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a b s t r a c t

We present a vortex particle method coupled with a penalization technique to simulate
single and multiple swimmers in an incompressible, viscous flow in two and three dimen-
sions. The proposed algorithm can handle arbitrarily deforming bodies and their corre-
sponding non-divergence free deformation velocity fields. The method is validated on a
number of benchmark problems with stationary and moving boundaries. Results include
flows of tumbling objects and single and multiple self-propelled swimmers.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

The simulation and quantification of biological locomotion in fluids has a wide range of engineering applications [1] and
presents a series of challenges for the development of suitable numerical methods. Simulations can greatly assist in charac-
terizing aquatic propulsion [2–9], the high energy efficiency observed in many species and the complexity of the mecha-
nisms involved and of the flow structures generated. In recent years the simulation of self-propelled fish-like body
immersed in a viscous fluid has been tackled with different methods. Starting from the work of Carling et al. [17], to simulate
2D or 3D swimmers, were used finite differences [17,18], Lagrangian multipliers [4], viscous vortex methods [19], block low-
er-upper symmetric Gauss-Seidel [20], Singular-Value Decomposition based Generalized Finite Difference (SVD-GFD) [21],
finite volumes [22,23] or remeshed Smoothed Particle Hydrodynamics [24]. Swimming organisms have also been investi-
gated via biological observation [10–12] and via robot-replicas [13–15]. A particular type of locomotion considered arche-
typical is anguilliform swimming, which has been one of the first modes of swimming studied in the legendary
experiments of Gray [16]. Anguilliform swimming is achieved through the propagation of curvature waves from the anterior
to the posterior of the body and is characterized by high flexibility, resulting in acceleration burst [25], fast or efficient swim-
ming [22]. In the present work we will consider this swimming pattern.

The computational investigation of biological locomotion in fluids entails the accurate capturing of the interaction of the
flow with complex and deforming geometries, hence a need for accurate and efficient numerical solvers. Such flow-structure
interaction (FSI) problems have been largely handled by means of unstructured grids (ALE – Arbitrary Lagrangian Eulerian).
In ALE a moving fitted mesh tracks the solid boundaries and the governing equations for solid and fluid are solved sepa-
rately, enforcing continuity conditions at the interface [26,23]. Such methods are accurate, but may result in inefficient
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implementation due to the need to adapt the computational elements to unsteady geometries and to resolve accurately the
flow structures. Another class of methods considers the system of the body and the fluid simultaneously, where the solid
interface is captured implicitly while boundary conditions are enforced by adding forcing terms in the continuous or discrete
forms of the equations [27]. This approach has been successfully applied to rigid bodies in fluids, by means of Lagrangian
Multipliers [28], immersed interface methods [29,30], immersed boundary methods [31,27,32,33] and Brinkman penaliza-
tion methods [34,35]. Penalization schemes have been used in one way fluid–solid coupling problems together with spectral
and vortex methods [36,37] or adaptive wavelet collocation methods [38]. The two way fluid–solid coupling problem has
been tackled in [26,39–42,8] and, in the context of vortex methods, by Coquerelle and Cottet [43], through a Brinkman penal-
ization approach, and by Shiels et al. [44] and Eldredge [45], through direct integration of Newton’s equations.

In this work we extend the works of Coquerelle and Cottet [43] and Rossinelli et al. [37], and propose an unbounded vor-
tex particle method for fluid–structure interaction problems with deforming bodies immersed in a viscous incompressible
flow.

Coquerelle and Cottet [43] combined vortex methods, Brinkman penalization and projection approach, to deal with full
fluid–structure interaction problems limited to rigid 2D and 3D geometries. Their method is inspired by both the fictitious
domain approach [28] and projection method [46]. The body velocity is recovered in a self-consistent way from the fluid
motion inside the domain captured by a level set function. A numerical analysis of this method in the velocity pressure for-
mulation is given in [41].

Rossinelli et al. [37] presented a 2D vortex method coupled with Brinkman penalization for incompressible, viscous flows,
able to capture the interaction from the body to the fluid (one way coupling) and they applied it to study flow past the cyl-
inder at different Reynolds numbers.

Our methodology is a superset of these two works [43,37]. It is a generalization to objects with non-zero divergence
deformation velocity fields which relies on the treatment of the dilatational part of the extended flow field and on the
use of unbounded solvers.

These components allow several significant advances. They enable the simulation of full fluid–structure interaction prob-
lems for arbitrary complex unsteady geometries.

They exploit the localization of the physics, i.e. the compact support of vorticity and dilatation, and provide a natural
treatment for far-field boundary conditions [47–49].

Finally, they make the treatment of objects with net volume changes possible, a feat unreachable in [43] because of the
boundary conditions imposed by their Poisson solvers and the incompressibility constraint enforced over the entire domain.

The numerical scheme produces a simple algorithm, developed in Section 2. We assess its capabilities through the sim-
ulation of benchmark problems such as sedimentation in Section 3. Its application to self-propelled swimmers is presented
in Section 4, demonstrating its suitability for the study of biological locomotion. We mention that these investigations are
complemented with exhaustive convergence tests.

The exposition of the methodology and the applications mentioned above use a two-dimensional setting. We show that
the approach can be readily extended to three dimensions in Section 4.3 where we consider the 3D self-propelled swimmer
of [22].

2. Methodology

We present a vortex method to simulate the two-dimensional interaction of a viscous incompressible flow with deform-
able bodies. The velocity–vorticity form of the Navier Stokes equations is coupled with the Brinkman penalization to enforce
the no-slip condition at the body–fluid interface. The exchange of linear and angular momenta between the fluid to the body
is achieved through a projection method approach. The deformable body interface is captured by a level set and its time
dependent deformation is defined a priori in a parametrized form.

2.1. Remeshed vortex methods

We consider a two dimensional incompressible flow governed by the Navier–Stokes equations in their vorticity
formulation:

@x
@t
þr � ðuxÞ ¼ mr2x ð1Þ

r � u ¼ 0 ð2Þ

where x =r� u is vorticity and m is the kinematic viscosity. Vortex methods discretize the vorticity field x by means of
particles, characterized by their position xp, volume Vp and strength Cp ¼

R
Vp

xdx. Particles move according to the velocity
field u and their strengths evolve in accordance with the diffusion term. In order to avoid Lagrangian distortion, a remeshing
approach is used: particle strengths and locations are interpolated through a high order moment conserving kernel onto an
underlying regular grid at the end of each step [50,47,51]. In this work we used the third order accurate interpolation kernel
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M0
4 [52]. The presence of an underlying grid allows the use of fast grid differential operators and efficient grid based Poisson

solvers, necessary to recover the velocity field from the Poisson equation

r2u ¼ �r�x: ð3Þ

In the present work, we employ a Fourier-based Poisson solver for unbounded domains as described in [53,54]. Finally, vor-
tex methods are characterized by their relaxed stability properties for convection, accuracy and localization of the compu-
tational regions [47–49,55].

2.2. Geometry representation

In this work, the implicit definition of the geometry and its associated grid, is decoupled from the solver. Each shape is
embedded in a grid M that could be stationary or deformable depending on the specific application (Fig. 1). At the node loca-
tions rM the deformation velocity _rM, which describes the body motion, and the characteristic function vM (0 6 vM 6 1),
which localizes the geometry, are computed. Here the mollified characteristic function is evaluated as follows:

vM ¼
0 d < ��
1
2 1þ d

� þ 1
p sin p d

�

� �� �
jdj 6 �

1 d > �

8><
>:

where d is the signed distance from the surface of the body (negative outside, positive inside) and � is the mollification
length. As a general rule, for moderate Reynolds numbers (Re < 1e4), � should be a small fraction (<1%) of the characteristic
length of the geometry under study. In effect, it defines the curvature of the finest resolved features of the object. It should
also allow the mollified characteristic function to span 4–5 grid points in order to have a numerically stable surface normal.

When required, the separately defined mesh M is bilinearly interpolated onto the Cartesian computational grid C (Fig. 1)
used by the flow solver, according to

vs ¼ Plðx;RðhÞrM þ xcm;vMÞ ð4Þ
uDEF ¼ Plðx;RðhÞrM þ xcm;RðhÞ _rMÞ ð5Þ

where Plðb; a;aÞ is the bilinear interpolant of the quantity a stored at grid nodes locations a onto the grid b, x are the solver
computational grid nodes positions, xcm and h are, respectively, the coordinates of the body center of mass and the rotation
angle in the simulation frame of reference, while R is the 2D counterclockwise rotation matrix. For further details, we refer
to Appendix A.

2.3. Penalization model and projection approach

The system to be simulated consists of the deforming body and the surrounding viscous, incompressible flow. Let qf and m
denote the fluid density and kinematic viscosity, respectively, and qs the body density, which varies according to the volume
so as to conserve mass

qsðtÞ ¼ qs;0
Vs;0

VsðtÞ
ð6Þ

where qs,0 and Vs,0 are, respectively, initial density and solid volume. The flow around the body is described by the two-
dimensional incompressible Navier–Stokes equations, here written in the velocity (u) and pressure (p) formulation

@u
@t
þ ðu � rÞu ¼ � 1

qf
rpþ mr2uþ g; x 2 R nX ð7Þ

r � u ¼ 0; x 2 R nX ð8Þ

Fig. 1. Schematic of the use of the grids. Here two independents shapes are embedded in their corresponding deformable grids M1 and M2, that carry the
values of deformation velocity _rM1 , _rM2 and characteristic function vM1

, vM2
to be bilinearly interpolated onto the Cartesian computational grid C.
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where g is the gravity, R is the computational domain and X is the support of the solid. The action of the body on the fluid is
realized through the no-slip boundary condition at the interface @X, enforcing the body velocity (us) to be the same as the
fluid (u) through us = u. The feedback from the fluid to the body is in turn described by Newton’s equation of motion

Ms€xs ¼ F;
d Jsxsð Þ

dt
¼ s ð9Þ

where Ms is the total mass of the body, Js its moment of inertia and F and s are the hydrodynamic force and momentum,
respectively, exerted by the fluid on the body.

We present the coupling of the vortex method (Section 2.1) with the Brinkman penalization technique in order to capture
the interaction between the fluid and the body, and to handle flows around complex shapes. Following the approach of [43],
we enforce self-consistent rigid motions inside the bodies and extend the method to the case of arbitrary unsteady geom-
etries characterized by non-divergence-free deformation velocity fields.

In the penalization model, the fluid velocity is extended inside the body and the Navier–Stokes equations are solved
including an extra term (the penalization term) to model no-slip boundary conditions

@uk

@t
þ ðuk � rÞuk ¼ �

1
q
rpk þ mr2uk þ gþ kvsðus � ukÞ; x 2 R ð10Þ

r � uk ¼ 0; x 2 R ð11Þ

where k� 1 is the penalization factor, which we can relate to the effective porosity of the body. Importantly, as proved in
[56], the error in the penalized solution is bounded by ku � ukk 6 Ck�1/2kuk. Furthermore the penalization factor k is arbi-
trary and therefore the error can be precisely controlled, enforcing the no-slip conditions to any accuracy degree by setting
k appropriately. We note that throughout the paper, we used a value of lambda k = 1e4, which we found to be a good com-
promise between accuracy and computational costs (a higher value of k implies a finer time discretization). We cannot ex-
clude that different problems, characterized by higher Reynolds number, would require a different value of k. Hereafter in
this section we will denote uk by u to simplify the notation. The viscosity m will be taken constant within the whole domain
and the density q, which appears in the baroclinic term of Eq. (10), is computed by combining fluid and solid densities
through the characteristic function vs

q ¼ ð1� vsÞqf þ vsqs: ð12Þ

Taking the curl of the velocity we obtain from (10) the vorticity formulation

@x
@t
þr � ðuxÞ ¼ ðx � rÞuþ mr2xþ 1

q2rq�rpþ kr� vsðus � uÞ: ð13Þ

Expanding the baroclinic term as a function of the velocity and considering that the stretching term (x � r)u vanishes in two
dimensions, we can rewrite the vorticity equation as

@x
@t
þr � ðuxÞ ¼ mr2x�rq

q
� @u

@t
þ ðu � rÞu� mr2u� g

� �
þ kr� vsðus � uÞ: ð14Þ

We note a difference in the computation of the pressure gradient when compared to the work of [43]: it includes the viscous
flux of vorticityr2u = �r �x at the solid boundary. This quantity is important at incepting boundary layers and for unstea-
dy flow conditions.

The velocity of the body us is decomposed into three terms, i.e. its rigid translational velocity uT, rigid rotational velocity
field uR and its free deformation velocity field uDEF

us ¼ uT þ uR þ uDEF ð15Þ

The velocities uT and uR are the result of the hydrodynamic forces and momentum acting on the body, while uDEF is pre-
scribed a priori, varies in time and is specific to the shape under study. As this extended velocity field can be non-solenoidal
inside the object, the continuity equation of Eq. (11) must be modified into

r � u ¼ 0; x 2 R nX ð16Þ
r � u ¼ r � uDEF ; x 2 X ð17Þ

An additional consequence is the contribution of this dilatation source to the Helmholtz decomposition of the global velocity
field (Section 2.4).

Rigid translation (uT) and rotational (uR) velocities are determined via a projection approach. During a part of the time-
step, the flow is then allowed to evolve freely over the entire domain, without any forcing, also inside the body as if it was
not there.

The resulting extended flow field violates the rigid motion (or prescribed deformation) of the immersed objects. Crucially,
this step enables the computation of the transfer of linear and angular momentum over the time step. In effect, the momenta
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integrals due to this extended flow inside the immersed object correctly capture the fluxes at the boundary over the time
step. We refer to [46] for a detailed proof.

Finally, we note that this fluid–structure coupling is achieved without the explicit use of the forces and torques (Eq. (9)).

2.4. Discretization method

Our system is discretized by means of a hybrid particle-mesh method coupled with a level set, within a computational
domain R that is a Cartesian grid of uniform spacing h.

The grid is used to evaluate differential operators, to compute velocities (Poisson solver [53,54]) and to initialize and re-
mesh vortex particles. In this work all spatial derivatives are computed with second order centered finite difference schemes,
in the 2D case, while we used fourth order centered finite difference schemes in the 3D case. The time step is adapted accord-
ing to a Lagrangian CFL condition (LCFL)

krun�1kDtn
6 LCFL ð18Þ

where the LCFL constant controls the allowed distortion of the particles over a time step [51], and tn ¼
Pn

i¼1Dti for n P 0.
We describe one time step of the proposed algorithm, from tn to tn+1, assuming that all quantities are known up to tn. We

denote the characteristic function, the velocity, vorticity, divergence, and density fields at time tn by vn
s , un, xn, rn, and qn,

respectively. The deformation of the body immersed in the fluid is imposed at all times and is specific to the shape under
study, therefore the quantities rMðtÞ; _rMðtÞ; vMðtÞ are known a priori.

Algorithm 1: General Method

vn
s ¼ Pl x;RðhnÞrn

M þ xn
cm;vn

M

� �
ð19Þ

un
DEF ¼ Plðx;RðhnÞrn

M þ xn
cm;Rðh

nÞ _rn
MÞ ð20Þ

rn ¼ vn
s r � un

DEF

� �
ð21Þ

qn ¼ qn
s v

n
s þ qf ð1� vn

s Þ ð22Þ
r2wn ¼ �xn ð23Þ
r2un ¼ rn ð24Þ
un ¼ r� wn þrun ð25Þ

un
T ¼

1
Ms

Z
R
qnvn

s undx ð26Þ

_hn ¼ 1
Jn

s

Z
R
qnvn

s x� xn
cm

� �
� undx ð27Þ

un
R ¼ _hn � x� xn

cm

� �
ð28Þ

un
k ¼

un þ kDtvn
s un

T þ un
R þ un

DEF

� �
1þ kDtvn

s
ð29Þ

xn
k ¼ r� un

k ð30Þ
@xn

k

@t
¼ �rqn

qn
� @un

k

@t
þ ðun

k � rÞun
k � mr2un

k � g
� �

ð31Þ

@xn
k

@t
¼ mr2xn

k ð32Þ

@xn
k

@t
þr � un

kx
n
k

� �
¼ 0 ð33Þ

xnþ1 ¼ xnþ1
k ð34Þ

xnþ1
cm ¼ xn

cm þ un
TDtn ð35Þ

hnþ1 ¼ hn þ _hnDtn ð36Þ

2.4.1. Geometry and deformations
The methodology is summarized in Algorithm 1. Eqs. (19) and (20) represent the bilinear interpolation from the grid

describing the body onto the computational grid. It should be noted that the deformation field uDEF extends outside the body
because the deformable mesh embeds the shape itself. Since the deformations uDEF may not be locally volume-preserving,
the recovery of a consistent velocity field across the extended domain requires us to evaluate the divergence field (Eq. (21))
and add the corresponding dilatational term in the Helmholtz decomposition (Eqs. (23)–(25)).
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2.4.2. Divergence
In Eq. (21), the divergence r is computed as vs(r � uDEF) and not as r � (vsuDEF). The field uDEF is indeed extended outside

the body, resulting in a consistent r up to the boundary, whereas the second expression will produce a spurious divergence
generated by the cut-off of the characteristic function.

We note that the divergence of the deformations is not conserved algebraically through the procedure of Eqs. (19)–(21). It
is however captured at a satisfactory accuracy through the use of a bi-linear interpolation and centered finite differences.
Additionally, the non-conservation does not lead to any error accumulation as the r field is recomputed anew at the begin-
ning of every time step.

2.4.3. Density
In step (22) a smooth density field is computed from fluid and solid densities through the characteristic function vs. If the

shape does not conserve the volume, qs is no longer constant, but becomes a function of time following Eq. (6) to ensure
mass conservation.

2.4.4. Extended velocity field
In Eq. (25), we obtain the velocity field u from its Helmholtz decomposition. Its rotational and potential components,

deriving respectively from a stream function w and a potential /, are obtained from the Poisson Eqs. (23) and (24). We em-
ploy an unbounded Fourier solver [53,54] for the solution of these two scalar Poisson equations.

2.4.5. Projection and penalization
The effect of the fluid on the body is captured through the advection of the shape by the flow itself. The rigid components

of the body motion are directly evaluated measuring the average translation (uT) and angular ð _h) velocities according to Eqs.
(26) and (27) where Ms and Js are, respectively, the mass and moment of inertia of the body. Note that while Ms is constant, Js

is a function of time (the body is deforming) and therefore must be computed at each time step according to Eq. (56). The
rotation velocity field uR corresponding to the angular velocity _h is computed in Eq. (28).

Step (29) implements the penalization model in its velocity formulation through a first order implicit Euler time discret-
ization scheme [43,37].

2.4.6. Evolution of vorticity
Eq. (14) is split into the substeps (30)–(33). The first step (Eq. (30)) represents the vorticity correction due to the velocity

penalization. The second step (Eq. (31)) is the baroclinic contribution in case body and fluid densities differ. Grid values of un
k

and un�1
k are used to compute @un

k=@t, with a first order finite difference. Vorticity values are updated given the two previous
contributions and then diffused (Eq. (32)) and advected (Eq. (33)) with an explicit second order scheme, as implemented in
[37].

2.4.7. Vorticity advection and remeshing
The vorticity carried by the particles is then recomputed at the grid nodes via the interpolation kernel M0

4 [52]. We note
that at this point uk is not necessarily divergence free all over the domain due to the contribution of uDEF. The advection
scheme implemented here, which makes use of particles and remeshing [37], does not need to track particle volume changes
caused by non-zero divergence in the velocity field, as showed in [57]. This owes to the fact that we redistribute an integral
quantity (Cp, Section 2.1), carried by moderately distorted particles, onto a regular grid. This approach guarantees the con-
servation of vorticity and its accurate interpolation on the mesh.

2.4.8. Structure
The use of a first order implicit Euler operator for velocity penalization (Eq. (14)), and of a Godunov splitting approach

(substeps (30)–(33)), which is, in the present form, first order, do not justify the use of a higher order time integration
scheme for the advection of the body. Therefore the center of mass location (xcm) and rotation angle (h) of the body are finally
updated with an explicit first order accurate time scheme (Eqs. (35) and (36)).

Finally, we briefly discuss the scheme with respect to the conservation of linear and angular momentum. While the ex-
tended domain technique allows the computation of the transfer of momentum between the fluid and the solid, it is the
penalization that handles the projection back into a consistent fluid/solid system. The momentum acquired by the solid
phase is thus not algebraically enforced in the implicit penalization step.

Moreover, in the case of non-neutrally buoyant bodies, the conservation of momentum will also be conditioned by the
properties of the evaluation scheme for the baroclinic term. As a matter of fact, that term demands coupling two formula-
tions (vorticity/velocity and velocity/pressure), and the evaluation of time-derivatives and non-linear terms.

We leave the further investigation of this aspect as a topic of future work and rather focus on the convergence of the
scheme in the coming sections.
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3. Validation

In this section the proposed method is validated on several test cases. These cases include the flow past an impulsively
started cylinder, the sedimentation of a 2D cylinder, a 2D ellipse and a characterization of the handling of added-mass effects
by the present technique.

3.1. Flow past an impulsively started cylinder

Flow past an impulsively started cylinder is a degenerate case of flow-structure interaction, in which only the feedback
from the solid to the fluid is resolved. We tested our method on such reduced fluid–structure problem, extending the results
in [37], and present a systematic error analysis, investigating space and time convergence. Furthermore, as the ultimate goal
is the simulation of self-propelled bodies, here the body is displaced at a constant velocity UT and immersed in a viscous,
incompressible flow, initially at rest. Such a set up greatly simplifies the general method stated above: the body is rigid
(uDEF = 0), its velocity is imposed (uT = UT), rotation is not allowed (uR = 0) and the solid density is assumed to be the same
as the fluid (qs = qf). Therefore the algorithm reduces to

vn
s ¼ Pl x; rM þ xn

cm;vM

� �
Dwn ¼ �xn

un ¼ r� wn

un
k ¼

un þ kDtvn
s UT

1þ kDtvn
s

xn
k ¼ r� un

k

@xn
k

@t
¼ mr2xn

k

@xn
k

@t
þr � un

kx
n
k

� �
¼ 0

xnþ1 ¼ xnþ1
k

xnþ1
cm ¼ xn

cm þ UTDtn

To validate the method we compared the drag evolution in time with the reference computations [47,37]. We computed the
forces acting on the body F both by integrating the penalization term (Eq. (37)) after velocity penalization (Eq. (29))

F ¼ k
Z

R
vsðuk � UTÞdx ð37Þ

and by means of the expression introduced in [47]

F ¼ d
dt

Z
RnX
ðx� xÞdx ð38Þ

where the body force is computed as the time derivative (approximated by a central difference scheme) of the cross product
between the vorticity and its location, over the fluid domain. In order to use the latter formulation the computational domain
must be big enough to ensure that the generated vorticity is conserved. The discrepancy between the two approaches in the
drag curve was found to be at all times less than 1%.

The Reynolds number (Re), nondimensionalized time (T) and drag coefficient (Cd) are defined as follows

Re ¼ jUT jD
m

; T ¼ 2jUT jt
D

; Cd ¼
2F

jUT j2D
ð39Þ

where D is the cylinder diameter. All simulations of this section were carried out at Re = 1000, by setting UT = 0.1, D = 0.2 and
domain size [0,1] � [0,1]. Fig. 2 shows the evolution of the drag coefficient in time for a 2048 � 2048 resolution, LCFL = 0.01
and k = 1e4. It compares well with reference computations [47,37], capturing the transient and drag evolution. Spatial and
temporal convergence were also investigated. The convergence order was determined by computing the L1, L2, L1 norm
of the error e(t) (Eq. (40)) of the drag coefficient (Eq. (39)) with respect to the best resolved case

eðtÞ ¼ Cdbest resolvedðtÞ � CdðtÞk k ð40Þ

Space convergence studies were carried out both fixing the model, i.e. by setting the mollification length � proportional to
the coarsest resolution (� ¼ 2

ffiffiffi
2
p

hcoarsest), and fixing the ratio �/h, to investigate convergence to the actual geometry. For both
convergence studies, we set LCFL = 0.01, k = 1e4 and varied the resolution between 256 � 256 and 4096 � 4096. As can be
seen in Fig. 3 the method presents second order convergence (fixing � ¼ 2

ffiffiffi
2
p

h256) and between first and second order
(1.45 for Linf, L1 and 1.53 for L2) keeping the ratio �=h ¼ 2

ffiffiffi
2
p

fixed. Such space convergence results are in agreement with
previous studies for immersed boundary methods [58]. Time convergence study was carried out by setting the resolution
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to 1024 � 1024, � ¼ 2
ffiffiffi
2
p

h1024, k = 1e4 and varying LCFL between 0.1 and 0.005 (with 0.001 as best resolved case). The con-
vergence order was found to be first order for Linf, L1 and 1.34 for L2 (Fig. 3).

3.2. Sedimentation of a 2D cylinder

Here we consider the case of a falling 2D cylinder to test the two-way fluid–solid coupling for a rigid body. We compare
our results with Namkoong et al. [59] and investigate time and space convergence of the method. We simulate the same
physical system as Namkoong et al.: a rigid 2D cylinder of diameter D = 0.005 m and with qs/qf = 1.01 is released from rest
and accelerates due to gravity (g = �9.81 m/s2) until it reaches its asymptotic terminal velocity, corresponding to a Re = 156
in water (m = 8e�7 m2/s, qf = 996 kg/m3). The domain size was set to [0,0.04] � [0,0.32] m, resolution 1024 � 8192, k = 1e4,

Fig. 2. Drag coefficient (Cd) at Re = 1000 against the nondimesionalized time T. The red line is obtained with a resolution of 2048 � 2048, LCFL = 0.01, k = 1e4

and � ¼ 2
ffiffiffi
2
p

h. The black and blue lines are, respectively, the reference solutions [47] and [37]. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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Fig. 3. (a) Space convergence (mollification length fixed based on the coarsest resolution, � ¼ 2
ffiffiffi
2
p

h256Þ: L1(e) (blue), L1(e) (black) and L2(e) (red) are plotted
against domain resolution. LCFL was set to 0.01. (b) Space convergence (ratio �/h fixed to 2

ffiffiffi
2
p

): L1(e) (blue), L1(e) (black) and L2(e) (red) are plotted against
domain resolution. LCFL was set to 0.01. (c) Time convergence: L1(e) (blue), L1(e) (black) and L2(e) (red) are plotted against LCFL. Resolution was set to
1024 � 1024. For all studies we used k = 1e4. Dashed red and black lines represent, respectively, first and second order slopes. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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LCFL = 0.01 and � ¼ 2
ffiffiffi
2
p

h. Fig. 4 shows the time evolution of the normalized streamwise (ustr/Ut), where Ut indicates the ref-
erence terminal velocity obtained by Namkoong et al. [59], lateral (ulat/Ut) and angular velocity ( _hD=Ut) obtained with the
present method and by Namkoong et al. [59]. As can be seen velocities show the same dynamics as the reference. In partic-
ular the streamwise velocity overshoots above the terminal velocity and then slows down when the vortices start shedding.
The normalized terminal velocity differs less than 1% from the reference terminal velocity. The lateral and angular velocities
in regime also agree both in amplitude and frequency. The initial transient is dominated by the breaking of the symmetry of
the flow due to numerical noise. This effect is not controlled (it depends on grid alignment and the implementation) and
explains the delayed streamwise velocity overshoot and the different transient profile for the lateral velocity. Fig. 5 shows
the vorticity structures generated by the falling cylinder. To investigate space and time convergence, we fixed lateral and
angular velocities to zero, since they are triggered by numerical noise. Therefore only one degree of freedom was let free
to evolve, namely the streamwise velocity ustr. With respect to the previous set up, we set qs/qf = 1.02 and m = 1e�7 m2/s
to achieve a higher Reynolds number. Simulations were stopped when the falling cylinder reached a velocity corresponding
to Re = 1500, which was reached before the alternating vortex shedding was initiated. The convergence order was deter-
mined by computing the L1, L2, L1 norm of the error e(t) of the streamwise velocity ustr with respect to the best resolved case

eðtÞ ¼ ustrbest resolvedðtÞ � ustrðtÞk k ð41Þ

Space convergence studies were carried out both fixing the model, i.e. by setting the mollification length � proportional to
the coarsest resolution ð� ¼ 2

ffiffiffi
2
p

hcoarsestÞ, and fixing the ratio �/h, to investigate convergence to the actual geometry. For both
convergence studies, we set LCFL = 0.001 (to be LCFL-bound at all times), k = 1e4 and varied the resolution between 256 � 256
and 4096 � 4096. As can be seen in Fig. 6 the method presents second order convergence (fixing � ¼ 2

ffiffiffi
2
p

h256) and between
first and second order (1.57 for Linf, L1 and 1.72 for L2) keeping the ratio �=h ¼ 2

ffiffiffi
2
p

fixed. Time convergence study was carried
out by setting the resolution to 2048 � 2048, � ¼ 2

ffiffiffi
2
p

h2048, k = 1e4 and varying LCFL between 0.1 and 0.005 (with 0.001 as
best resolved case). The convergence order was found to be first order for Linf, L1 and 1.32 for L2 (see Fig. 6).

Coquerelle and Cottet in [43] carried out a 3D study on a similar problem, to show the capability of vortex methods cou-
pled with penalization for rigid bodies. In [43] the Reynolds number was limited to Re � 20 and the validation was carried
out based on the value of the terminal velocity, while we account for the evolution of the streamwise, lateral and angular
velocities in time. Given the low Re, the terminal velocity in [43] is reached after a dimensionless time T = 2.5 and this does
not allow a complete assessment of the impact of the flow on the lateral and angular velocities. The discretization schemes
for the baroclinic term (Eq. (31)) is different too as we included the diffusion contribution, which was neglected in [43]. Fur-
thermore here we provide a rigorous error analysis of the method, investigating space and time convergence.

We also investigate the effect of the interaction mediated by the fluid in the case of multiple falling cylinders. Five hor-
izontally aligned cylinders, separated by a distance d = 1.5D, are released form rest from the same height. As can be seen in
Fig. 7 the flow structures generated by the single cylinders affect the overall behavior of the system, leading to a complex
motion pattern. Trajectories, streamwise, lateral and angular velocities are reported in Fig. 8. The symmetric behavior
achieved in such system proves the accuracy of our methodology. The simulation was carried out by setting D = 0.005 m,
m = 8.0e�7 m2/s, g = 9.81 m/s2, qf = 996 kg/m3, qs/qf = 1.2, domain size [0,0.15] � [0,0.15] m, resolution 2048 � 2048,
k = 1e4, LCFL = 0.01 and � ¼ 2

ffiffiffi
2
p

h.

3.3. Sedimentation of a 2D ellipse

The hydrodynamics of freely falling plates due to gravity is a challenging problem due to the complex interplay between
the plates and the induced vortical structures. A wide range of behaviors (steady falling, fluttering, chaotic and tumbling
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Fig. 4. Time histories of the normalized streamwise (green, ustr/Ut), lateral (red, ulat/Ut) and angular (blue, _hD=Ut) velocities of the falling disk. Solid lines
correspond to the present method, while broken lines the terminal (Ut = 2.501 cm/s) and overshooting velocities predicted by Namkoong et al. [59]. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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[60]) can be generated by varying the plate’s geometry. In particular, Field et al. [60] showed that the disk’s dynamical
behavior can be characterized by two parameters, the dimensionless moment of inertia I⁄ and the Reynolds number. For
an ellipse, we use the corresponding 2D definitions: I⁄ = 32I/(pqfL

4) = (H(L2 + H2)qs)/(2L3qf) and Re = UtL/m, where I is the
2D ellipse moment of inertia, (pqfL

4)/32 is the moment of inertia about the axis of symmetry of a cylinder of density qf, L
and H are, respectively, the width and thickness of the elliptical plate and Ut the sedimentation average velocity (estimated
through Ut ¼

ffiffi
ð

p
2ðqs=qf � 1ÞHgÞ, g being the gravity [61]). Here we illustrate the ability of the method to capture such com-

plex dynamics, showing simulations for each of the four previously mentioned regimes (Figs. 9 and 10). The simulations
reproduce qualitatively the experimental results presented in [61]. In Fig. 9 it is worthwhile to notice how the ellipse is col-
ored when rotating: this is due to the fact that we are plotting the vorticity field of the whole domain and the angular veloc-
ity ( _h) of the ellipse corresponds to a constant vorticity value within the shape itself. All simulations were carried out by
setting H = 1.62e�3 m, the initial angle to a = p/4, qf = 1000 kg/m3, the domain size to [0,20L] � [0,20L], the resolution to
2048 � 2048, k = 1e4, LCFL = 0.05 and � ¼

ffiffiffi
2
p

h, while H/L, m and qs/qf were varied to achieve different I⁄ and Re pairs.

3.4. Added mass

Whenever a body immersed in a fluid is accelerated, additional forces will act on the surface of the solid, and the addi-
tional inertia of the system is denoted as added mass. In this section we study the capability of the present method to capture
this effect for different geometries accelerated through a viscous, incompressible flow due to gravity (g). In particular, for
simple geometries such as the cylinder or the ellipse, the added mass can be computed analytically from potential flow
theory

Mcylinder
added ¼ pqf r2; Mellipse

added ¼ pqf a
2 ð42Þ

where qf is the fluid density, r is the cylinder radius and a is the ellipse semi-axis normal to the acceleration direction. We
measured the added mass from

ðMaddedð0þÞ þMsolidÞað0þÞ ¼ ðMsolid �MfluidÞg ð43Þ

where the acceleration a(0+) is computed with a forward Euler finite difference scheme

að0þÞ ¼ uðDtÞ � uð0Þ
Dt

ð44Þ

Fig. 5. Sedimentation of a 2D cylinder. Vorticity at different normalized times T: from left to right T = 2.5, T = 11, T = 22, T = 33, T = 44, T = 55.
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We carried out this study using the following set up with gravity (g = �9.81 m/s2), viscosity m = 1e�7 m2/s, density
qf = 996 kg/m3, qs/qf = 1.02, domain size [0,0.0075] � [0,0.0075] m, k = 1e4 and Dt = 1e�7. The resolution was varied between
128 � 128 and 1024 � 1024 and the ratio �/h was kept at 5

ffiffiffi
2
p

. We investigated the discrepancy between the theoretical
added mass and that computed from simulations. The resolution was varied to study cylinder (r = 0.0025 m), and ellipses
with aspect ratios a/b = {1/10,1/2,2,10} (where a and b are, respectively, horizontal and vertical semi-axis and their length
is set according to max(a,b) = 0.0025 m).

As it can be seen in Fig. 11, the relative error percentage is shown to converge for all cases. The ellipses with 1/10 and 1/2
aspect ratio show an offset in the error due to the higher ratio �/a. Ellipses with an aspect ratio of 2 and 10 present a slower
convergence rate. This effect is expected, as the main vortical structures take place at the lateral extrema of the ellipse, that
become less and less resolved as the aspect ratio is increased. Overall the method captures satisfactorily the added mass ef-
fect showing relative errors around 1% or less.

4. Swimming applications

In this section we explore the capability of the method in the context of swimming. The method is rigorously validated
against reference simulations [17,22] and an error analysis is provided. Simulations involving multiple swimmers are also
presented in order to illustrate the interactions mediated by the fluid among school members.

4.1. Self-propelled anguilliform swimmer

We present a comparison between our methodology and the method of Kern and Koumoutsakos [22], which uses finite
volume methods and body-conforming grids, for the simulation of 2D self-propelled anguilliform swimmers. The motion
pattern used for validation purposes in [22] was first introduced by [17], and consists of a two dimensional deformation
of the swimmer mid-line. The lateral displacement of the mid-line, ys(s, t), in a local frame of reference is defined as

ysðs; tÞ ¼ 0:125L
0:03125þ s

L

1:03125
sin 2p s

L
� t

T

� �	 

ð45Þ
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Fig. 6. (a) Space convergence (mollification length fixed based on the coarsest resolution, � ¼ 2
ffiffiffi
2
p

h256Þ: L1(e) (blue), L1(e) (black) and L2(e) (red) are plotted
against domain resolution. LCFL was set to 0.001. (b) Space convergence (ratio �/h fixed to 2

ffiffiffi
2
p

): L1(e) (blue), L1(e) (black) and L2(e) (red) are plotted against
domain resolution. LCFL was set to 0.001. (c) Time convergence: L1(e) (blue), L1(e) (black) and L2(e) (red) are plotted against LCFL. Resolution was set to
2048 � 2048. For all studies we used k = 1e4. Dashed red and black lines represent, respectively, first and second order slopes. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 7. Vorticity plots of five free falling cylinders. From left to right and top-down: t = 0.066 s, t = 0.33 s, t = 0.66 s, t = 1.0 s, t = 1.33 s, t = 1.66 s, t = 2.0 s,
t = 2.33 s, t = 2.66 s.

Fig. 8. Five free falling cylinders. (a) Trajectories of the centers of mass, units expressed in m, (b) angular velocities _h, (c) streamwise velocities, expressed in
m/s, (d) lateral velocities, expressed in m/s. Time t is expressed in seconds.
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where L is the fish length, s is the arc length of the mid-line of the body (0 6 s 6 L), t is the time, and T the period. The com-
putation of the characteristic function and deformation velocity field on the deformable grid is carried out as detailed in
Appendix A. The only difference relies on the parameterization of the mid-line motion. Here, curvature is not given, instead
an explicit definition of the mid-line displacement is given. Therefore, the Frenet equations (see Appendix A, Eqs. (51) and
(52)) do not have to be solved, rather the normals and velocities are approximated with a finite difference scheme.

All simulations are started with the body at rest and the motion is initialized by gradually increasing the displacement
magnitude (through a sinusoidal function) from zero to its designated value during the first cycle. We set the viscosity of

Fig. 9. Vorticity plots of the simulated free falling ellipse for one tumbling revolution (I⁄ = 0.146, Re = 1000, H/L = 1/4, qs/qf = 1.1).
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Fig. 10. Free falling ellipses, the segments indicate the major axis of the ellipse (coordinates are reported in cord lengths): (green) steady falling regime
(I⁄ = 0.146,Re = 100,H/L = 1/4,qs/qf = 1.1), (black) fluttering regime (I⁄ = 0.16,Re = 1147,H/L = 1/5,qs/qf = 1.538), (red) tumbling regime (I⁄ = 0.146,
Re = 1000,H/L = 1/4,qs/qf = 1.1) and (blue) chaotic regime (I⁄ = 0.39,Re = 1770,H/L = 1/2,qs/qf = 1.248). (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

M. Gazzola et al. / Journal of Computational Physics 230 (2011) 7093–7114 7105



Author's personal copy

the fluid to be l = 1.4e�4, the body length to be L = 1 and the density to be qfluid = qbody = 1, resulting in a Reynolds number of
approximately 3800, given the final swimming velocity. The volume is conserved, therefore fluid and body densities are the
same and the baroclinic term (Eq. (31)) drops out. Even though the average divergence over the fish volume is zero (volume
is conserved) locally the deformation velocity field is not divergence free and we have to account for that. Fig. 12 depicts the
unsteady forward (Uk) and lateral (U\) velocities of the center of mass of the body, normalized by L. Simulations (Fig. 17) are
carried out on a rectangular domain [0,8L] � [0,4L] with a resolution of 4096 � 2048, LCFL = 0.01, k = 1e4, and � ¼ 2

ffiffiffi
2
p

h.
We compared with [22] the swimming velocity and the forces acting on the swimmer. The swimmer accelerates from rest

to an asymptotic mean forward velocity of Uk ¼ 0:54, while the lateral velocity (U\) oscillates around the mean zero value
with an amplitude of 0.04. The net force coefficients Ck and C\ are evaluated as

Ck ¼
2Ms

_Uk
qf U

2
kL
; C? ¼

2Ms
_U?

qf U
2
kL

ð46Þ

and are plotted in Fig. 13. Accelerations are computed using centered finite differences on the present and the reference’s
[22] velocity time series. The net force coefficients, plotted in Fig. 13, converge to an oscillatory regime with zero mean
and a constant amplitude of 0.06 and 0.08, respectively. As can be seen in Figs. 12 and 13, the present method agrees with
the reference. It is interesting to note how neglecting the treatment of the local divergence of the fish deformation velocity
field (uDEF) results in a considerable reduction of the terminal forward velocity (Uk) and in discrepancies in the net force coef-
ficients (Ck and C\). This is due to the fact that locally the divergence of the deformation velocity field is non zero and that
must be taken into account in the formulation and treatment of the flow model inside the deforming body. We note that
divergence is locally non-zero both before and after the interpolation onto the computational grid, and it is not an artifact
of the interpolation, furthermore the integral of the divergence of uDEF over the swimmer’s body is zero, ensuring that its
total volume is conserved.

Fig. 11. The relative error percentage between the theoretical added mass and the ones computed through the presented method for several geometries.
Simulations were carried out by setting Dt = 1e�7, varying the resolution between 128 � 128 and 1024 � 1024, and fixing the ratio �=h ¼ 5

ffiffiffi
2
p

. (red line)
cylinder, (green solid line) ellipse with aspect ratio 1/10, (green dashed line) ellipse with aspect ratio 1/2, (black solid line) ellipse with aspect ratio 2, (black
dashed line) ellipse with aspect ratio 10. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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Fig. 12. Anguilliform swimmer: (a) Forward velocity Uk, (b) Lateral velocity U\. Red lines indicate 2D swimmer simulations with the proposed method. Blue
lines indicate simulations with the present method, but without accounting for non-solenoidal deformations (i.e. r) inside the fish. Black lines indicate the
reference finite volume solution [22]. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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We investigated convergence for this study case as well. Space convergence studies were carried out both by fixing the
model, i.e. by setting the mollification length � proportional to the coarsest resolution (� ¼ 2

ffiffiffi
2
p

hcoarsest), and by fixing the
ratio �/h, to investigate convergence to the actual geometry. Domain size was set to [0,2L] � [0,1L] and the error was com-
puted as defined by Eq. (41), for forward and lateral velocity during the first two cycles. For both convergence studies, we set
LCFL = 0.001 (to be LCFL-bound at all times), k = 1e4, and varied the resolution between 256 � 256 and 4096 � 4096. As can
be seen in Figs. 14 and 15, the method exhibits second order convergence (fixing � ¼ 2

ffiffiffi
2
p

h256) and between first and second
order (1.46 for Linf, L1 and 1.52 for L2, in the case of forward velocity, and 1.55 for Linf, L1 and 1.8 for L2, in the case of lateral
velocity) when keeping the ratio �=h ¼ 2

ffiffiffi
2
p

fixed. Time convergence study was carried out by setting the resolution to
2048 � 1024, � ¼ 2

ffiffiffi
2
p

h, k = 1e4, and varying the LCFL between 0.1 and 0.005 (with 0.001 as best resolved case). The conver-
gence order was found to be first order for Linf, L1 and 1.37 for L2 (Fig. 16).

4.2. Multiple swimmers

The capability of the method of capturing the interactions between multiple swimmers is illustrated in this section.
We simulated two fish swimming in tandem [62,18] one next to the other. Fig. 18 shows the vorticity fields generated by

two in-phase fish and two anti-phase fish. Simulations are started with bodies at rest and the motion is initialized by grad-
ually increasing the displacement magnitude (through a sinusoidal function) from zero to its designated value during the
first cycle. We set the viscosity of the fluid to be l = 1.4e�4, the body length L = 1 and the density qfluid = qbody = 1. Simula-
tions were carried out on a rectangular domain [0,8L] � [0,4L] with a resolution of 4096 � 2048, LCFL = 0.01, k = 1e4,
� ¼ 2

ffiffiffi
2
p

h, and the separation distance between the fish d = 0.6L. As can be noticed the flow structures generated by the
in-phase and anti-phase swimming, influence the motion of the partner. In the case of in-phase fish, the flow produced
by the couple push them far apart, leading to divergent trajectories (Figs. 18 and 19a), while in the case of anti-phase swim-
ming, they first converge then diverge once they get too close to each other (Figs. 18 and 19b). Furthermore the different
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Fig. 13. Anguilliform swimmer: (a) Forward net force coefficient Ck, (b) Lateral net force coefficient C\. Red lines indicate 2D swimmer simulations with the
proposed method. Blue lines indicate simulations with the present method, but without accounting for non-solenoidal deformations (i.e. r) inside the fish.
Black lines indicate the reference finite volume solution [22]. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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Fig. 14. Anguilliform swimmer: (a) Space convergence, the mollification length fixed based on the coarsest resolution, � ¼ 2
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resolution. The LCFL was set to 0.001. For all studies we used k = 1e4. Dashed black lines represent second order slopes. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
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phases affect the swimming velocity as can be observed in Fig. 19b. Anti-phase configuration seems to favor the swimmers
as they are consistently faster (�3.3%) then the in-phase swimmers.

We also simulated a small school consisting of five individuals, to illustrate the impact of the geometrical school config-
uration on the fish trajectories and velocities. Fig. 20 illustrates the vortical structures generated by a V-shaped and an
aligned school of fish. As can be seen the V-shape favors rectilinear trajectories (Figs. 20 and 21a), while the aligned config-
uration leads immediately to their divergence (Figs. 20 and 21a). Furthermore the geometrical configuration affects the for-
ward swimming velocity as can be observed in Fig. 21b. V-shape configuration seems to favor swimmers as they are
consistently faster (in average �8.8%) than in the aligned arrangement. Simulations were carried out with the same setting
as the tandem fish. The separation distances for the V-shape are dy = 0.4L and dx = 1.5L, respectively, in the vertical and hor-

Fig. 17. Self-propelled anguilliform swimmer. Vorticity during one period: (a) t = t0, (b) t = t0 + 0.25T, (c) t = t0 + 0.5T, (d) t = t0 + 0.75T.
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Fig. 15. Anguilliform swimmer: (a) Space convergence (ratio �/h fixed to 2
ffiffiffi
2
p

): L1(e) (blue), L1(e) (black) and L2(e) (red) of the forward velocity Uk are
plotted against domain resolution. The LCFL was set to 0.001. (b) Space convergence (ratio �/h fixed to 2

ffiffiffi
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p

): L1(e) (blue), L1(e) (black) and L2(e) (red) of the
lateral velocity U\ are plotted against domain resolution. The LCFL was set to 0.001. For all studies we used k = 1e4. Dashed red and black lines represent,
respectively, first and second order slopes. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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Fig. 16. Anguilliform swimmer: (a) Time convergence: L1(e) (blue), L1(e) (black) and L2(e) (red) of the forward velocity Uk are plotted against LCFL.
Resolution was set to 2048 � 2048. (b) Time convergence: L1(e) (blue), L1(e) (black) and L2(e) (red) of the forward velocity U\ are plotted against LCFL. The
resolution was set to 2048 � 2048. For all studies we used k = 1e4. Dashed red and black lines represent, respectively, first and second order slopes. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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izontal directions. For the aligned configuration the separation distance is dy = 0.4L. A thorough study of the propulsive effi-
ciencies of the tandem swimmers and five fish schools goes beyond the scope of this paper and is left for future work.

4.3. 3D swimmer

As mentioned before, the method is easily extended to three-dimensions. To validate this case, we present a simulation of
a 3D self-propelled anguilliform swimmer and compare the results with the three-dimensional simulations presented by
Kern and Koumoutsakos [22]. Details of the three-dimensional geometry are given in the appendix.

As in the 2D case, we set the body density equal to the fluid density, and therefore the baroclinic term drops out of the
equations. The penalized Navier–Stokes equations in vorticity form then are given by:

@x
@t
þr � u : xð Þ ¼ ðx � rÞuþ mr2xþ kr� vsðus � uÞ; ð47Þ

where x is the vorticity vector and r � (u:x) denotes the vector with components @/@xi(uixj).
The algorithm for the 3D case retains all steps of the 2D algorithm, the only addition is the time integration of the stretch-

ing term:

@xn
k

@t
¼ ðxn

k � rÞun
k : ð48Þ

Fig. 18. Tandem fish vorticity plots: (left) phase fish, (right) anti-phase fish. From top to bottom t/T = 2.0, t/T = 3.5, t/T = 6.0, t/T = 8.5.
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Fig. 19. Tandem fish: (a) trajectories of phase tandem (solid lines) and anti-phase tandem (dashed lines), (b) absolute velocities jUj of phase tandem (solid
lines) and anti-phase tandem (dashed lines). Coordinates and velocities are normalized by L.
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This equation is solved directly after Eq. (30) in the general algorithm 1. In the 3D case, we solve all spatial derivatives using
central fourth order finite differences.

The computational parameters are the same as in the 2D case, in particular LCFL = 0.01 and k = 1e4. The grid spacing h is 1/
512, with the fish length L = 1. To optimize usage of the computational resources, we start with a small domain containing
only the fish, and let the domain grow in size during the computation to contain the full vorticity field. The fish is allowed
translations only in the two-dimensional plane and rotations are restricted to those around the z-axis, as in the reference
computations by Kern and Koumoutsakos [22]. We reproject the vorticity field onto a divergence-free field every 20
timesteps.

Fig. 22 shows the forward and lateral swimming velocity of the anguilliform swimmer compared with the reference re-
sults [22]. The current method gives a satisfactory agreement with the reference results. A volume rendering of the vorticity
field is given in Fig. 23, showing the vortex rings in the swimmer wake.

Fig. 20. Vorticity plots of five individuals school. (left) V-shape school, (right) aligned school. From top to bottom t/T = 1.0, t/T = 2.8, t/T = 4.6, t/T = 6.4.
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Fig. 21. Five fish school vorticity plots: (a) trajectories of aligned school (solid lines) and V-shape school (dashed lines), (b) absolute velocities jUj of aligned
school (solid lines) and V-shape school (dashed lines). Coordinates and velocities are normalized by L.
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5. Conclusion

We have presented a vortex particle method for fluid–structure interaction with unsteady deforming geometries in un-
bounded domains. The method is based on the Brinkman penalization model to capture the feedback from the solid to the
fluid and on the projection approach for the interaction from the fluid to the solid. The proposed algorithm can handle defor-
mations characterized by non divergence-free velocity deformation fields, allowing the treatment of arbitrary deforming
geometries. It produces an attractively clean algorithm and is shown to accurately reproduce reference simulations for both
rigid and deforming solids. In particular, the method is applied to the simulation of self-propelled anguilliform swimmers

(a) (b)
U

||

U
| |

Fig. 22. 3D anguilliform swimmer: (a) Forward velocity Uk, (b) Lateral velocity U\. Red lines indicate 3D swimmer simulations with the proposed method.
Black lines indicate the reference finite volume solution [22]. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

Fig. 23. Volume rendering of the x-field showing the wake generated by the 3D anguilliform swimmer (a), and inset close to the tail (b).

Fig. 24. Coordinate systems.
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immersed in a viscous, incompressible flow to demonstrate its suitability for the study of biological locomotion. The
simplicity in the treatment of complex unsteady geometries makes it portable to parallel architecture such as GPUs and mul-
ticores. Ongoing work involves the coupling of simulations of multiple swimmers with bioinspired optimization algorithms.

Appendix A

The geometrical aspect of the two dimensional swimmer is characterized by the half width w(s) of the body along its arc-
length s (midline). Following the work of Kern and Koumoutsakos [22] and Carling et al. [17], the half width w(s) is defined as

wðsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2whs� s2

p
0 6 s < sb

wh � ðwh �wtÞ s�sb
st�sb

� �2
sb 6 s < st

wt
L�s
L�st

st 6 s 6 L

8>>><
>>>:

where L is the body length, wh = sb = 0.04L, st = 0.95L and wt = 0.01L. In Kern and Koumoutsakos [22], the thickness reduction
from head to tail is linear instead of quadratic for the 2D case, therefore we implemented the same modification here. For the
3D simulations, we use the elliptical height function h(s) from Kern and Koumoutsakos [22]:

hðsÞ ¼ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s� a

a

� �2
r

where a = 0.51L and b = 0.08L. The three-dimensional shape is then formed by elliptical cross sections with half-lengths w(s)
and h(s).

Several analytical descriptions for the motion of anguilliform swimmers have been proposed [63,22,17]. For the sake of
generality, we present here a methodology that relies on the parameterization of the instantaneous curvature of the midline
of the swimmer. This approach, used by Kern et al. [22], is general and faithful, to some extent, to the fish bio-mechanics. The
curvature js along the arc-length s is defined as

jsðs; tÞ ¼ KðsÞ � sin 2p t
T
� sðsÞ

� �	 

ð49Þ

where K(s) is the cubic spline interpolation through the m control points of curvature Ki (i = 1, . . . ,m), s(s) is the phase shift
along the body, t is the time, and T is the period. The phase shift s(s) is linearly proportional to the arc-length s

sðsÞ ¼ s
L
stail: ð50Þ

Eq. (49) together with w(s) and h(s) determines the characteristic function vs, representing the swimmer, and the velocity
deformation field of the body uDEF (Section 2.3) in the Cartesian inertial frame of reference of the solver. This is done by inte-
grating (through a first order explicit Euler scheme) the Frenet equations (Eq. (51)) for a 2D planar curve in the head frame of
reference (Fig. 24). The main axis of the head frame of reference coincide with the tangent n(s) and normal m(s) vectors of the
mid-line C of the body evaluated at s = 0. In such a system of reference the initial conditions for the Frenet equations are
m(0) = (0,1), n(0) = (1,0) and r(0) = 0.

@n

@s
¼ jsm

@m
@s
¼ �jsn

@r
@s
¼ n ð51Þ

In order to obtain an analytical expression of the deformation velocity of the mid-line, we take the time derivative of the
Frenet equations (Eq. (52)). We integrate them (Eq. (52)) in the head frame of reference with initial conditions
_mð0Þ ¼ 0; _nð0Þ ¼ 0; _rð0Þ ¼ 0 and n(s) and m(s) coming from the integration of (Eq. (51)).

@ _n

@s
¼ _jsm þ js _m

@ _m
@s
¼ � _jsn� js

_n
@ _r
@s
¼ _n ð52Þ

The previous steps allow us to calculate the position and the deformation velocity of the mid-line C in the head frame of
reference. In order to obtain a deformation field for the whole swimming body, it is necessary to extend position and veloc-
ities away from the mid-line. This is achieved constructing a deformable mesh whose nodes are uniquely identified by the
pair of indices (i, j). Nodes positions off mid-line are computed using the normal vector m(s)

rMði; jÞ ¼ rði � Ds; tÞ þ j � Ds � mði � Ds; tÞ ð53Þ

where rMði; jÞ is the position of the mesh node identified by the index i (running along the mid-line) and by the index j (run-
ning normally away from the mid-line), r describes the position of the mid-line, and Ds is the spacing of the mid-line dis-
cretization (Fig. 25). Successively the local deformation velocity is computed at each grid node location by taking the time
derivative of Eq. (53)

_rMði; jÞ ¼ _rði � Ds; tÞ þ j � Ds � _mði � Ds; tÞ ð54Þ
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The characteristic function vM (0 6 vM 6 1) is also evaluated at each grid node location by

vM ¼
0 d < ��
1
2 1þ d

� þ 1
p sin p d

�

� �� �
jdj 6 �

1 d > �

8><
>:

where d is the signed distance function from the surface of the swimming body (negative outside, positive inside) and � is the
mollification width. In the head frame of reference, we calculate center of mass position rcm and velocity _rcm

rcm ¼
R

R qsvMrdxR
R qsvMdx

; _rcm ¼
R

R qsvM
_rdxR

R qsvMdx
ð55Þ

where R is the entire simulation domain. Center of mass location and velocity are then used to transform the swimmer rep-
resentation into the center of mass frame of reference (r0; _r�0). Velocities _r�0 are then corrected to account for the vanishing
rotational impulse through the angular velocity x

L ¼
Z

R
r0 � qsvM

_r�0dx; Js ¼
Z

R
r02qsvMdx; x ¼ L

Js
; _r0 ¼ _r�0 þx� r0 ð56Þ

where L and Js represent respectively the angular momentum and scalar momentum of inertia. An additional coordinate
transformation is needed to bring the swimmer representation into the simulation frame of reference (r00; _r00). The above
steps ensure that the net force and momentum acting on the body will exclusively come from the hydrodynamics. The
deformable mesh is subdivided into triangular patches and we indicate with Plðb; a;aÞ the bilinear interpolant of the quan-
tity a at the location b from the vertices of the triangular patches a. Velocities ( _r00) and characteristic function (vM) stored at
the node locations (r00) are then interpolated onto the Cartesian computational grid of the flow solver

vs ¼ Plðx; r00;vMÞ ¼ Plðx;RðhÞr0 þ xcm;vMÞ ð57Þ
uDEF ¼ Plðx; r00; _r00Þ ¼ Plðx;RðhÞr0 þ xcm;RðhÞ _r0Þ ð58Þ

where x are the computational grid nodes positions, xcm and h are, respectively, the coordinates of the body center of mass
and the rotation angle in the simulation frame of reference, while R is the 2D counterclockwise rotation matrix. Such con-
struction ensures that uDEF does not contain any translation nor rotational component.
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