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10. Trees vs. Fish, or Discrete vs. Continuous
Harvesting

Martin L. Weitzman

1. KARL-GUSTAF LOFGREN AND THE HARVESTING OF
RENEWABLE NATURAL RESOURCES

Karl-Gustaf Lofgren has been one of the c_aarly pionc?ers in devellct)ll])mg f)ir;;l
applying dynamic economic tools (in particular, optimal contro ei\ri/ ) ©
the analysis of how best to develop and harvesF natural resources. o
same time, he has maintained a special interest in forestry economics. ' e
topic of this chapter may thus be relevant for a celebration of his sixtie
bmlhgzz.e a suspicion that Kalle was, at a young age, attracted to the 1nte;irg
face between human beings and the natural environment that suioun
and nurtures them. That is to say, I am guessing that early on he was
relatively most interested in the part of en.v1ronment’a1 economlcdst a\::g
to do with the combining of economics with ‘natur‘e , as oppgs; 'O,h ; b):;
the combining of economics with pollution—-he’alth issues, whic m1gmics
called ‘Environmental Protection Agency-type . environmental ecolxz(:11 le t(;
What then could be a more ‘natural’ (no pun intended) field for
specialize in than the harvesting of renewable natural resources. ots of
This is not to say that Kalle has not dong outstandmgg work flr;u olife,
other areas of economics. It is just that I thm}( that the ‘love of his e
has been in this area of how to balance human interests and the interes
nan\’i’rl?en Kalle first entered the field, bagk ip the 19695, the ecrlg)lrllor;l;c.
harvesting of natural resources was still in its murky mfancy: ‘i o
sic ideas were ‘out there’, for sure, but they were far from (tj)elr:g ;3 very
nicely—packaged reduced form we now know and teach to studen ;;)( e
model seemed special, and disconnected fr.om. every other. It W.as‘t v
what were the basic unifying underlying principles. Were they just sp
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particularly-exotic examples of capital theory, or was there some deeper
connection with the rest of dynamic economics?

I'think it is fair to say that Pontryagin’s maximum principle, which was
just then beginning to be applied to economics, and which Kalle latched
on to very early, forced us economists to ‘see’ the capital-theoretic unity
of all such natural resource problems. First of all, Just using the maximum
principle made us put all dynamic problems into a canonical form that was
almost automatically a useful way of seeing the underlying unity. More
importantly, the maximum principle itself is a set of duality conditions
with a natural, and very important, economic interpretation centered on the
co-state variables, which are competitive-like prices to us. The maximum
principle has a direct economic interpretation as describing a dynamic
competitive equilibrium, while other forms of dynamic optimality condi-
tions (for example, Euler-type equations) essentially must be transformed
into a maximum principle-like form to give them economic meaning.

Thus, by using the maximum principle, we economists were led to a
rich understanding of the connections between the optimal regulation of a
renewable fishery resource, the optimal extraction of an exhaustible min-
eral resource, and the neoclassical theory of optimal growth - to name just
three famous models that thereby became interconnected. However, one fa-
mous and very important model that we natural-resource economists knew
and loved remained somehow outside this maximum principle-contained
orbit of (almost) all other dynamic resource allocation models. This was
the famous Faustmann-Wicksell model of optimal forestry rotation. I
would think that Kalle is perhaps the world’s expert on the history of eco-
nomic thought surrounding the Faustmann-Wicksell model (or models),
since he has been especially concerned with the theory (and practice) of
forestry economics throughout his career and has written on the intellectual
history of just such a class of aging and growth models.

Forestry models seemed somehow ‘different’ from the other models
of natural resource harvesting or extraction. The forestry models focus
sharply on the age structure of a cohort, and are essentially discrete. The
‘harvesting” of a tree or forest is the discrete act of cutting it down and
bringing it to market. The ‘renewal’ of a tree or forest is the discrete
act of planting seedlings. This seems very different from the continuous
harvesting and renewal that characterizes, say, the classical model of the
fishery.

There is an air of intellectual disappointment in not being able to com-
bine fishery and forestry models under some unifying umbrella. At least
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this was the case for me. Kalle, I believe, may have also been intellectually
puzzled about this seeming dichotomy between the continual harvesting
and renewal of the fishery and the discontinuous harvesting and renewal
of the forest. Why should these two core models of the economics of
renewable resources seem so different in structure?

What I want to show in this chapter is that there exists a way to
connect the two models by turning the classical Faustmann—Wicksell
forestry model into an equivalent continuous-harvesting version. We will
then be able to see how the maximum principle applied to this equiva-
lent continuous-harvesting version of the forestry rotation problem is just
another form of the famous Faustmann-Wicksell first-order conditions
telling us when to cut down the tree.

In the next section, we recapitulate the problem of the sole owner of
the fishery as an optimal control problem that is linear in net investment,
and hence supports a most rapid approach bang-bang solution. Then, the
more interesting and novel part, which follows in the third section, shows
that the classical forestry problem is also an optimal control problem
that is linear in net investment, and hence this problem also supports a
most rapid approach bang-bang solution. In this way, we show that the
mathematical structure of these two famous problems of the harvesting of
natural resources is essentially isomorphic. Both are linear in investment
optimal control problems whose solution is the most rapid approach to
their respective stationary states.

2. OPTIMAL MANAGEMENT OF THE FISHERY

The classical dynamic economic problem of optimal fishery management
is typically presented as if seen through the eyes of a fictitious ‘sole owner’,
who may be conceptualized as being either a private firm or a government
regulatory agency. The sole owner is assumed to be seeking a harvesting
policy that maximizes net present discounted profits.

The problem here is which form to choose for the harvesting flow rate
{h(H)} 10

maximize /oon(x)h(t)e’p’ de €))
0

subject to
x(1) = F(x(t)) = h(1), (2)
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and _
h < h(r) <h, ©)
and with the given initial condition
x(0) = xq. 4)

For this model, x(¢) represents the stock of ﬁsll at time ¢, and h(?) is
the harvest flow taken at time ¢. In condition (3), /4 is some more or less
arbitrary upper bound on harvesting; the lower bound  is perhaps some-
what less arbitrary because s = 0, at least, has a natural interpretation.
(The upper and lower bounds are needed to make sense of the problem
for technical reasons, so in a way it does not matter what they are.) The
function F(x) represents the net biological increase of the fish population,
in the absence of any harvesting. The function m (x) gives the net profits
per fish caught when the stock of fish is x.

In the fisheries literature it is standard to take as unit profit the
difference between price and catch cost, so that

7(x) = P —c(x), 5

where P represents the exogenously-given price of fish and c(x) represents
per unit ‘locating and harvesting cost’ as a function of fish density x. A
reader typically sees the form of the right-hand side of (5), rather than our
more concise notation 7 (x).

To reduce the problem of the sole owner of the fishery to a canon-
ical form, it is useful to reformulate it in terms of net investment. In this
situation, net investment is the natural biological increment of the fish pop-
ulation minus the amount of fish being caught or harvested. (It is perhaps
not yet entirely clear why we might want to take a problem out of the
form in which it naturally suggests itself and recast it in the form of a
prototype economic problem where net investment is considered to be the
control variable — the reason is that this canonical form always permits the
solution to be understood quickly, easily, and in the most economically
intuitive way.)

With the change of variables K = x and / = F(x) — h, and specifying
m(K) = F(K) —h and M(K) = F(K)— h, the optimal fishery harvesting
problem is a prototype-economic problem with gain function

GK,I)=n(K)[F(K)~1I]. 6)
The stationary rate of return on capital is defined to be
Gi(K,0)
= —, 7
R(K) ~G,(K.0) (7
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It can readily be shown that net investment should be positive if
R(K) > p, negative if R(K) < p, and zero if R(K) = p. Once the
stationary rate of return on capital has been calculated, the qualitative di-
rection of investment (positive, negative, or zero) 1s determined. The only
remaining question is how fast to go to a stationary state. For the linear
in investment renewable resource problems under investigation here, the
answer is ‘as fast as possible’.

From applying formulae (7) to (6) (and remembering to evaluate at / =
0), the stationary rate of return on capital for this model of optimal fishery
management is
n'(K)

. €]
7(K)

Equation (8) can be interpreted as saying that the stationary rate of
return R(K) consists of two terms representing the two economic effects
that come from having a higher amount of fish capital here. The first effect,
F'(K), represents the increment of new fish population that comes with a
higher parent fish stock. The second term on the right-hand side of (8)
represents the additional profit from the lower unit harvesting cost that
attends a larger fish population, since it is easier to locate and catch fish
when there are more of them.

Let K represent the stationary solution where

R(K) = F'(K) + F(K)

R(K) = p. )

As is well known for a problem linear in net investment, the optimal
policy is a most rapid approach to the stationary solution K.

This description of the management of the fishery is familiar, because
we are (by now) accustomed to seeing the classical fishery model as a
linear in investment optimal control problem with a bang-bang solution.
What is less familiar, and less obvious, is that the optimal forest rotation
problem is also a linear in investment optimal control problem with a bang-
bang solution. Hence, the mathematical structure of the two renewable
resource harvesting problems is essentially the same.

3. OPTIMAL TREE HARVESTING AS A CONTROL
PROBLEM

Another model whose gain function is linear in investment is the optimal
tree harvesting model. This problem can be posed and solved directly,
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without invoking optimal control theory — so a formulation in terms of
optimal control theory serves more to enrich an intuitive understanding of
the maximum principle (as capital theory) than to serve as a mechanism
for actually solving a problem that could not otherwise be solved.

Suppose that, when it is cut down and brought to market, a tree of age
T yields a net value given by the function

F(T). (10)
Frequently in the forestry literature, F(T) is specified in the form
F(Ty=Pf(T)—c+v, (11)

where P is the given market price of wood and f(T) is (in forestry ter-
minology) the ‘merchantable volume’ of wood yielded by a tree of age
T. The parameter c represents the total economic cost of cutting down
the tree, processing it for sale, and bringing the wood to market. (In the
forestry literature, the expression Pf(T) — c is called the net stumpage
value of the tree.) The parameter v stands for the opportunity value (in
lumbering terminology the land expectation or site value) of the land being
freed for its best subsequent economic use after the tree is felled — which
‘best subsequent economic use’ might well be the replanting of a sapling
to start the tree-growing cycle anew.

The famous Wicksell problem of capital theory is to choose the time of
cutting T to

maximize e *7 F(T). (12)

It might seem perverse to force such a direct statement as (12) into the
seemingly more arcane form of an optimal control problem. However, an
optimal control formulation will serve to reinforce economic intuition and
to highlight quite dramatically the underlying unity of all time and capital
problems. In particular, it will allow us to see sharply the relationship
between the two most famous models of renewable resources — optimal
harvesting of the fishery and optimal harvesting of the forest.

In the optimal control version of the Wicksell problem, the ‘capital
stock’ is the age of the tree (more precisely, it is the tree of that age). The
corresponding ‘investment’ here means allowing the tree to grow older by
a year.

Suppose we fancifully imagined that ‘the forest’ could be continuously
harvested in the spirit of ‘the fishery’. For this fishery-like forest, the
‘harvest-flow” generalization of the Wicksell problem in capital theory is
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to control the ‘investment rate’ {1 (¢)} to

maximize / PF(K)1 ~I1()]e™ dt (13)
0
subject to
K@) =1(p), (14)
and
0<I@®) <1, (15)

and with the given initial condition
K(©0) =0. (16)

The original Wicksell formulation in effect limits the investment / €3]
to be a step function, which takes on value one when the tree is growing
(or until it is cut), and takes on value zero thereafter. As we will see, the
above ‘harvest-flow” generalization yields the Wicksell solution anyway.
For now it suffices to note that the Wicksell problem is a special case of
(13)-(16); therefore, if the optimal solution of (13)—(16) is a step function,
as will turn out to be the case, then it must also represent the solution of
the more restricted Wicksell problem (12).

It is useful to pose the Wicksell model formally as an optimal con-
trol model of capital accumulation because it highlights the underlying
connection between growth and aging processes where capital is time
(aging of wine is another well-known example) and the bulk of all other
capital-theoretic models that can be formulated as simple optimal control
problems where capital is nor time. Posing the problem this way allows
us to see rigorously what we otherwise can only intuit in models of tree
cutting, wine aging, animal raising, and many other problems of growth
and aging ~ the important idea that in many situations age is capital, but
that otherwise the same general principles of capital theory apply.

So, for this Wicksell problem, let us identify ‘capital’ with ‘age’.
Applying definition (12) to the gain function

G(K,I) = pF(K)[1 - 1], amn

which appears in (13), the stationary rate of return on capital in the optimal
tree cutting problem is
F'(K)
R(K) = ——. 18
(K) FK) (18)
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From the general consideration that the gain function of the Wicksell
problem is linear in investment, we know that the optimal solution involves
a most rapid approach to the stationary state K where R(IQ' ) = p, which
by (19) is equivalent to the condition

F&) _
F(K)
Let us see what is happening specifically in this particular opti-

mal control problem by formally applying the maximum principle. The
Hamiltonian here is

19

H=pF(K)[1-1]+pl. (20)

where p stands for the marginal value of letting a tree of age K grow for
one more year.

The next step is to calculate the maximum value of the Hamiltonian
over all feasible values of /. This part is easy because we are maximizing a
linear function over the unit interval, With /( D) denoting the Hamiltonian-
maximizing value of investment as a function of its price, from (20) there
are three possibilities:

p>pF(K) = I(p)=1= H(K, p) = p, (21)
or
p<pF(K)= I(p)=0= H(K, p) = F(K), (22)
or, the case of an indeterminate solution where | (p) can be any feasible
value,

p=pF(K)=0<I(p)<1= H(K, p) = F(K). (23)

It is now not difficult to guess at the form of an optimal policy. Just
from glancing at (21), (22), and (23), an intuitive chain of reasoning is that

7

A

K<K= 5 >p=p>pF(K)=I(p)=1= H(K,p) =p,
(24)
in which case we have _
oH
oy 0, 25)

and therefore the dual differential equation condition here becomes

p(t) = pp(@), (26)
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with the ‘terminal condition’
p(K) = pF(K). (27

Combining (26) with (27), yields

p(t) = pF(K) e?t5), (28)

By the optimality of K for the problem (12), we must then have for
K (t) < K that ‘

F(K(®) e < F(K)e k. (29)
Combining (29) with (28), we obtain the basic result that for K () < K

p(t) > pF(K(1)). (30)

From (30) we can say that the signal not to cut down the tree is that
the shadow indirect value of allowing the tree to grow exceeds the direct
value of harvesting it. (It is never optimal to allow a tree to grow to an
age T where F'(T)/F(T) < p, but if we acquired such an ‘economically
overripe tree’ having T > K’ from a nonprofit-maximizing owner, the
signal to cut it down immediately would be that the shadow indirect value
of allowing the tree to grow is less than the direct value of harvesting it.)

We now make some important observations about the role of the hith-
erto obscure parameter v, which stands for the opportunity value of the
land being freed for its best subsequent economic use after the tree is
felled. Suppose that, instead of being concerned about the fate of an indi-
vidual tree, which is the Wicksell problem, we are interested in the infinite
horizon optimal rotation of a one-tree lot (or, more realistically, of a wood-
lot consisting of a stand of cohort trees). In this case, the opportunity value
v of the land being freed for its best subsequent economic use after the
tree is felled is the present discounted value of a infinite-horizon rotation
policy beginning with the replanting of a sapling to start the tree-growing
cycle anew.

Suppose the parameter ¢ now includes all costs of replanting (as well
as logging, processing, and transportation costs). The competitive market
value v of the land (in forestry terminology the land expectation or the
site value), right after it has been cleared and a new sapling has just been
replanted, satisfies in competitive equilibrium the recursive equation

v=ePK[Pf(R)~c—v], 3D
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which is equivalent, after rearrangement, to

L _ e KIPFR) — <]

1 ok (32)
— e~

If K is the optimal age to cut down a tree given the competitive market
value v of the site, then it seems plausible that K is chosen to maximize
present site value, so that

e PK[Pf(K) = c]

V = maximumg gy , (33)
which yields the first-order condition
Pf(K)y  p (34)

Pf(K)—c 1—erk’

Equation (34) is the famous Faustmann formula for the optimal rotation
length K.

Rewriting the optimization problem (33) in the equivalent form of an
infinite geometric series, we have

v = maximumy Y e /K[Pf(K) -], (35)

j=1

In effect, Equation (35) defines the Faustmann model of optimal forest
rotation, whose solution satisfies the Faustman formula (34).

In the forestry literature, the Faustmann model and the Faustmann for-
mula are typically contrasted with the Wicksell model and the Wicksell
formula. In a serious sense, this is a false dichotomy, as Kalle has known
and emphasized in his writings. The Wicksell model ostensibly takes the
site value as exogenously given, often as zero, although there is evidence
that Wicksell himself understood that it would be fallacious to perform
comparative statics when treating v as if it were constant. The Faust-
mann and Wicksell models are identical when proper account is taken of
the market site value of forest land. We showed above that the Wicksell
model with competitive market site value yields the Faustmann solution;
the converse can readily be shown by substituting the Faustman formula
for site value into the Wicksell formulation and confirming directly that
the Wicksell-optimal cutting time satisfying condition (19) is exactly the
Faustmann-optimal cutting time satisfying condition (34). The two models
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represent two equivalent ways of looking at optimal forestry management.
The Wicksell approach emphasizes how to think about harvesting an in-
dividual tree. The Faustmann approach emphasizes how to think about
the harvesting cycle of an ongoing stand of trees. So long as the op-
portunity value of the wood-lot is properly assessed and included, both
models yield identical conclusions. It is essentially a case of looking at
two sides of a single problem that more properly should be called ‘the’
Faustmann—Wicksell model of forestry management.

4. SUMMARY AND CONCLUSION

What has been shown here is that the Faustmann-Wicksell model of op-
timal tree harvesting has essentially the same form as the standard model
of the sole owner of the fishery. Both can be seen as optimal control mod-
els linear in net investment, and both have the same form of most rapid
approach to their respective stationary solution.

Of course the Faustmann-Wicksell model can be developed without
optimal control theory. But applying the maximum principle to the forestry
rotation problem allows us to see it as a harvesting problem of the same
generic form as the standard fishery model. Thus, the two most famous
models in the economics of renewable resources — the fishery and the
forest — are essentially two forms of the same underlying optimal con-
trol problem. The same capital theoretic principle of most rapid approach
to the stationary state underlies their solution, since both models can be
expressed as optimal control problems with an objective function that is
linear in net investment.
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