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Abstract

This paper examines the effects of uncertainty on the relationship between compre-
hensive NNP and sustainable-equivalent consumption. It is shown that the classical
identity continues to hold, in expectations, when the discount factor is a stochastic
diffusion process taking the form of geometric Brownian motion with drift. Such a result
may be useful as a point of departure for classifying the effects that various forms of
uncertainty have on the welfare significance of national product. ( 1998 Elsevier Science
B.V. All rights reserved.
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1. Introduction

This paper attempts to connect the concept of ‘sustainable-equivalent con-
sumption’ with the concept of ‘comprehensive NNP’ when there is uncertainty
in the relevant interest rate. Since notions of ‘sustainable-equivalent consump-
tion’ and of ‘comprehensive NNP’ are both open to varying interpretations, it is
appropriate for the paper to begin with a verbal description of the intended
conceptual entity for each idea.
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In this paper, I will define ‘sustainable-equivalent consumption’ to be the
hypothetical annuity-equivalent constant level of consumption that would yield
the same welfare as the economy actually has the potential to deliver — when
discounted at the intertemporal tradeoff weights implicit in the economy’s own
competitive equilibrium rate of return on consumption.

‘Comprehensive NNP’ is typically intended to be a generalized national
accounting concept that corrects for possible environmental deterioration by
subtracting off from GNP not just depreciation of capital, but also appropriate-
ly calculated depletion of environmental assets. In this paper, ‘comprehensive
NNP’ is interpreted to stand conceptually for the most inclusive possible
measure of net national product, including net investments not only in tradi-
tional ‘produced means of production’ like equipment and structures, but also in
pools of natural resources, non-standard produced means of production like
human capital, and environmental assets more generally — all evaluated at their
respective competitive or efficiency prices.

Now it turns out that there is a rather remarkable theoretical relationship
between the two seemingly distinct concepts of ‘comprehensive NNP’ and
‘sustainable-equivalent consumption’ defined above. In the classical case of
a time-autonomous technology with constant real interest rate, ‘comprehensive
NNP’ exactly equals ‘sustainable-equivalent consumption’.1 Thus, a theoret-
ically appealing measure of actual present economic activity exactly forecasts
a theoretically appealing index of potential future power to consume.

While this sharp result can be very useful as a conceptual guide for indicating
how to think about the welfare relationship between future consumption possi-
bilities and current national income accounting measures, its practical applica-
bility is somewhat limited by the classical assumptions of the model. A recent
line of research has shown what happens when some of these limiting restric-
tions are loosened.2 Thus far, however, the literature has ignored the connection
between ‘sustainable-equivalent consumption’ and ‘comprehensive NNP’ in the
presence of uncertainty, with the single exception of an article by Aronsson and
Löfgren (1995). They show that the Hamilton—Jacobi—Bellman equation implies
a mathematical relationship between the present value of expected future utility
and the generalized stochastic Hamiltonian. While this relationship yields some
broad insights, in the general case it is too complicated to serve as a basis for
connecting an actual measurable index of future consumption with an actual
measurable index of present income.

The present paper attempts to take a first step in the direction of deriving
a simple expression for dealing with a ‘base-case’ form of uncertainty by having

1This is a rephrasing of the basic result in Weitzman (1976).
2See, for example, Kemp and Long (1982), Löfgren (1992), Aronsson and Löfgren (1993), Asheim

(1996), Hartwick (1995), Nordhaus (1995), Weitzman (1997), Weitzman and Löfgren (1997) and
Asheim (1996).
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the discount factor evolve as a stochastic diffusion process. The central result of
the paper is that a probabilistic version of the classical identity continues to hold
when the discount factor follows a geometric random walk with drift. For this
special form of a stochastic process, current ‘comprehensive NNP’ at any time
always equals ‘expected sustainable-equivalent consumption’ over the uncertain
future, viewed from that time forward.

Taken by itself, the main result might appear as a narrow, somewhat technical
statement. But the statement has some significance. It provides some handle on
an important issue concerning how to think about the influence of uncertainty
upon the standard welfare interpretation of NNP. Unfortunately, even the
simplest model of optimal growth under uncertainty introduces new complexi-
ties and technical details, which I have endeavored to keep at a minimum here
by choosing the most basic formulation that yet makes the major points.3

The paper concludes by using the main result as a natural reference point for
classifying how the connection between ‘comprehensive NNP’ and ‘expected
sustainable-equivalent consumption’ is influenced by other, more general, speci-
fications of uncertainty about the future.

2. The model

To force the problem into an analytically tractable mold, the usual abstrac-
tions are made.

First of all, it is assumed that, in effect, there is just one composite consump-
tion good. It might be calculated as an index number with given price weights,
or as a multiple of some fixed basket of goods, or, most generally, as a cardinal-
utility-like aggregator function. The important thing is that the consumption
level in period t can always be registered unambiguously by the single number
C(t). Thus, the paper effectively assumes away all of the problems that might be
associated with constructing an ‘ideal measure’ of the standard of living akin to
a utility function.4 Purging consumption of the index number problem will
allow us to focus more sharply on the general meaning and significance of
combining it with net investment when there is uncertainty in the interest rate.

The notion of ‘capital’ used here is meant to be quite a bit more general than
the traditional produced means of production like equipment and structures.
Most immediately, pools of natural resources are considered to be capital.

3Even so, the paper requires some previous exposure to stochastic diffusion processes in optimal
growth models, since otherwise this article would, of necessity, become a book.

4Nordhaus (1995), in his section entitled ‘What is Consumption?’, contains a relevant discussion
of the basic issues involved. See also the appropriate part of the report on how to calculate the cost of
living by the ‘Boskin Commission’ contained in Boskin et al. (1996).
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Human capital should also be included, to the extent we know how to measure
it. Under a very broad interpretation, environmental assets generally might be
treated as a form of capital.5

Suppose that altogether there are n capital goods, including stocks of natural
resources. The stock of capital of type j (14j4n) in existence at time t is
denoted K

j
(t), and its corresponding net investment flow is I

j
(t)"KQ

j
(t). The

n-vector K"MK
j
N denotes all capital stocks, while I"MI

j
N stands for the

corresponding n-vector of net investments. Note that the net investment flow of
a non-renewable natural capital like proved oil reserves would be negative if the
overall extraction rate exceeds the discovery and development of new fields.
Generally speaking, investment in environmental capital should be viewed as
negative whenever the underlying asset is being depleted more rapidly than it is
being replaced.

The relationship between C, K, and I is presumed given by

C"U (K; I ) , (1)

where U (K; I ) is a strictly-concave twice-continuously-differentiable function
defined over all K and I, with

LU
LK

j

'0 ∀j (2)

and

LU

LI
j

(0 ∀j . (3)

The ‘reduced-form’ expression (1) is employed here, along with very strong
smoothness and strict-convexity assumptions, in order to guarantee interior
solutions — which makes the corresponding duality theory much simpler. In
effect, the function U(K; I ) is defined over all K and I — implicitly restricting the
domain to disallow negative arguments by the contrivance of having the
corresponding value of Eq. (1) approach (rapidly) to minus infinity.

Let A(t) be the relevant discount factor applicable to time t. More specifically,
!AQ (t)/A(t) is the instantaneous own rate of return at time t on the numeraire
consumption good C(t) — meaning it represents how much extra consumption
could be enjoyed next period by abstaining from one unit of consumption this
period.

Discount-factor uncertainty is introduced as follows. Suppose that A(t)
evolves as a continuous-time stochastic diffusion process6 of the standard

5Mäler (1991) includes a discussion of some of the relevant issues here.
6See, for example, Dixit and Pindyck (1994) and the further references cited there. The present

paper assumes some basic familiarity with continuous-time stochastic diffusion processes.
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Itô form:

dA"a(K, A) dt#b(K, A) dZ , (4)

where dZ is the increment of a Wiener process, while the instantaneous drift rate
a(K, A) and the instantaneous variance rate b(K, A) are known functions of the
state variables K and A.

The model-building ‘workhorse’ of deterministic exponential discounting at
a constant rate can now be seen as a ‘base case’ of Eq. (4) where a(K, A)"!rA
and b(K, A)"0, with r being a positive constant representing the exogenously
given own rate of return to consumption. At the end of the day, the only
analytically tractable formulation that can be fully analyzed in this paper will be
an extension of the deterministic ‘workhorse’ specification to cover the case of
multiplicative uncertainty with a constant geometric variance: a(K, A)"!rA,
b(K, A)"pA, where the variance parameter p is any non-negative constant.
However, at this stage of the exposition it is conceptually advantageous, for
several reasons, to frame the theoretical structure around the Itô-process foun-
dation represented by the more general form of Eq. (4).

Let P
j
stand for the price of investment good j relative to a normalized price of

one for the single consumption good. Let P be the corresponding n-vector of all
normalized investment-good prices.

At any time t, the state of the economy is described by K(t), A(t).
Let E

t
[ ) ] stand for the future-looking expectation operator defined over the

stochastic diffusion process (4) from time t forward, given all relevant informa-
tion available at that time.

Wherever it is otherwise clear from the context, my symbolic notation will
drop explicit dependence on time for ease of exposition.

A dynamic stochastic competitive equilibrium in this model is a set of functions
C*(K, A), I*(K, A), P*(K, A), defined over all K, A, and a trajectory of state
variables K(t), A(t) realized for all times t50, which are simultaneous solutions
of the following system:

C*(K, A)"U(K; I*(K, A)), (5)

KQ
j
"I*

j
(K, A) ∀j, (6)

P*
j
(K, A)"

LU

LI
j

(K; I*(K, A)) ∀j, (7)

dA"a(K, A) dt#b(K, A) dZ, (8)

E[PQ *
j
(K, A)]#P*

j
(K, A)

E[AQ ]
A

"!

LU

LK
j

(K; I*(K, A)) ∀j, (9)

lim
t?=

E
t
[A P*

j
K*

j
]"0 ∀j, (10)
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and which satisfy the initial conditions

K(0)"K
0
, given (11)

and

A(0)"A
0
, given. (12)

Temporarily setting aside issues of existence and uniqueness, it should be
fairly clear that the equation system (5)—(12) represents a relatively straightfor-
ward extension of the standard dynamic competitive equilibrium conditions
from deterministic capital theory to a situation where the discount factor A(t) is
an Itô process of the form given by Eq. (4). Because the presence of uncertainty
necessitates that expectations be taken over all possible realizations of the
white-noise random variable dZ, and because the actually realized trajectories
of the state variables cannot be known in advance, it is required to define
a stochastic equilibrium in terms of C*( ) ), I*( ) ), P*( ) ) expressed as contingent
functions of the state variables K and A.7

A stochastic equilibrium is, essentially, an equilibrium in commonly shared
‘rational’ expectations over an infinite horizon. Enormous informational re-
quirements are thereby implied. (In effect, the situation is ‘as if ’ infinitely-long-
lived agents possess infinitely long price lists.) This formulation is used not so
much because it is literally believable, as because no better alternative descrip-
tion is available.

Eqs. (5) and (6) are self-evident consistency conditions. Eq. (7) just states that
at all times the perfectly competitive prices of investment goods are exactly equal
to the corresponding marginal rates of transformation.

The condition given by Eq. (8) represents the equation of motion for the
underlying continuous-time stochastic diffusion process that ultimately drives
all of the uncertainty in the system.

Recalling that, at time t, P*
j
(K(t), A(t)) is the relative price of investment good j,

while !AQ (t)/A(t) is the instantaneous own rate of return on the numeraire
consumption good, Eq. (9) then represents the appropriate rational-expecta-
tions stochastic version of the basic intertemporal efficiency condition of a per-
fectly competitive capital market. If Eq. (9) did not hold in some rational-
expectations equilibrium configuration of the economy, then a trader could
expect, on average, to make positive pure profits by reallocating capital stocks,

7Some of this is explained in Stokey and Lucas (1989), which, while it does not explicitly cover
continuous-time stochastic diffusion processes, contains a very useful descriptive overview and
a rigorous treatment of the nature and properties of a dynamic stochastic competitive equilibrium in
the analogous discrete-time case.
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thereby changing the initial configuration and proving that the economy could
not have been in a competitive equilibrium in the first place.8

Eq. (10) is the standard infinite-horizon transversality condition in expecta-
tions. If Eq. (10) failed to hold, the expected present discounted value of some
capital stocks would not go to zero in the limit and a trader could expect, on
average, to make increased profits by reallocating more efficiently such capital
stocks over time and across sectors.

Eqs. (11) and (12) are merely initial consistency conditions.
Given that a dynamic stochastic competitive equilibrium exists, the value of

‘Comprehensive NNP’ (at time zero) is then defined to be

½*,C*(K(0), A(0))#P*(K(0), A(0)) ) I*(K(0), A(0)) . (13)

Having defined rigorously the concept of ‘Comprehensive NNP’ in this
model, we turn now to the companion task of defining rigorously the concept of
‘expected sustainable-equivalent consumption’.

3. Expected sustainable equivalence

For any given investment-plan function Ih(K, A), let Ch(t) stand, heuristically,
for a feasible value of consumption at time t with its (implicit) corresponding
probability of being realized. Intuitively, ‘expected sustainable-equivalent
consumption’ is intended to be the largest possible hypothetically constant
‘sustainable-equivalent’ consumption level CM that satisfies the condition

E C P
=

0

CM A(t) dtD"E C P
=

0

Ch(t) A(t) dtD . (14)

Somewhat more formally, consider Ih to be an n-vector of control variables
whose relevant control set H is the collection of all possible piecewise-continu-
ous functions of the form MIh(K, A)N. Then ‘expected sustainable-equivalent
consumption’, denoted CM *, is defined to be the maximized value — over all
possible piecewise-continuous functional specifications (i.e., all h belonging to
the class H) — of the following stochastic optimal control problem:

CM *,maximum of
h|H

(15)

8Note here that the no-arbitrage equilibrium conditions (7) and (9) are written in ‘marginal’ form,
while the interpretation justifying them is implicitly told in the form of a finite-difference variational
inequality. These two approaches are essentially equivalent here, due to the assumed smoothly
strong concavity of Eq. (1), which forces an interior solution.
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E C P
=

0

U(K; Ih) A(t) dtD
E C P

=

0

A(t) dtD
(16)

subject to

KQ "Ih , (17)

dA"a(K, A) dt#b(K, A) dZ (18)

and satisfying the initial conditions

K(0)"K
0
, given , (19)

A(0)"A
0
, given . (20)

For now it is simply assumed that the stochastic optimal control problem
given by Eqs. (15)—(20) is well defined, so that a solution value CM * exists.

The primary purpose of the paper is to analyze the relationship between CM *
and ½*. To accomplish this aim, a considerably more analytically tractable
structure must be imposed on the coefficients of the stochastic diffusion equa-
tion (18).

4. The main result

Having formally defined ‘comprehensive NNP’ to be the variable ½* satisfy-
ing Eq. (13) with the auxiliary conditions (5)—(12), and having formally defined
‘expected sustainable-equivalent consumption’ CM * to be the solution of
Eqs. (15)— (20), we are finally ready to pose rigorously the natural question
which this paper is leading up to. What is the connection here between ‘compre-
hensive NNP’ and ‘expected sustainable-equivalent consumption’? To answer
this question sharply, we restrict the underlying stochastic diffusion process (4),
which defines the evolution of the discount factor, to be a geometric random
walk with drift.

The following theorem is the principal result of the paper.

¹heorem. Assume that the stochastic diffusion process (4) takes the form of
geometric Brownian motion with drift

a(K, A)"!rA , (21)

b(K, A)"pA , (22)

where r and p are given positive constants.
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Further assume that the following stochastic calculus-of-variations problem is
well defined for all possible initial values of K and A:9

Maximize E C P
=

0

U(K; KQ ) A(t) dtD (23)

subject to Eqs. (4), (21) and (22), and the initial conditions

K(0)"K , (24)

A(0)"A . (25)

¹hen there exists a unique a.e. solution of Eqs. (5)—(13), and the problem given by
Eqs. (15)—(20) is well defined, and

½*"CM * . (26)

Proof. Because U(K; I(,KQ )) is an everywhere-defined strictly concave smooth-
ly differentiable function, it follows that the solution of Eqs. (23)—(25) is interior
and a.e. unique; also, the necessary and sufficient first-order optimality condi-
tions are the stochastic Euler equations

A
LU

LK
"E C

d

dt AA
LU

LIBD (27)

holding a.e. along an optimal trajectory, simultaneously with the transversality
condition

lim
t?=

E
t CA

LU
LI

KD"0 . (28)

The existence of an a.e. unique solution of Eqs. (5)—(13) follows as a transla-
tion into general-equilibrium notation of the above duality conditions (27) and
(28) for the problem given by Eqs. (23)—(25).10

9For the sake of conciseness, throughout the proof, I employ liberally various conventionally
accepted shorthand notations that are not weighed down by a truly rigorous mathematical
statement of all aspects of this well-studied kind of problem. A mathematically rigorous general
treatment of the continuous-time stochastic optimal control problem is contained in Fleming and
Rishel (1975), or Krylov (1980).

10The intuitively plausible statements and interpretations presented to this point in the ‘proof’ are
actually not rigorously proved here. This omission is merely to save on space, as a fully rigorous
proof is surprisingly messy. A rigorous treatment of a closely related problem yielding the analogue
of Eqs. (27) and (28) is contained in Krylov (1980) or Fleming and Rishel (1975). Stokey and Lucas
(1989) contains a rigorous treatment of the analogous isomorphism between duality conditions and
competitive stochastic equilibrium for the analogous discrete-time version.
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For the meaningfully formulated problem given by Eqs. (23)— (25), define the
dynamic-programming state-evaluation function

»(K, A) (29)

to be the value of the maximized objective (23) as a function of the initial
conditions (24) and (25).

We turn then to analyzing the value function given by Eq. (29). Again using
the fact that U(K; I("KQ )) is an everywhere-defined strictly concave smoothly
differentiable function, and the assumption that Eqs. (4), (21)—(25) describe
a meaningful stochastic optimization problem for all possible initial conditions,
we conclude that »(K, A) is everywhere-well-defined, strictly concave in K, and
a.e. differentiable.

With the specification given by Eqs. (4), (21) and (22), a direct calculation
shows that

E C P
=

0

A(t) dtD"
A(0)

r
. (30)

Since the problems given by Eqs. (23)—(25) and Eqs. (15)—(20) differ only by
a multiplicative positive constant in the objective function, it follows that, from
the same initial conditions, the a.e. unique solution of the well-defined problem
given by Eqs. (23)—(25) must be a.e. identical to the solution of problem given by
Eqs. (15)—(20) and, hence, the latter problem is well defined. Furthermore,
Eq. (30) implies that the two essentially identical problems share the following
relationship between the optimized values of their respective objective functions:

»(K(0), A(0))"
A(0)

r
CM * . (31)

Now the particular linear-multiplicative structure of Eqs. (4), (21) and (22), as
it appears in the stochastic optimal control problem given by Eqs. (23)—(25),
implies (using a constructive argument based upon the definition of Eq. (29)) for
any positive numbers k, k@, A, A@ and for all K it must be true that

»(K, kA)5k»(K, A), (32)

»(K, k@A@)5k@»(K, A@). (33)

Then picking k@"1/k, A@"kA, it follows from Eqs. (32) and (33) that for all k,
A, K the following equation must hold:

»(K, kA)"k»(K, A) . (34)

Condition (34) implies that the value function here must be of the form

»(K, A)"AF(K ) , (35)
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where the function F(K ) is everywhere-defined, strictly concave, and a.e. differ-
entiable.

The Hamilton—Jacobi—Bellman partial differential equation of optimal
stochastic control theory11 applied to the problem defined by Eqs. (4), (23)—(25)
and (29) is

!

L»
LA

a"max
I CA U(K; I)#

L»
LK

) ID#
1

2
b2

L2»
LA2

. (36)

Plugging Eq. (35) into Eq. (36), taking the appropriate partial derivatives, and
making use of the special structure (21) and (22) yields, after some manipulation,
the equation

rF"U!

LU

LI
KQ . (37)

Now substitute Eqs. (31) and (35), and Eqs. (5)—(7) and (13) into Eq. (37).
Collecting terms, we have then shown that, at time t"0, Eq. (37) becomes the
following condition:

CM *"½* . (38)

This concludes the proof. h

5. Discussion

The main result (Eq. (38)) means that the presence of uncertainty per se does
not undo the connection between a theoretically appealing index of current
actual economic activity and a theoretically appealing index of future potential
to consume. The classical identity between ‘comprehensive NNP’ and ‘sustain-
able-equivalent consumption’, appropriately defined, continues to hold in ex-
pectations when the discount factor is a stochastic diffusion process taking the
form of geometric Brownian motion with drift.

Heuristically speaking, what drives this result is a critical assumption that the
only way uncertainty enters the production process is by multiplicative shifts of
ex-post consumption that essentially leave unaltered the relevant tradeoffs in the
ex-ante expected future economy. While a characterization like this may make
the main point seem deceptively simple, the result is, however, far from trivial to
formulate or to prove, as the paper itself bears witness.

Such a result leads naturally to two further questions:

1. How appropriate is the stochastic process (4), (21) and (22) as an approximate
description of real-world rates of return to consumption?

11See, e.g., Kamien and Schwartz (1991, Eq. (18), p. 268) or, more rigorously, Fleming and Rishel
(1975, Eq. (2.5), p. 154) or Krylov (1980, Eq. (6), p. 4).
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2. What happens to the relation between ‘comprehensive NNP’ and ‘expected
sustainable-equivalent consumption’ for other specifications of uncertainty?

In this concluding section I try briefly to address each question in turn.
The ‘own rate of return to consumption’ is a conceptual measure of how much

extra consumption could be enjoyed next year by postponing until then the
enjoyment of a unit of consumption from this year, all other things being equal.
The economic entity corresponding most closely to this concept is, arguably, the
annual after-tax real return on capital — because it defines (approximately) the
relevant intertemporal consumption tradeoff faced by the average citizen in
deciding how much to save.

Without having to rely on formal econometric testing, I think it can be stated
as a stylized fact that the rate of return to capital in the advanced industrial
economies has been essentially trendless over the very long run. If forced to
name a figure, the round number of about 5% per annum could be given as
a plausible candidate for the average annual after-tax real return on capital in
the US over the last century or so.12 During some periods this representative
real interest rate might be measured a bit lower, say 3%, while in some other,
equally likely, periods it might be measured higher, say 7%. But, on average,
over many decades, it seems like not a bad approximation to say that the own
rate of return to consumption is essentially trendless. This sounds not unlike the
specification (4), (21) and (22), approximated in discrete-time periods of length Dt
as

r
t
"r#e

t
, (39)

where r
t
,!(DA/Dt)/A is the finite-difference measured real interest rate ob-

served over period t, and e
t
,!p(DZ/Dt) is an i.i.d. zero-mean normally

distributed random variable.
As for what happens to the relationship between ‘comprehensive NNP’ and

‘expected sustainable-equivalent consumption’ under other, more general, forms
of uncertainty, this appears to be too mathematically intractable a problem to
yield any kind of neat analytical solution. However, a useful reduced-form
summary characterization can be given here.

The formulation (4), (21) and (22) of uncertainty in this paper represents,
in effect, a specification of purely multiplicative welfare shocks that are

12Of course, it depends on exactly what is being measured, but this round number of 5% could be
justified by reference to, e.g., Nordhaus (1995), or Jorgenson (1994). I realize that there is an extensive
literature on the appropriate social discount rate, which represents a set of issues I am sidestepping
here. If the appropriate discount rate is different from the competitive own rate of return on
consumption, then in principle the formulas of this paper could all be redone using corresponding
shadow or efficiency prices — although I would hate to be the one who has to make such
recalculations in practice.
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‘unbiased’ in the technical sense that they do not have any curvature influence
on the value function

L2»

LA2
"0 . (40)

It is, so to speak, because condition (40) holds in the fundamental dynamic
programming equation (36) that the classical identity between ‘comprehensive
NNP’ and ‘expected sustainable-equivalent consumption’ is preserved in the
presence of uncertainty.

Any ‘biased’ specification having a curvature effect of the form

L2»

LA2
(0 (41)

would cause ‘comprehensive NNP’ to be an overestimate of ‘expected sustain-
able-equivalent consumption’.

The opposite ‘bias’ in specification, namely

L2»

LA2
'0 (42)

would make ‘comprehensive NNP’ be an underestimate of ‘expected sustain-
able-equivalent consumption’.

Thus, even if the specification (4), (21) and (22) is held to be an inappropriate
description for some settings, it may still be found useful as a classificatory
device. The analysis of this paper might then be seen as representing a natural
first step toward understanding in a more general situation the issue addressed
here — how uncertainty about the future affects the relationship between Green-
NNP-like comprehensive indices of present economic activity and sustainabil-
ity-like measures of future power to consume.
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