explained 
between equity-wealth returns and underlying 
welfare equivalent growth fundamentals.

Theorem 3: Let s 1n r 2  . 0 be any given 
continuous function of n r satisfying s 1n r 2  . 
!n r for all n r . 0. Let rN 1XN 1X2 2 and XN 1X2 be 
related by (45) where the distribution of x 5 xt 
at any time t is given by (32). Then for every k 
, `, n r . 0, there exists a Is 1k, n92 . 0 such 
that the following four calibration conditions 
are simultaneously matched:

(46) 	  E 3rN 1XN 1X 2 2 4   5 E 3r1e 1X 2 4,

(47) 	  s 3rN 1XN 1X 2 2 4   5 s 3XN 1X 2 4   5 s 1n r 2 ,

(48) 	  E 3XN 1X 2 4   5 E 3X 4   5 m,

(49) 	 4C . 0 : E 3U 1C exp 1XN 1X2 2 2 4 
	 5 E 3U 1C exp 1X2 2 4 .

Additionally, the limiting realized value of 
s 1n r 2  5 s 1nt1 j 2  can be made to converge to 
the same constant value s̄ . !nt if, in every 
future state n r 5 nt1 j, the value of I is chosen to 
be Is 1k, n92 for s 1n92 5 s̄ and simultaneously 
the limit k S ` is taken.

past variability of consumption growth), which 
empirical variability (wealth ŝ 3re 4 or consump-
tion ŝ 3x 4) better matches the agent’s true wel-
fare situation?

Waving aside the “rationality” of such beliefs, 
suppose for the sake of the thought-experimental 
quick-and-dirty heuristics here that (for some 
given E 3XN 4 and s 3XN 4) the random variable

(44) 	  XN 1X Z n, k, I2 , N 1E 3XN4 , s2 3XN4 2
represents a functional transformation of the 
random variable X into the normally distrib-
uted random variable XN 1X Z n, k, I2 embody-
ing an agent’s subjective probability belief that 
future growth rates are i.i.d.-normal with known 
parameters E 3XN4 and s 3XN4 . (It can be shown 
that such a transformation exists for some 
implicitly defined Jacobian-inverse monotonic 
function.) Let this agent also have a subjec-
tive probability belief in a stock-market payoff 
implicitly representing a unit claim on the log-
normally i.i.d. future aggregate consumption 
corresponding to (44). Such a payoff claim gives 
rise to the subjective probability belief of a (geo-
metrically measured) return on comprehensive 
economy-wide equity rN 1XN2 satisfying

(45) 	 rN 1XN 1X2 2 2 E 3rN4 5 XN 1X2 2 E 3XN4 ,
which is the normal counterpart here of (21). 
The operational question now is: how do we 
observe that (45) is untrue? It turns out that 
i.i.d. as-if-normal growth rates can yield the 
same expected return on equity as the formu-
lation in previous sections of the paper, so that 
E 3rN 4 5 E 3r1e 4 5 E 3re 4, which, provided also 
that s 3rN 4 5 ŝ 3re 4 , signifies here that observed 
equity data alone cannot refute the hypothesis x 
, i.i.d. N 1m, V̂ 3re 4 2 , given the standard assump-
tion that equity returns are known by the agents 
to be i.i.d. normal in the first place.

The following “calibration theorem” estab-
lishes the existence of a conceptually useful 
consequence of expected-utility indifference 
between XN and X. In the framework of this 
model, it turns out that forcing XN by construc-
tion to give the same expected utility as X is inti-
mately connected with the important implication 
for welfare calibration that s 3XN4 < ŝ 3re 4 . This 
third proposition of the paper can therefore be 
interpreted as providing at least a sense in which 
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Proof:
Define s 1I2 to be the implicit solution of the 

equation

(50) 	

    3 3
`

2`

 exp a11 2 g 2xN 2          b dxN

        5 3
`

2`

 exp 1 11 2 g 2x 2g 1x Z n9, k, I2 dx,

and note for this definition that (49) and (48) are 
satisfied by construction.

It can readily be shown that

(51) 	 r1e 1x 2   5 x 1 5r 2 ln E 3exp 1 11 2 g 2X2 4 6,
and, analogously,

(52) 	 rN 1xN2 5 xN 1 5r 2 ln E 3exp 1 11 2 g2XN2 4 6,
so that (46) then follows from (48), (50), (51), 
(52).

As I S ,̀ the probability density function 
g 1x Z n9, k, I2 goes to a normal distribution with 
variance n r, and consequently the integral on the 
right-hand side of equation (50) approaches (by 
the expected-lognormal formula) exp 1 11 2 g 2m 
1 1/2 11 2 g 22n92 , implying s 1` 2  5 !n r. As I 
S 0, the probability density function g 1x Z n9, k, I2 
defined by (32) approaches the Student-t distri-
bution (24), whose moment generating function 
is unbounded, implying the right-hand side of 
(50) is also unbounded, meaning s 10 2  5 `. 
Thus,

(53) 	  s 1` 2   , s 1n92 , s 10 2 ,
and, by continuity of the function s 1I2 , there 
must exist a Is 1k, n92 . 0, satisfying

(54) 	  s 1Is 2 5 s 1n92 ,
which, when combined with (45), proves (47). 
The convergence to a constant value of s 1n92 5 
s 1nt1 j 2  5 s̄ for all future periods t 1 j follows 
from the fact that n r 5 nt1 j effectively becomes 
constant over time as k S ,̀ so that the condi-
tion s 1n92 5 s̄ . !n r holds on the future trajec-
tory with probability S 1 as k S .̀

1

!2p s 1I2
1

!2p s 1I2
1xN 2 m 22

2 s 1I22
1xN 2 m 22

2 s 1I22

The force behind Theorem 3 is the same 
“strong force” driving the previous two theo-
rems: intense aversion to the structural param-
eter uncertainty embodied in tail-thickened 
t-distributed subjective future growth rates. 
Compared with the Student-t distribution X , 
g 1x Z n, k, I S  0 2 , a representative agent with  
g . 1 will always prefer, for any finite s, the nor-
mal distribution X , N 1m, s22 . Theorem 3 results 
when the limiting explosiveness of the moment 
generating function of g 1x Z n, k, I S  0 2  with 
a completely uninformative prior is contained 
by the substitution of g 1x Z n, k, I 5 Is 2 with a 
somewhat informative prior Is 1k, n 2 . 0.

Theorem 3 is effectively saying that if you 
must pressure-contain the wickedly complicated 
dynamic behavior of prior-sensitive asset prices 
under nonergodic evolutionary uncertainty to 
fit within the analytically tractable mold of a  
prior-free stationary-frequency as-if-i.i.d.-normal 
fable, then the REE-like calibration s 3XN4 5 ŝ3r e 4 
tells the better welfare parable than the REE-
like calibration s 3XN4 5 ŝ3x 4 . To an outsider 
classical-frequentist econometrician thinking in 
terms of an i.i.d.-normal REE specification, how-
ever, agent-investors inside this as-if-REE econ-
omy will appear from way-too-low actual equity 
prices for g < 2 to be irrationally incapable of 
internalizing what the data are clearly saying 
about ŝ3x 4 < 2 percent. Instead, with k S ,̀ the 
low actual equity prices portray these agents as if 
clinging stubbornly to an irrational mental image 
of a stochastic discount factor that would be con-
sistent only with their future welfare depending 
upon the realization of some hypothetical much-
more-variable normally distributed growth rate 
having known counterfactual standard deviation 
s 3XN4 5 ŝ3re 4 < 17 percent. But when k S ̀  and 
for, say, one hundred independent observations, 
the frequentist hypothesis that the observed 
sample value of ŝ3xN4 5 2 percent could have 
been generated by (agents having in their heads) 
a “true” (welfare equivalent) value of s 3XN 4 5 
17 percent is classically rejected by a chi-square 
test at the 99.99 percent confidence level!

VI.  An Empirical “Test” of the  
As-if-REE Parable

Viewing the three theorems of the paper 
through the lens of the welfare-equivalent as-if-
i.i.d.-normal-growth fable of Theorem 3 delivers 
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for simplicity (by suppressing dependence on 
k and n) as q 1I2 , f 1I2 , s 1I2—all three being 
functions of the one free parameter I. Purely 
for conceptual-notational convenience, pretend 
that U 5 6.625 3 10234 represents some tiny-
tiny quantum threshold of observability, below 
which prior information I in the unboundedly 
distant past is considered to be “effectively zero” 
and the relationship among Iq, If , Is becomes 
so blurred that the situation can be treated as 
if the same I1k, n 2 function works for all three 
theorems (because the priors induced by Iq, If , 
Is and I1k, n 2 are each operationally indistin-
guishable from a zero-information completely 
uninformative diffuse prior). Under such circum-
stances of extremely low prior informativeness 
(combined with extremely slow evolution and 
an extremely large dataset), we will not be able 
to observe or calculate the underlying primitive 
values of Iq, If , Is directly (although we know 
in theory that there exists some astronomically 
large number k, for which simultaneously 0 , 
Iq , U, 0 , If  , U, 0 , Is , U, because k S ` 
implies that Iq S 0, If  S 0, Is S 0). However, 
and more usefully here, an indirect calibration 
experiment can be performed by setting any one 
of the stylized-fact constants q Z 0 , Iq , U, f Z 0 
, If  , U, s Z 0 , Is , U equal to its observed 
value in Table 1 and then backing out the implied 
values of the other two remaining stylized-fact 
constants by inverting the two analytically trac-
table as-if-i.i.d.-lognormal-consumption equa-
tions of the closed form (19) and (20). In this 
way of looking at things, k is considered to be 
so large that the joint condition 0 , Iq , U, 0 , 
If  , U, 0 , Is , U implies simultaneously that 
Iq, If , Is are each effectively zero, and there-
fore operationally interchangeable—meaning 
that in some (admittedly restricted) sense this 
calibration exercise is “testing” the hypothesis 
that a sufficiently uninformative prior can here 
“explain” the stylized facts.

Defining Is Z 0 , Is , U to be an implicit 
solution of

	 Is 5 s211s 3re 4 2 5 s21117 percent 2 ,
we then have, from (19) with V 3X4 K s2 1Is 2 ,
	 ln E 3Re 4 2 r f 5 gs2 1Is 2 5 q Z 0 , Is , U  

	 5 5.8 percent,

the package of a neat closed-form relationship 
(accompanying the well-known formula for the 
expectation of a lognormal random variable) 
among the equity premium q, the riskfree rate 
f, and the variability-in-common s of the eco-
nomic-financial system (where s in the as-if 
story represents the mutually shared standard 
deviation of equity returns and welfare equiva-
lent growth rates). With this notation, (19) and 
(20) become q 5 gs2 and f 5 r 1 gm 2 1

2g
2s2. 

The three theorems themselves are only partial 
equilibrium statements in the sense that each one 
matches just one side of the whole asset-returns-
puzzle triangle. The I1k, n 2 function that works 
for any one theorem will not work for the other 
two—essentially because a system with just one 
degree of freedom (the parameter I in (30)) 
cannot match three observables simultaneously 
(which would require at least a three-parameter 
prior specification). Suppose, however (what at 
this stage is merely an unproved, but not implau-
sible, conjecture), that a more general higher-
dimensional parameterization can be made to 
deliver a situation “as if” the same vector-valued 
I1k, n 2 function works for all three theorems. 
The following experimental question then arises 
naturally: does the simple i.i.d.-lognormal rela-
tionship among q, f, and s of the closed form 
(19), (20) hold empirically, conditional upon the 
same I1k, n 2 function working for all three theo-
rems? The answer from the experiment is “yes,” 
which conveys at least some intuitive feel for the 
degree to which this heuristic way of looking at 
things represents a relatively coherent theoreti-
cal-empirical mental construct.

The proposed exercise will test whether the 
welfare-equivalent interpretation of Theorem 
3 that the future growth rate X is subjectively 
distributed as if it were the i.i.d.-normal random 
variable XN with mean E 3XN 4 5 x̂ and standard 
deviation s 5 s 3XN 4 5 ŝ 3re 4 renders, along with 
(45), an internally consistent as-if-REE story 
connecting the actual stylized facts of our eco-
nomic world. In Table 1, parameter settings have 
been selected that should represent numbers well 
within the “comfort zone” for most economists. 
The data in Table 1 are intended to be an overall 
approximation of stylized facts that have been 
observed for many countries over long time 
periods. All rates are per-annum and real.

With any given k , `, n . 0, the model 
explains endogenously three values, written here  
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to be compared with q Z 0 , Iq , U  5 6 percent. 
From (20) with V 3X4 K s2 1Is 2 ,
	 r f 5 r 1 gE 3X4 2 12 g

2 s2 1Is 2 5 f Z 0 , Is , U  

	 5 0.2 percent,

to be compared with f Z 0 , If , U  5 1 percent.
Defining Iq Z 0 , Iq , U to be the implicit 

solution of

	 Iq 5 q211 ln E 3Re 4 2 rf
 2 5 q2116 percent 2 ,

we then have, from (20) and (19),

	 r f 5 r 1 gE 3X4 2 gq 1Iq 2 /2 5 f Z 0 , Iq , U  

	 5 0 percent,

to be compared with f  Z 0 , If , U  5 1 percent. 
From (19) with V 3X4 K s2 3re 4 ,
	 s 3re 4 5 !q 1   q 2 /g 5 s Z 0 , Iq , U  

	 5 17 percent,

to be compared with s Z 0 , Is , U  5 17 percent.
Defining If Z 0 , If , U to be an implicit solu-

tion of

	 If 5 f 211rf
 2 5 f 2111 percent 2 ,

we then have, from (20) and (19),

	 ln E 3Re 4 2 r f 5 2 3r 1 gE 3X4 2 f 1If 2 4 /g 

	 5 q Z 0 , If , U  5 5 percent,

to be compared with q Z 0 , Iq , U  5 6 percent.

II

 

From (20) with V 3X4 K s2 3re 4 ,
	 s 3re 4   5 !2 3r 1 gE 3X 4 2 f 1   f 2 4/g 

	 5 s Z 0 , If , U  5 16 percent,

to be compared with s Z 0 , Is , U  5 17 percent.
As a kind of very rough test for the internal 

consistency and raw fit of the as-if-i.i.d.-normal-
growth story (hypothetically conditional on a 
higher-dimensional version of the same I1k, n 2 
function simultaneously working for all three 
theorems), the empirical outcomes of these 
Bayesian calibration experiments fit nearly 
exactly. Thus, at the very minimum, there is 
some story here about why everything coheres 
almost perfectly in the bare-bones canonical 
i.i.d.-normal REE model when, by just the sim-
plest substitution, a welfare-equivalent growth 
variability s 5 s 3XN 4 5 ŝ 3re 4 equal to the 
observed standard deviation of equity-wealth 
returns replaces the observed real-growth vari-
ability ŝ 3x 4 . Otherwise, such a near-perfect fit 
must be interpreted as just happening to be a 
miraculous coincidence in the data.

Continuing on with the above as-if-i.i.d.-nor-
mal-growth scenario, consider next a purely 
hypothetical thought experiment in which the 
magic trick is performed of eliminating all 
future variability s of consumption. With i.i.d. 
lognormality of 5Ct11/Ct6, the imaginary deter-
ministic path having the same mean consump-
tion as the stochastic trajectory (14) is

(55) 	  Ct11 5 exp am 2
1
2

s2b  Ct .

Using formula (55), it can readily be shown (fol-
lowing Lucas (2003)) that the welfare gain from 

II

Table 1—Some Macroeconomic “Stylized Facts”

Assumed numbers	 Value

Mean arithmetic return on equity	 ln E 3Re 4 < 7 percent
Geometric standard deviation of return on equity	 s 3re 4 < 17 percent
Riskfree interest rate	 r f < 1 percent
Implied equity premium	 ln E 3Re 4 2 r f < 6 percent
Mean growth rate of per capita consumption	 E 3x 4 < 2 percent
Standard deviation of growth rate of per-capita consumption	 s 3x 4 < 2 percent
Rate of pure time preference	 r < 2 percent
Coefficient of relative risk aversion	 g < 2
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expectations” that is like REE—i.e., the known 
stationary-distribution form of “rational expec-
tations” that in routine practice is standardly 
applied to macrofinance and other areas of 
economics.

In principle, consumption-based representa-
tive agent models provide a complete answer to 
all macroeconomic asset pricing questions and 
give a unified theory integrating the economics 
of finance with the real economy. In practice, 
consumption-based representative agent mod-
els with standard preferences and a traditional 
degree of relative risk aversion work poorly when 
the variance of the growth of future consump-
tion is point-calibrated to the sample variance 
of its past values. The theme of this paper is that 
with nonergodic structural uncertainty there is 
some theoretical justification for treating the 
subjective variability of the future growth rate 
as if it were equivalent in welfare to the observed 
variability of a comprehensive economy-wide 
index of equity-wealth returns. For this as-if-
REE high-growth-variability interpretation, the 
simple standard model of asset pricing may have 
the potential to be a decent shortcut conceptual-
ization of what is actually happening in a com-
plicated ever-changing world where unforeseen 
bad events—scary, disruptive, and without prec-
edent—may evolve at any future time.

Mathematical Appendix

Proof of Theorem 0:
In the interest of space, this proof of 

Theorem 0 is extremely compressed. Further 
details are available upon request from the 
author, but a reader with some background in 
Bayesian statistical decision theory should be 
able to follow at least the main strands of the 
argument. (To be realistic, the details of a rigor-
ous proof of Theorem 0 may not be accessible to 
a reader who has not been exposed to Bayesian 
theory at all, and therefore such a person per-
haps must accept more or less on faith that the 
result can be proved.) For an interested reader’s 
convenience, I tie the notation as closely as pos-
sible to the treatment of a similar (but by no 
means identical) classical-frequentist state-space 
local-level formulation of a stochastic volatility 
process in Shephard (1994). I use Shephard’s 
notation except where it conflicts with the nota-
tion of this paper, which then takes precedence. 

a mean-preserving shrinkage that compresses 
the stochastic trajectory Ct11 5 Ct exp 1Xt 2 into 
the deterministic path (55) is equivalent to a 
change in each period’s consumption of

(56) 	  DCt 5 aexp a1
2

  gs2b 2 1b Ct  .

When g < 2 and the historical value of s 5 
ŝ 3x 4 < 2 percent is used in (56), then DCt  /Ct 
< 0.04 percent, which is the kind of magnitude 
sometimes used to argue that the cost of growth 
variability is so counterintuitively low that even 
a complete removal of all conceivable macroeco-
nomic uncertainty would be worth almost noth-
ing. Such a number, however, captures only the 
“weak force” of known-fixed-structure growth-
rate risk. The welfare equivalent of a magic-
trick elimination of all uncertainty about future 
growth, including the “strong force” of struc-
tural uncertainty, is better assessed by using the 
subjective value s 5 s 3XN 4 5 ŝ 3re 4 < 17 per-
cent in formula (56), for which case DCt  /Ct < 
3 percent. Accounted in this welfare-equivalent 
metric of shrunken deterministic consumption, 
therefore, structural uncertainty concerning 
the evolving future growth process turns out 
empirically to be more significant by two orders 
of magnitude than known fixed-structure pure 
growth-rate risk.

VII.  Conclusion

The hidden-structure evolutionary model of 
this paper is predicting that a classical story 
based upon a misspecified ex post realized-
frequency interpretation of the Euler equa-
tion will generate data appearing to show an 
equity-premium puzzle, a riskfree-rate puzzle, 
and an equity-volatility puzzle, whose magni-
tudes of discrepancy are close numerically to 
what is observed empirically. This paper argues 
that such numerical discrepancies are puzzles, 
however, only when seen through a REE lens. 
From a nonergodic Bayesian learning perspec-
tive, the puzzling numbers being observed in 
the data are telling a rational story about the 
implicit revealed-prior subjective distribution 
of background structural-parameter uncertainty 
accompanying the evolutionary growth process 
actually generating such data. While the story is 
“rational,” it is not about any form of “rational 
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Theorem 0 is proved as a corollary to the fol-
lowing two lemmas.

Consider the stochastic process

(57) 	  Xt Z ut , N 1m, 1/ut 2 ,

(58) 	  ut11 5 
ut ht11

v
 ,

with ht11 , i.i.d. Beta 1vat, 11 2 v 2at 2 , where 
v   :  0 , v , 1 is a constant controlling the 
speed at which the precision moves. Define k 5 
1/ 11 2 v 2 . Then with z 5 vh, equations (26) 
and (58) are identical, and when at 5 k/2, the 
corresponding density of z is (28).

Lemma 4: Suppose the unconditional distri-
bution of ut is Gamma 1at, bt 2 and suppose the 
joint distribution of Xt11, ut11 conditional on ut is 
determined by (57) (led by one period) and (58), 
with ht11 Z 5ut, xt116 , Beta 1vat, 11 2 v 2at 2 . 
Then the distribution of 5ut11 Z xt116 is Gamma 
1at11, bt11 2  with

(59) 	  at11 5 vat 1 1/2,

(60) 	  bt11 5 vbt 1 1xt 2 m 22/2.

Proof:
Application of Shephard (1994).

From Lemma 4, the normal-gamma-beta 
specification is a conjugate form that is recur-
sive by induction. Therefore, if the prior of u 
is a gamma density, then the posterior always 
is. The following lemma describes the limiting 
posterior conditional on infinite past data.

Lemma 5: Suppose the prior distribution 
of u2` is Gamma 1a r  ,  b r 2  for any nonnegative 
1a r  ,  b r 2 . Then, in the limit, conditional on infi-
nite observations,

(61) 	  at 5 k/2,

(62) 	  bt 5 knt  /2,

where nt is defined by (23).

Proof:
Make use of the conjugacy properties induced 

by Lemma 4, and confirm that in the limit (59) 
and (60) become (61) and (62) irrespective of 
initial 1a r  ,  b r 2 .

Equation (31) of Theorem 0 then follows as 
a corollary of Lemma 5 with a r 5 b r 5 I 5 
0. The continuity in I of pt 1ut Z n, k, I2 is math-
ematically quite complicated, and so is better 
treated here as an intuitively plausible technical 
regularity assumption.
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