
High performance CPU/GPU
multiresolution Poisson solver

Wim M. VAN REES, Diego ROSSINELLI, Panagiotis HADJIDOUKAS and
Petros KOUMOUTSAKOS 1

Chair of Computational Science, ETH Zürich, Switzerland

Abstract. We present a multipole-based N-body solver for 3D multiresolution,
block-structured grids. The solver is designed for a single heterogeneous CPU/GPU
compute node, and evaluates the multipole expansions on the CPU while offloading
the compute-heavy particle-particle interactions to the GPU. The regular structure
of the destination points is exploited for data parallelism on the CPU, to reduce
data transfer to the GPU and to minimize memory accesses during evaluation of the
direct and indirect interactions. The algorithmic improvements together with HPC
techniques lead to 81% and 96% of the upper bound performance for the CPU and
GPU parts, respectively.

Keywords. tree-code, multipole method, GPU, vortex method, multiresolution

Introduction

Multipole methods are used to decrease the computational cost of the N-body problem
encountered in many particle-based simulations with applications such as astrophysics
and fluid mechanics. Much effort is devoted to optimizing the performance of multipole-
based N-body solvers for arbitrarily spaced source and destination particles, both for
massively parallel distributed memory architectures [1] and for GPUs and GPU clusters
[2].

In fluid mechanics, the N-body problem lies at the heart of traditional vortex meth-
ods [3]. The kinematic relationship between vorticity and the streamfunction leads to an
N-body potential problem that needs to be solved at every timestep to recover the stream-
function from the vorticity. In the current work we consider remeshed vortex methods [4],
which combine particle-based advection with regular grid-based data representations.
The regular grid is commonly exploited for FFT-based elliptic solvers [5]. However, the
straightforward use of FFT-based solvers is hindered in a multiresolution setting, where
the grid spacing changes according to the local spatial scales in the flow.

For multiresolution remeshed vortex methods, multipole methods offer a number of
computational advantages. First, they can handle arbitrarily spaced source and destina-
tion points. Second, their computational cost scales separately with the number of source
and destination points. This is relevant here since in general the vorticity field has a com-
pact support, whereas the streamfunction needs to be evaluated globally. Third, they al-

1Corresponding Author: petros@ethz.ch

Parallel Computing: Accelerating Computational Science and Engineering (CSE)
M. Bader et al. (Eds.)
IOS Press, 2014
© 2014 The authors and IOS Press. All rights reserved.
doi:10.3233/978-1-61499-381-0-481

481

low for a natural treatment of free-space boundary conditions. And fourth, the granular-
ity of the computational work is relatively fine as every destination point can be evalu-
ated independently, rendering the use of GPU-based acceleration techniques particularly
attractive.

In this work we present a multipole-based N-body solver to compute the streamfunc-
tion from the vorticity field on a multiresolution grid. As opposed to existing algorithms,
we designed our solver to exploit the regular structure of the destination points. We out-
line the algorithm, present details of our optimizations and show performance results of
the heterogeneous CPU/GPU implementation on a single Cray XK7 compute node.

1. Governing equations

The remeshed vortex method solves the Navier-Stokes equations in the velocity (u)-
vorticity (ω = ∇×u) formulation. At every timestep, the velocity field needs to be com-
puted from the vorticity field. Using the incompressibility of the velocity field (∇ ·u= 0),
one can derive a Poisson equation for the solenoidal vector streamfunction Ψ:

∇2Ψ =−ω, (1)

from which the velocity follows as u = ∇×Ψ. Throughout this work we consider one
component of the above Poisson equation, and employ free-space boundary conditions
to simulate an unbounded flow.

The solution to equation (1) can be written as a convolution between Green’s func-
tion for the Laplace equation and the right-hand side:

Ψ(x) =−
∫

G(x−x′)ω(x′) dx′, (2)

where, in three dimensions,

G(x) =− 1
4π|x| . (3)

Here we will briefly recapitulate the multipole method, based on [6] and following
the discussion in [7]. In the discrete case, for N source points located inside a sphere with
radius a, and the ith source point having polar coordinates (r′i,θ ′i ,φ ′i) and weight ωi, we
have at polar location x = (r,θ ,φ):

ψ(x) =
N

∑
i=0

ωi

4π
∣∣x−x′i

∣∣ =
1

4πr

N

∑
i=0

ωi√
1+(r′i/r)2−2(r′i/r)cosγi

, (4)

where γi is the angle between the vectors x and x′i. If for each source point we have
(r′i/r) < 1, we can substitute the definition of Legendre polynomials Pn(x) as Taylor
series, and use the addition theory for spherical harmonics Y m

n (θ ,φ) to find

ψ(x) = 1
4π

∞

∑
n=0

n

∑
m=−n

{
N

∑
i=0

ωir′
n
i Y m

n (θ ′i ,φ ′i)

}
Y m

n (θ ,φ)
rn+1 ≡ 1

4π

∞

∑
n=0

n

∑
m=−n

Cm
n

Y m
n (θ ,φ)
rn+1 . (5)

W.M. Van Rees et al. / High Performance CPU/GPU Multiresolution Poisson Solver482

In this expression, the multipole coefficients Cm
n can be precomputed for each collection

of sources, and used in the evaluation of equation (5) for every destination point.
If the infinite sum over n is truncated to a finite number of terms p+1, the following

error norm holds:
∣∣∣∣∣ψ(x)− 1

4π

p

∑
n=0

n

∑
m=−n

Cm
n

Y m
n (θ ,φ)
rn+1

∣∣∣∣∣≤
N

∑
i=1

|ωi|(r−a)−1
(a

r

)p+1
. (6)

Evaluation of the direct interactions requires a discretization of equation (2), with
the Green’s function given in equation (3). The singular nature of this integral reduces the
accuracy of the scheme close to the singularity. Furthermore, it requires special treatment
of the singularity itself, i.e. the case x = x′, which introduces an instruction irregularity
in the code. For these reasons we choose to replace the original Green’s function with a
smoother function, as derived in [8]:

Gε(r) =− 1
4π

r2 + 3
2 ε2

(r2 + ε2)
3
2
, (7)

where ε is a smoothing parameter. In our simulations, we set ε = h, where h is the small-
est grid spacing in the domain. This formulation removes the singularity and associated
instruction irregularity, and improves the accuracy of the results.

2. Computational setting

The multipole solver described herein is part of a 3D incompressible fluid mechanics
solver under development. The solver is built on MRAG, a wavelet-based, multiresolu-
tion block-structured framework to solve partial differential equations [9], and is based
on the remeshed vortex method [10]. In the remeshed vortex method each timestep re-
quires three executions of the multipole algorithm, once for each of the three compo-
nents of the streamfunction. Future applications of the solver include the simulation and
optimization of self-propelled swimmers [11,12].

In MRAG, the computational grid consists of blocks with a fixed number of grid-
points in each direction (here 16). The computational blocks are non-overlapping leaves
of a hierarchical tree structure that represents the computational grid, so that each block
can exist at a different spatial resolution. Blocks can be refined (split into new blocks)
or compressed (merged with neighboring blocks) based on the magnitude of the detail
coefficients in the forward wavelet transform of relevant quantities with respect to user-
specified thresholds. Operations across all blocks are parallelized on a multicore node
with task-based parallelism, based on the work-stealing principle as implemented in the
Intel Threading Building Blocks (TBB) library [13]. More details on MRAG and its par-
allel implementation on multicore CPUs are given in [9,14].

3. Algorithm

The algorithm used here is based on a Barnes-Hut tree code [6] and adapted for the
current computational setting.

W.M. Van Rees et al. / High Performance CPU/GPU Multiresolution Poisson Solver 483

We filter all grid points to extract those with non-zero vorticity values, creating an ar-
ray of source points spanning only the support of the vorticity field. These source points
are hierarchically decomposed into an oct-tree structure, guided by a parameter control-
ling the maximum number of source points per leaf (smax, here set to 2048). For each
leaf the multipole expansion coefficients Cm

n are calculated according to equation (5). At
parent nodes the expansions of the children are combined and translated to the parent
centers [7]. All expansions are stored in an array.

We group a set of destination points into a brick (here 8 grid points in each direction)
to increase the amount of work per task. All points in a destination brick are subjected
to the same logical interaction pattern. For each destination brick, therefore, we create
two logical plans containing the lists of all direct and all indirect interactions, respec-
tively. Separating the creation of the plan from the actual interaction evaluations enables
offloading of all direct interactions to an accelerator such as the GPU.

The logical plans are based on a user-specified opening parameter θ . Specifically, for
each destination brick, we traverse the source tree downwards. Starting at the root node,
we compare the node radius a (the radius of the smallest sphere containing its sources)
with the smallest distance r between the node center and the points inside the destina-
tion brick. If a/r < θ , we will perform a multipole evaluation according to equation (5)
between the tree node and all points in the destination brick. If a/r ≥ θ , we traverse
one level down the tree and repeat the process for all the node’s children. If we reach a
leaf, we perform direct evaluations according to equation (4) between all points in the
source node and all points in the destination brick. In this way, if θ = 0 we perform the
O(N2) problem whereas for 0 < θ < 1 we have a converging multipole approximation
with truncation error bound by equation (6), as a function of the order of the multipole
expansion p and the opening parameter θ .

The logical plan for the direct evaluations of a destination brick consists of a vector
of pairs, where each pair encodes the start and the end index of a range in the source point
arrays (see figure 1). For the indirect evaluations, the logical plan consists of a vector of
tuples, where each tuple contains the 3D center of the expansions and the index of the
expansion in the expansions array.

Finally, we evaluate the logical plans for each destination brick and sum the results
to obtain the streamfunction field.

4. Implementation

The algorithm is implemented in C++11 and is parallelized using OpenMP tasks and the
Threading Building Blocks (TBB) library. The order of the multipole expansion p, is a
compile-time constant that is fixed at p = 6 in this work. In this section we will briefly
discuss the implementation of the key parts of the algorithm.

Source points The source points are converted from an Array-of-Structures (AoS) to
a Structure-of-Arrays (SoA) format to enable vectorization over the source particles in
the later stages of the solver. To increase spatial locality, we sort the particles in Morton
order with the OpenMP-based GNU libstdc++ parallel sort.

W.M. Van Rees et al. / High Performance CPU/GPU Multiresolution Poisson Solver484

Figure 1. Logical plan for the direct interactions. The source point arrays (top, green) are the set of grid points
with non-zero vorticity, converted to a Structure of Arrays (SoA). For each structured, fixed-size destination
brick the plan defines a list of pairs representing the start and end indices (inclusive) of the source points to
interact with. For simplicity, destination bricks in this sketch are represented as 2D blocks of 4×4 grid points.

Tree construction and logical plan The oct-tree containing all source particles is recur-
sively constructed using OpenMP tasks. We first perform a top-down pass to identify and
create the nodes on each level, and then perform a bottom-up pass to compute the mul-
tipole coefficients Cm

n according to equation (5). After the tree construction, the logical
plan for the evaluation phase is created using TBB parallel tasks across the destination
bricks.

Legendre polynomials Pm
n The associated Legendre polynomials Pm

n (cosθ) are evalu-
ated for 0≤ n≤ p, 0≤ m≤ n through the recursive equations:

P0
0 = 1, P0

1 = cos(θ), P1
1 = sin(θ)

P0
n =

(2n−1)
n

cos(θ)P0
n−1−

(n−1)
n

P0
n−2 2≤ n≤ p

Pm
n = (2n−1)sin(θ)Pm−1

n−1 +Pm
n−2 2≤ n≤ p, 1≤ m≤ n−2

Pm
n = (2n−1)sin(θ)Pm−1

n−1 2≤ n≤ p, n−1≤ m≤ n

We store the polynomials in a linear data structure of size (p+1)(p+2)/2. All recursions
are templatized over n, and for each n in turn over m, so that all instruction irregularity is
resolved at compile-time and array access indices can be precomputed. Furthermore, the
associated Legendre polynomials are vectorized with SSE instructions so that the values
of Pm

n can be computed for four different arguments in one set of operations.

Spherical harmonics Y m
n The spherical harmonics Y m

n (θ ,φ) are defined as:

Y m
n (θ ,φ) =

√
(n− |m|)!
(n+ |m|)!P|m|

n (cosθ)(cos(mφ)+ isin(mφ)) ,

for 0≤ n≤ p and−m≤ n≤m. To reduce the number of costly trigonometric evaluations,
we compute the sine and cosine factors recursively using the identity:

W.M. Van Rees et al. / High Performance CPU/GPU Multiresolution Poisson Solver 485

sin(mφ) = sin(φ)cos((m−1)φ)+ cos(φ)sin((m−1)φ),

cos(mφ) = cos(φ)cos((m−1)φ)− sin(φ)sin((m−1)φ).

Finally we note that the prefactor in the definition of the spherical harmonics, for m > 0,
can be rewritten as:

(n−m)!
(n+m)!

=
1

(n+m)(n+m−1)(n+m−2) . . .(n−m+1)
.

This formulation reduces the number of floating point evaluations and is precomputed
for all n≤ p and m≤ n at compile-time.

The spherical harmonics are stored into two arrays, each of size p(p+ 1)/2, for
the real and complex part, respectively. Again we vectorize the computation using SSE
so that we can compute the set of all harmonics for four different arguments (θ ,φ) in
parallel.

Multipole coefficients Cm
n When creating the multipole coefficients Cm

n from a set of
source particles, we use SSE instructions to process four source points in parallel. Again
template recursion allows for unrolled instructions over the n and m indices. The values
Cm

n are stored in three arrays: two of size p(p+ 1)/2 for the real and imaginary part of
Cm

n , m > 0, and one more of size (p+ 1) for the m = 0 values. Based on the multipole
coefficients for a leaf node of our source tree, we can use translation equations to find the
coefficients at parent nodes [7]. In this translation computation we use a precomputed
look-up table for those prefactors known at compile-time.

CPU-only evaluation When evaluating both indirect and direct interactions on the
CPU, we rely on three levels of TBB-based parallel operators to exploit the multicore
architecture. The first level of parallelism covers all the bricks, the second covers the
direct and the indirect interactions, and the third covers the interactions themselves. At
the finest level of parallelism we therefore evaluate a (sub)set of interactions (direct or
indirect) for all the destination points inside a brick.

The direct evaluation kernel on the CPU is vectorized with AVX instructions. Since
our bricks consist of 8 grid points per dimension, this allows us to evaluate all the grid
points along the x-direction in parallel. Based on equation (7), we have 15 floating-point
operations and 1 reciprocal square root per particle-particle interaction. We implement
the reciprocal square root with the AVX native approximation and a further Newton-
Raphson iteration, leading to a total cost of 21 floating point operations. Out of these 21
operations, 4 are Fused Multiply-Add (FMA) operations.

The indirect evaluation kernel on the CPU is currently vectorized with SSE instruc-
tions over the destination points along the x-direction. These instructions are unrolled at
compile-time with templates. Here we count the number of instructions directly from the
assembly code, which gives 46 floating point operations per particle-multipole interac-
tion (for p = 6), out of which 11 are FMA.

Hybrid CPU/GPU evaluation In case we use the GPU to evaluate the direct interac-
tions, we send the source data to the GPU right after creating the SoA source arrays,
so that the transfer overlaps with the next steps on the CPU: computing the multipole
coefficients and creating the logical evaluation plans. After the plans and the tree are cre-
ated, we send the logical plan for the direct evaluations to the GPU and start the evalua-

W.M. Van Rees et al. / High Performance CPU/GPU Multiresolution Poisson Solver486

create source
particles

create tree &
expansions

create logical
plan

evaluate indirect
interactions

accumulate
results

send sources

evaluate direct
interactions

CPU

GPU
send plan

receive
source particles

receive
logical plan

send results

Figure 2. Hybrid CPU/GPU workflow, showing the steps on the CPU (red) and GPU (blue) for one stream-
function evaluation.

tion asynchronously, so that it is executed in parallel with the evaluation of the indirect
interactions on the CPU. Finally, we transfer back the results from the GPU (figure 2).

The GPU implementation maps all direct interactions for a single destination brick
on one streaming multiprocessor (SM), so that each CUDA block is a 3D array with
8 threads in each direction. If the number of bricks exceeds the maximum CUDA grid
size, we perform multiple passes. We use the shared memory on an SM to load up to
64 source point locations and weights in parallel, and subsequently each CUDA thread
in the SM evaluates those source points for its own destination point. The interaction
kernel performs 15 FLOPs (including 3 FMA) and 1 reciprocal square root with a cost
equivalent to 6 FLOPs [15].

The amount of direct interactions to be computed generally varies between the
bricks, which could lead to load-imbalance. However, we found that the hardware sched-
uler on the GPU is effective in distributing the work among the available SMs and we
did not observe significant load-imbalance problems.

5. Results

We run our performance tests on a single 16-core AMD Interlagos 6272 compute node,
with a NVIDIA Tesla K20X GPU, as available on the Cray XK7 system “Tödi” at the
Swiss Supercomputing Center (CSCS). The peak performance of all 8 FPUs of this
compute node is 268.8 GFLOP/s, and the listed peak performance of the K20X is 3.95
TFLOP/s. Both the CPU and GPU support FMA instructions, so the upper performance
bounds of our kernels are adjusted according to their FMA/non-FMA ratios. The code is
compiled with version 4.7 of the GNU C++ compiler and version 4.1.0 of TBB.

We consider two test cases: the first is an artificial constructed test problem while
the second considers a relevant flow problem.

5.1. Test problem

We consider a test problem introduced in [16], consisting of a vortex ring with radius R,
its streamfunction defined as:

Ψ(r,z) = f

(√
(r−R)2 + z2

R

)
eθ , where f (t) =

⎧
⎨

⎩
c1 exp

(
− c2

1− t2

)
if |t|< 1

0.0 else
.

The vorticity is derived from the streamfunction as ω = ∇× (∇×Ψ). We place a ring
at (0.25,0.25,0.25) and at (0.75,0.75,0.75) in a unit cube domain with origin (0,0,0).

W.M. Van Rees et al. / High Performance CPU/GPU Multiresolution Poisson Solver 487

evaluation
other

7.1E-026.6E+00

4.2E-02

8.6E-03

7.8E-03

1.3E-02

create logical plan
create tree & expansions
source arrays SoA transform
sort source arrays

CPU only

8.5E-026.8E-01

evaluation
other

4.8E-03

8.4E-03

4.2E-02

8.6E-03

7.8E-03

1.3E-02

create logical plan
create tree & expansions
source arrays SoA transform
sort source arrays
transfer sources & plan to GPU
transfer results from GPU

hybrid CPU/GPU

Figure 3. Time distribution (in seconds) of the presented algorithm with θ = 0.5, CPU-only (left) and hybrid
CPU/GPU (right)

1.0E-02

1.0E-01

1.0E+00

1.0E+01

1.0E+02

1.0E+03

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CPU only

W
al

l-
cl

o
ck

 t
im

e
(s

)

θ

indirect interactions
direct interactions
total evaluation

1.0E-02

1.0E-01

1.0E+00

1.0E+01

1.0E+02

1.0E+03

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

hybrid CPU/GPU
W

al
l-

cl
o

ck
 t

im
e

(s
)

θ

indirect interactions (CPU)
direct interactions (GPU)
total evaluation

Figure 4. Time spend in computing direct and indirect interactions as a function of θ , CPU-only (left) and
hybrid CPU/GPU (right)

For each ring, we set R = 0.125, c1 = 227 and c2 = 20. We rotate one of the rings by π/2
so that the axes of the rings are not aligned. The effective resolution of the grid is 2563,
with compression and refinement thresholds of 10−4 and 10−2, respectively, resulting
in 3.6×106 destination points. We consider the y-component of the streamfunction, for
which we have 8.7×105 source particles.

In figure 3 we show the time distribution of the CPU implementation (left) and
CPU/GPU implementation (right) for the case of θ = 0.5. The evaluation phase, which
covers both the direct and indirect interactions, takes most of the time for both cases.
The remaining time is spent mostly in sorting the source particles, after that it is about
equally spent in the remaining parts of the algorithm.

Since the evaluation phase takes most of the time, we focus our analysis there. Strong
parallel scaling of the evaluation step on the CPU reaches 96.7% on 8 cores, in which
case all FPUs are active. Doubling the number of cores to 16 brings only very small
improvements for the evaluation phase, although other parts of the solver, notably the
creation of the logical plan, benefit from these additional cores.

Details about the evaluation phase are shown in figure 4. For the parallel parts of the
code, we accumulate the timings measured for each brick and divide this number by the
total number of threads (16), to obtain a measure of the wall-clock time spent in each
phase of the evaluation. We plot the timings against different values of θ . The time spent

W.M. Van Rees et al. / High Performance CPU/GPU Multiresolution Poisson Solver488

Figure 5. Performance measurements from simulations of the flow past a sphere, with effective resolution of
5123 (blue) and 10243 (red).

per interaction evaluation remains approximately constant for both the direct (CPU and
GPU) and the indirect evaluations.

For the CPU-only execution, across the entire range of θ values, we spend at least
one order of magnitude more time for the direct interactions than for the indirect inter-
actions. Offloading the direct interactions to the GPU achieves a speedup of about 17 in
their evaluation time, so that for θ ! 0.2 their computation is effectively hidden and the
solution time is dictated by the evaluation of the indirect interactions on the CPU. Table 1

Table 1. Performance of CPU and GPU components for the evaluation of the test problem

CPU (GFLOP/s) GPU (TFLOP/s)
measured upper bound measured upper bound

direct interactions 118.6 160.0 2.18 2.26
indirect interactions 135.6 166.5 n/a

shows that indirect and direct interactions on the CPU achieve 81.4% and 74.1% of the
upper performance bound, respectively, while the direct interactions on the GPU achieve
96.5% of the upper performance bound.

5.2. Flow past a sphere

We report performance results of our software for the flow past a sphere at Reynolds
number 550, with effective resolutions of 5123 and 10243, and θ = 0.5. The performance
of each streamfunction component evaluation within the first 2500 timesteps (up to non-
dimensional time T = 1.5) is plotted in figure 5. The x-axis represents the number of in-
teractions, which varies as the vorticity support changes, and as the grid adapts according
to the flow scales.

The performance for both direct and indirect interactions on the CPU shows little
variation with the number of interactions, whereas on the GPU performance increases
slightly with increasing number of interactions. Presumably the reason is a more effec-
tive load-balancing, as there are more degrees of parallelism when the number of bricks
increases. The measured performance is very close to the numbers reported for the test
problem above, showing that also during a production simulation we can sustain high
fractions of the upper performance bound.

We note that, as the number of source and destination points increase, the differ-
ence between CPU and GPU computing times increases. This could be a motivation to
increase the ratio between direct and indirect interactions, for instance by decreasing θ .

W.M. Van Rees et al. / High Performance CPU/GPU Multiresolution Poisson Solver 489

6. Conclusions

We presented a hybrid CPU/GPU multipole-based N-body solver for multiresolution
grids. We have provided a detailed description of the equations, the algorithm and the op-
timizations performed to maximize performance. The software achieves approximately
90% of the upper performance bound for the most time-consuming phase of the algo-
rithm. Offloading the direct interactions to the GPU allows us to harness its approxi-
mately 15 times larger peak performance, while freeing the CPU to perform the more
complicated indirect interactions in parallel. In practice, we observe similar compute
times for the CPU and the GPU, although a more fine-tuned approximation of the param-
eters θ and p could maximize the overlap while still meeting a user-specified accuracy.

The algorithm will be used for flow optimizations related to bluff-body flows and
self-propelled swimmers. Future improvements of the Poisson solver will focus on using
AVX instructions for the indirect interactions, to anticipate its use on the Cray XC30.

Acknowledgements We thank Dr. Peter Messmer (NVIDIA) for several helpful dis-
cussions on improving the performance of the direct interaction evaluations on the GPU.

References

[1] A Rahimian, I Lashuk, A Chandramowlishwaran, D Malhotra, L Moon, R Sampath, A Shringarpure,
S Veerapaneni, J Vetter, R Vuduc, D Zorin, and G Biros. Petascale direct numerical simulation of blood
flow on 200k cores and heterogeneous architectures. In SC10, 2010.

[2] R. Yokota and L. Barba. Hierarchical N-body simulations with autotuning for heterogeneous systems.
Computing in Science & Engineering, 14(3):30–39, 2012.

[3] A. Leonard. Vortex methods for flow simulation. Journal of Computational Physics, 37:289–335, 1980.
[4] P. Koumoutsakos. Inviscid axisymmetrization of an elliptical vortex. Journal of Computational Physics,

138(2):821–857, 1997.
[5] P. Chatelain and P. Koumoutsakos. A fourier-based elliptic solver for vortical flows with periodic and

unbounded directions. Journal of Computational Physics, 229(7):2425 – 2431, 2010.
[6] J. Barnes and P. Hut. A hierarchical O(N log N) force-calculation algoritm. Nature, 324:446–449, 1986.
[7] L. Greengard and V. Rohklin. A fast algorithm for particle simulations. Journal of Computational

Physics, 73(2):325–348, Dec 1987.
[8] G.S. Winckelmans and A. Leonard. Contributions to vortex particle methods for the computation of

three-dimensional incompressible unsteady flows. Journal of Computational Physics, 109:247–273,
1993.

[9] D. Rossinelli, B. Hejazialhosseini, D.G. Spampinato, and P. Koumoutsakos. Multicore/multi-gpu ac-
celerated simulations of multiphase compressible flows using wavelet adapted grids. SIAM Journal On
Scientific Computing, 33(2):512–540, 2011.

[10] P. Koumoutsakos and A. Leonard. High-resolution simulations of the flow around an impulsively started
cylinder using vortex methods. Journal of Fluid Mechanics, 296(1–38), 1995.

[11] M. Gazzola, W. M. van Rees, and P. Koumoutsakos. C-start: Optimal start of larval fish. Journal of
Fluid Mechanics, 698:5–18, 2012.

[12] W.M. van Rees, M. Gazzola, and P. Koumoutsakos. Optimal shapes for intermediate Reynolds number
anguilliform swimming. Journal of Fluid Mechanics, 722, 2013.

[13] A. Robison, M. Voss, and A. Kukanov. Optimization via reflection on work stealing in TBB. In 2008
IEEE International Symposium on Parallel & Distributed Processing, Vols 1-8, pages 598–605, 2008.

[14] D. Rossinelli, B. Hejazialhosseini, M. Bergdorf, and P. Koumoutsakos. Wavelet-adaptive solvers on
multi-core architectures for the simulation of complex systems. Concurrency and Computation: Practice
and Experience, 23(2):172–186, Feb 2011.

[15] CUDA C Programming Guide v5.0, October 2012.
[16] M.M. Hejlesen, J.T. Rasmussen, P. Chatelain, and J.H. Walther. A high order solver for the unbounded

poisson equation. Journal of Computational Physics, 252:458–467, 2013.

W.M. Van Rees et al. / High Performance CPU/GPU Multiresolution Poisson Solver490

