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This online appendix gives complements on the model (e.g. on variants with continuous time, fully
flexible prices, with nominal illusion, another specification for the debt process). It gives also additional
proofs.

XI Complements

XI.A The model in continuous time

XI.A.1 Formulation of the model in continuous time

We can write M = 1 − ξ∆t, β = 1 − r∆t and Mf = 1 − ξf∆t. In the small time limit (∆t → 0),
ξ, ξf ≥ 0 are the macro parameters of inattention. The model (28)-(29) becomes, in continuous time:

ẋt = ξxt − bddt + σ (it − rt − πt) , (108)

π̇t =
(
r + ξf

)
πt − κxt. (109)

When ξ = ξf = bd = 0, we recover Werning (2012)’s formulation, which has rational agents.

The Taylor criterion (34) becomes, using ρf := r + ξf ,

φπ +
ρf

κ
φx +

ρfξ

κσ
> 1. (110)

Section XI.A.2 contains a derivation of the Phillips curve in continuous time.

XI.A.2 Derivation of the Phillips curve in continuous time

Here I show the derivation of the Phillips curve (29) in continuous time. In exploring variants of the
NK model, I found it quicker to use this continuous-time derivation than the discrete time version (the

2-period model is also useful for basic conceptual issues).
I use notations from Section XI.A. The Calvo reset probability per unit of time is λdt (i.e. θ =

1− λ∆t). I follow the derivation of Proposition 2. I use the notations:

δ := r + λ, α = δ + ξ. (111)

The discrete-time m̄t becomes e−ξt, where ξ ≥ 0 is the amount of cognitive discounting (rationality

corresponds to ξ = 0).
If a firm can reset its price at time 0, it sets it to the value in (27):

p∗0 − p0 = E

[∫ ∞

0

δe−(δ+ξ)t

(
−mf

xµt +mf
π

∫ t

0

πsds

)
dt

]
,
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and using ∫ ∞

t=0

e−αt
(∫ t

s=0

πsds

)
dt =

∫ ∞

s=0

πsds

(∫ ∞

t=s

e−αtdt

)
=

∫ ∞

s=0

e−αs

α
πsds

we have

p∗0 − p0 = E

[∫ ∞

0

e−αt
(
m′

fππt − µ′
t

)
dt

]
, (112)

with

m′
fπ :=

δ

α
mf
π, µ′

t := δmf
xµt.

Inflation at time 0 is π0 = ṗ0 = λ (p∗0 − p0). Hence, we have:

π0 = λE

[∫ ∞

0

e−αt
(
m′

fππt − µ′
t

)
dt

]
. (113)

To solve this, it is useful to use the differentiation operator, D = d
dt . With this notation, for a

function f (sufficiently regular), the Taylor expansion formula can be written as:

f (t+ τ) =
∞∑

k=0

f (k) (t)
τk

k!
=

∞∑

k=0

(
Dk τ

k

k!

)
f = eτDf,

i.e.

f (t + τ) = eτDf (t) . (114)

Hence, we have (formally at least):

∫ ∞

0

e−ατf (τ) dτ =

∫ ∞

0

e−ατeτDf (0) dτ =
1

α−D
f (0) . (115)

Hence (113) can be rewritten (dropping the expectations for ease of notation):

πt =
λ

α−D

(
m′

fππt − µ′
t

)
, (116)

and multiplying by α−D,

(α−D) πt = λ
(
m′

fππt − µ′
t

)
.

We recall that µt = − (γ + φ)xt (see (107)), so that

(r + λ+ ξ −D)π = λ
δ

α
mf
ππt + κxt, (117)

with κ = λδmf
x (γ + φ), i.e.

κ = κ̄mf
x, (118)

κ̄ = λ (r + λ) (γ + φ) . (119)
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This gives the continuous-time version of the Phillips curve in the basic model, equation (29).

(
r + ξf

)
πt − π̇t = κxt, (120)

with ξf = ξ + λ− λ δαm
f
π, i.e.

ξf = ξ + λ

(
1−

r + λ

r + λ+ ξ
mf
π

)
. (121)

XI.B Consumption and labor supply: Complements

Here I gather a few results that are useful to think about optimal consumption and labor supply with
behavioral agents.

I start by recording some useful relations:

ĉt = ω̂t + N̂t + ŷft , (122)

N̂t =
ω̂t

φ
−
γ

φ
ĉt. (123)

The first one is the linearization of the net profits, yft = ct − ωtNt. The second one is the labor

supply condition.

XI.B.1 Income effects in the static case

Consider the simpler static problem:

max
c,N

c1−γ − 1

1− γ
−

N1+φ

1 + φ
s.t. c = wN + k,

around k = 0, w = 1. At that default, c = N = 1. I next consider the impact of higher wealth, k.

First, consider the case of a fixed labor supply, e.g. we add the constraint N = 1 . Then, for function
ĉ (k; 1) = c (k;N = 1)− 1,

ĉ (k;N = 1) = k. (124)

Next, consider the case with endogenous labor supply. We have99

ĉ (k) =
φ

φ+ γ
k, (125)

and N̂ (k) = − γ
φ+γk. If wealth goes up by $1, labor supply goes down, so that consumption goes up by

less than $1 (indeed, it goes up by φ
φ+γ < 1). This fact will show up in the more complex intertemporal

versions to which we now turn.

XI.B.2 Intertemporal case

Notations. I call cτ the planned consumption at time τ , while ŷ (Xτ ) and ĉ (Xτ ) are the aggregate
income and consumption at date τ (all expressed as deviations from the steady state).

99Indeed, the FOC is Nφ (k) = c (k)−γ
, so that (at k = 0), φNk = −γck. The budget constraint c (k) − N (k) = k

implies ck −Nk = 1, so
(
1 + γ

φ

)
ck = 1.
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Here I state a variant of Proposition 29. That proposition was written as a function of planned
future labor supply. Here I explicitly solve for planned future labor supply.

Proposition 17 (Consumption given beliefs, solving out for labor supply) Suppose that we have

ŷBR (Xt, Nt) = ŶBR (Xt) + w (Xt)
(
Nt − N̄

)
, (126)

where ŶBR (Xt) is some function that is independent of the agent’s own labor supply satisfying ŶBR (0) =

0; and the optimization of utility is over cτ , Nτ . Then optimal consumption is, up to second order terms:

ct = ȳ + bkkt + E
BR
t

[
∑

τ≥t

1

Rτ−t

(
br r̂

BR (Xτ ) + bk

(
ŶBR (Xτ ) +

ŵ (Xτ )

φ

))]

, (127)

br :=
−1

γR2
, bk :=

r

R
χ, χ :=

φ

φ+ γ
. (128)

Note that the bk has been multiplied by χ. Also, income has been increased by ŵ(Xτ )
φ , because of the

labor supply response. The marginal propensity to consume (MPC) out of capital is now r
Rχ, rather

than r
R . This is analogous to the static MPC in (125): higher wealth kt is spent on higher consumption

and reduced labor supply.

Proof of Proposition 17 We start from (210), the consumption given planned future labor
supply:

ct =
r

R
kt + ȳ + E

BR
t

[
∑

τ≥t

1

Rτ−t

(
br r̂

BR (Xτ ) +
r

R

(
ŶBR (Xτ ) + w (Xτ )

(
Nτ − N̄

)))
]

. (129)

Now, the labor supply relation (123) gives:

Nτ − N̄ =
ω̂ (Xτ )

φ
−
γ

φ
ĉτ , (130)

where ĉτ is consumption that the consumer plans, at time t, to enjoy at time τ ≥ t. Because under the

agent’s subjective model the Euler equation holds, we have

ĉτ = ĉt +
1

γR
E
BR
t

(
r̂BR (Xt) + · · ·+ r̂BR (Xτ−1)

)
. (131)

So,

ĉt −
r

R
kt = E

BR
t

[
∑

τ≥t

1

Rτ−t

(
brr̂

BR (Xτ ) +
r

R

(
ŶBR (Xτ ) +

ω̂ (Xτ )

φ
−
γ

φ
ĉτ

))]

= E
BR
t

[
∑

τ≥t

1

Rτ−t

(
brr̂

BR (Xτ ) +
r

R

(
ŶBR (Xτ ) +

ω̂ (Xτ )

φ

))]

−
γ

φ
(A+B) ,
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with

A =
∑

τ≥t

1

Rτ−t

r

R
ĉt = ĉt,

B =
r

R

1

γR
E
BR
t

∑

τ≥t+1

1

Rτ−t

(
r̂BR (Xt) + · · ·+ r̂BR (Xτ−1)

)
=

r

γR2
E
BR
t

∑

τ≥t

1

Rτ−t

(
∑

k≥1

1

Rk

)

r̂BR (Xτ )

=
r

γR2
E
BR
t

∑

τ≥t

1

Rτ−t

1

r
r̂BR (Xτ ) = −brE

BR
t

∑

τ≥t

1

Rτ−t
r̂BR (Xτ ) .

Hence,

ĉt −
r

R
kt = E

BR
t

[
∑

τ≥t

1

Rτ−t

((
1 +

γ

φ

)
br r̂

BR (Xτ ) +
r

R

(
ŶBR (Xτ ) +

ω̂ (Xτ )

φ

))]

−
γ

φ
ĉt,

i.e.

(
1 +

γ

φ

)
ĉt =

r

R
kt + E

BR
t

[
∑

τ≥t

1

Rτ−t

((
1 +

γ

φ

)
brr̂

BR (Xτ ) +
r

R

(
ŶBR (Xτ ) +

ω̂ (Xτ )

φ

))]

.

This gives the announced result. !

XI.B.3 Using general equilibrium considerations

Let us consider the general equilibrium, including income potential from other transfers T BR (Xτ )
(which come from fiscal policy, which could also be misperceived,100 or some other source).

ŷ (Xτ , Nτ ) = my ĉ (Xτ ) + ω (Xτ ) (Nt −N (Xτ )) + T BR (Xτ ) . (132)

The resulting consumption function is as follows.

Proposition 18 (Consumption with active fiscal policy) Consider an agent maximizing over (cτ , Nτ )
utility U = EBR

t

∑∞
τ=t β

τ−tu (cτ , Nτ ) subject to the law of motion for wealth (49), and with extra transfers
T BR (Xτ ) that do not depend on the agent’s own actions. Up to second order terms (and for small wealth

kt), consumption is:

ĉt = bkkt + E
BR
t

[
∑

τ≥t

1

Rτ−t

(
brr̂

BR (Xτ ) + bY ĉ (Xτ ) + bkT
BR (Xτ )

)
]

, (133)

100The 2018 NBER WP version of this paper uses

T BR
(
Zτ ,Z

d
t

)
= (1−my) T

(
Zd

t

)
+myT (Zτ ) = T

(
Zd

t

)
+myT

(
Zτ −Zd

t

)

which leads to

E
BR
t

[
T BR (Xτ )

]
= −

r

R
Bt +mym̄

τ−t
Et

[

dτ − r

τ−1∑

u=t

du

]

.
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with br = −1
γR2 , bk = r

Rχ with χ = φ
γ+φ , and bY = r

RmY with mY = φmy+γ
φ+γ . As usual, the chosen labor

supply is given by Nφ
t = ω (Xt) c

−γ
t .

So, the situation is a little subtle, as the coefficient on future aggregate consumption is r
RmY (so it

is equal to r
R if my = 1), while the coefficient on future transfers and wealth is r

Rχ. This is because
ĉ (Xτ ) implicitly incorporates the effects of future labor supply.

Proof of Proposition 18 Income (132) fits in framework (126) by defining ŶBR (Xτ ) :=
my ĉ (Xτ )− ω (Xτ ) N̂ (Xτ ) + T BR (Xτ ) – i.e., linearizing,

ŶBR (Xτ ) = my ĉ (Xτ )− N̂ (Xτ ) + T BR (Xτ ) .

Using (127), we have, with bk := r
Rχ,

ĉt − bkkt = E
BR
t

[
∑

τ≥t

1

Rτ−t

(
brr̂

BR (Xτ ) + bk

(
my ĉ (Xτ )− N̂ (Xτ ) +

ω̂ (Xτ )

φ

)
+ bkT

BR (Xτ )

)]

,

= E
BR
t

[
∑

τ≥t

1

Rτ−t

(
brr̂

BR (Xτ ) + bk

(
my +

γ

φ

)
ĉ (Xτ ) + bkT

BR (Xτ )

)]

, using (123)

= E
BR
t

[
∑

τ≥t

1

Rτ−t

(
brr̂

BR (Xτ ) +
r

R

(
φmy + γ

φ+ γ

)
ĉ (Xτ ) + bkT

BR (Xτ )

)]

.

!

XI.C A variant with high marginal propensity to consume

In the preceding model, the current MPC out of current income is low. Here is a simple variant with
high MPC. The upshot is that this does not change the form of the macroeconomic behavior, but it

does change the microeconomic behavior.
Consider an agent perceiving at date t her date τ income. Here, we generalize the basic setup (50)

to:

ŷBR (Nτ ,Xτ ;Xt) = myŷ (Xτ ) + ω (Xτ ) (Nτ −N (Xτ )) +my0ŷ (Xt) . (134)

The new term is the last one, my0ŷ (Xt). It means that the agent anchors her perceptions of future in-
come on current income, with a weight my0 ∈ [0, 1]. The rational case corresponds to (my0, my) = (0, 1).

If the agent imagines that future income will be exactly current income (i.e., complete extrapolation)
then (my0, my) = (1, 0).101

Intuitively, if my0 > 0 then the agent “overreacts” to current income. That generates a high MPC

out of current income. The next Proposition makes this precise.

Proposition 19 (IS curve, anchoring on the present) Suppose that agents anchor their projection
of future income on current income, with a weight my0. Then, the IS curve of the basic behavioral

setup (Proposition 9) still holds, but replacing in M and σ the parameters (mY , mr) by (m′
Y , m

′
r) =

1
1−χmy0

(mY , mr), where χ = φ
γ+φ . The values of M and σ increase with the anchoring my0.

101Formally, at time t, the agent maximizes utility U subject to the perceived law of motion of wealth as in the main
text in Section I.A, but using (134) for perceived income.
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At the same time, the marginal propensity to consume out of a 0-persistence shock to current income
is

MPC = χmy0 + χ
r

R
my. (135)

Proof of Proposition 19 The general equilibrium result comes straight from Proposition 18. We
just set the perceived extra transfer to T BR (Xτ ) := my0ŷ (Xt). The consumption policy becomes (we

take the case with zero wealth), with br =
−1
γR2 , bk =

r
Rχ and χ = φ

γ+φ :

ĉt = E
BR
t

[
∑

τ≥t

1

Rτ−t

(
br r̂

BR (Xτ ) +
r

R
mY ĉ (Xτ ) + bkmy0ŷ (Xt)

)]

,

= χmy0ŷ (Xt) + E
BR
t

[
∑

τ≥t

1

Rτ−t

(
br r̂

BR (Xτ ) +
r

R
mY ŷ (Xτ )

)]

.

This gives the MPC. Taking into account that income equals consumption, so that ĉt = ŷ (Xt), we

have:

ĉt =
1

1− χmy0
E
BR
t

[
∑

τ≥t

1

Rτ−t

(
br r̂

BR (Xτ ) +
r

R
mY ŷ (Xτ )

)]

=
1

1− χmy0
Et

[
∑

τ≥t

m̄τ−t

Rτ−t

(
brmr r̂ (Xτ ) +

r

R
mY ŷ (Xτ )

)]

.

This is the expression (52) of the main text, but replacing (mY , mr) by (m′
Y , m

′
r) =

1
1−χmy0

(mY , mr) .!

There is a minor surprise: when agents anchor more in the present (with a higher my0), then the IS
curve becomes more forward looking. The reason is a GE effect. Because present consumption reacts

more to current income (higher my0), GE effects are stronger, and in particular, the impact of future
disturbances are amplified.

The macro model has the same form as in the baseline version, with a slightly modified values for M

and σ. However, the micro behavior is very different. Indeed, the MPC out of a 0-persistence innovation
to labor income is (135), so quantitatively it is close to χmy0. Estimates from the tax rebate and other

literatures point to my0χ ≃ 0.3 (for example, see Johnson et al. (2006)). Quantitatively, that makes
fairly little difference to the value of M . Still, now the GE channel for the transmission of monetary

policy is strong, much like in Kaplan et al. (2018).

Discussion Through the mechanism highlighted in this section, we capture features as in Kaplan

et al. (2018), where a high MPC is important for the transmission of monetary policy. The impact
of interest rates comes in part via intertemporal substitution, and in good part via the GE effect on

aggregate income – but for that we need a high MPC.
Here, behavioral economics allows us quite easily to capture a high MPC out of current income.

What to make of that ease?

The favorable interpretation is that part of the art of macroeconomics is to find useful metaphors,
and this behavioral metaphor is quite useful as it is tractable, intuitive (one understands clearly the

worldview of the agent), and quite possibly true to the first order. Certainly, it is much simpler than
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tracking the heterogeneity among credit-constrained agents as in Kaplan et al. (2018). The unfavorable
interpretation is that behavioral economics is too free. My own sense is that we are in a period of
explorations of theoretical possibilities, and that this is a good thing. One can at least discipline behav-

ioral models with microeconomic data (see e.g. Taubinsky and Rees-Jones (2017) for the measurement
of attention to taxes), and exploring those behavioral models is a fruitful enterprise. Those simple-to-

use behavioral models might even become the models of choice to a variety of issues whenever there
is non-standard behavior, with the understanding that they might be a metaphor for more complex

mechanisms, such as those coming from credit constraints.

XI.D A simpler model of decision

In Section XI.B we handled future labor supply. That was a bit complicated. So I wish to record here

a potentially useful variant, that forgoes the need to think about future labor supply and wages. In the
basic decision problem, max(cτ ,Nτ )τ≥t

U subject to (8) and (49), we add the constraint that

Nτ = N (Xτ ) for τ > t. (136)

This means that to simulate his future labor supply, the agent just imagine he’ll do like the rest
of the agents. However, we allow the agent to actively think of the optimization as on today’s labor

supply. This is a very close variant of Woodford (2013), who makes the assumption, verbatim: “I further
assume that households have no choice but to supply the hours of work that are demanded by firms,

at a wage that is fixed by a union that bargains on behalf of the households. A household then has a
single decision each period, which is the amount to spend on consumption.”

Proposition 20 (Consumption with active fiscal policy) Consider an agent maximizing utility U =

EBR
t

∑∞
τ=t β

τ−tu (cτ , Nτ ) subject to the law of motion for wealth (6), and the perception (136), and with
active fiscal policy, as in the setup of Sections IV.A and X.A. Up to second order terms (and for small
wealth kt), consumption is:

ĉt = bkkt + E
BR
t

[
∑

τ≥t

1

Rτ−t

(
brr̂

BR (Xτ ) + bk ĉ (Xτ ) + bkT
BR (Xτ )

)
]

, (137)

where br =
−1
γR2 , bk = r

R . As usual, the chosen labor supply is given by Nφ
t = ω (Xt) c

−γ
t .

This model is rather easier to handle, as it obviates the problem of choosing labor supply at all
future dates.102 Then, the proof is much simpler. The result is the same, but we replace χ = φ

φ+γ by 1,
so that bk = r

R .

XI.E Extension of the model with nominal illusion

Let us here explore nominal illusion: the consumer perceives future inflation as

πBR (Xt) = mc
ππ (Xt) , (138)

102 Note that I do not allow the agent to think that his future consumption is equal to future aggregate consumption,
as I want the agent to feel that spending more today will have an impact in the future.
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where mc
π ∈ [0, 1] is the consumer’s attention to inflation. This makes it so that the perceived interest

rate is:
r̂BR (Xt) = mr (it −mc

πEt [π (Xt+1)]− r̄) . (139)

XI.E.1 Impact in main model

In the IS curve (28), that will lead to replacing Etπt+1 by mc
πEtπt+1. The Taylor criterion becomes (34):

the equilibrium is determinate iff103

φπ +

(
1− βMf

)

κ
φx +

(
1− βMf

)
(1−M)

κσ
> mc

π. (140)

Again, bounded rationality makes it easier to satisfy the Taylor criterion.
In the basic model, instead of formulation (a) it − Etπt+1 − rnt , to be very strict the IS curve of

Proposition 2 should have (b) it − m̄Etπt+1 − rnt . Formulation (a), however, can easily be justified, by

assuming the consumer faces a market for savings with real interest rates, and can invest at a guaranteed
real rate. Formulation (b) is the natural one if the consumer only has access to a nominal market with

no special advice on how to handle the real rate. The economics is anyways almost the same. Then,
one just uses the analysis of the present subsection, with mc

π = m̄. The formulation adopted in this

paper is cleaner intellectually, as it allows to separate the issues of nominal illusion (discussed in the
present subsection) from general cognitive discounting.

XI.E.2 The economy with fully flexible prices

What happens if the economy has fully flexible prices? To study this, I revisit Gaĺı (2015, Chapter 2.4),
with behavioral agents.

I say that the consumer suffers from nominal illusion, i.e. perceives inflation as 138, so that (light-

ening up the notation by replacing mc
π by mπ) the perceived interest rate is:

r̂BR (Xt) = r̄ +mr (it −mπEt [π (Xt+1)]− r̄) .

I suppose that the central bank follows a Taylor rule

it = jt + φππt,

with φπ ≥ 0.
In a model with flexible prices and no capital, the output gap is always xt = 0. The behavioral IS

curve still imposes:
rn (Xt) = r̂BR (Xt) .

Take for simplicity an economy with constant rnt = rn = jt. Then, we have:

φππt = mπEt [πt+1] . (141)

When is the equilibrium determinate?

103This is a good classroom exercise, so I leave that as an exercise to the reader (the proof is available upon request;
hint: it can be done with almost no calculations, simply relabeling the right variables).
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Proposition 21 Determinacy in the flexible price economy) Take the flexible price economy, when the
consumer has pays only an attention mπ to inflation (with mπ = 1 in the rational case). We have
determinacy if and only if:

φπ > mπ. (142)

Proof. This is just because φππt = mπEt [πt+1], and we have determinacy iff φπ > mπ.!
Hence, we see a similar weakening of the Taylor criterion, from bounded rationality.

XI.F Complements on cognitive discounting: when there are non-trivial

deterministic trends

In the basic framework, we dealt with variables with zero trend growth rate. Here I present the

more general version where the macro state vector includes potentially trending variables, for instance
productivity.

I call the macro state vector St = (Xt,Kt). The potentially trending variables are gathered as

a vector Kt (I use this letter to evoke “capital” variables, that can trend without bounds), and with
more conventional stationary variables, gathered in Xt. For instance, Kt might contain the log price

level, of a deterministic trend for productivity. Call X̄ the mean of stationary variables. I suppose that
X̄ = GX

(
X̄,K, 0

)
, for all K, so that indeed X̄ is a stationary mean.

How would an agent simulate the future? I propose the following model.

At a given time s, the agent simulates the future as follows.
Step 1 (simulate the trend of non-stationary variables): the agent initializes S∗,s =

(
X̄ ,Ks

)
; and

for t ≥ s, she simulates the process:
S∗,t+1 = GS (S∗,t, 0) . (143)

This gives the “non-stochastic trend” in the economy:
Step 2 (simulate the deviations from the trend found in step 1): the agent initializes Ss at its true

value; and then she simulates the whole economy, as in:

St+1 = (1− m̄)S∗,t+1 + m̄GS (St, ϵt+1) . (144)

That is, the agent only partially sees the deviations of the economy from its trend.
In Step 1, the simulation handles the basic non-stationarity of the variables. In Step 2, the simulation

anchors in the trend value S∗,t, and enriches it partially to handle the dynamics.
To build intuition, let us take some examples. First, if there is no macro-capital variable, we just

generalized the baselines procedure. Indeed, take the case without any capital variable, so St = Xt.

Then, step 1 just generates S∗t = X̄, and step 2 generates what we had above (see (8)), Xt+1 =
(1− m̄) X̄ + m̄GX (Xt, ϵt+1) .

Next, enrich the case with Kt+1 = Kt + g + bXt, where g is some trend growth rate. For instance,
Kt could be the permanent part of log productivity. Then, step 1 gives K∗t = K0 + gt and X∗t = X̄.

That is, the simulation sees the baseline. Next, Step 2 gives deviations from that benchmark. Then,

under the BR simulation, EBR
t

[
Ŝt+k

]
= m̄kEBR

t

[
Ŝt+k

]
, where Ŝτ := Sτ − (0,Kt + g (τ − t)) is the

deviation from the baseline. This phenomenon is general, as the next Proposition records.

10



Proposition 22 Suppose that we have a system:

Kt+1 = bKKKt + bKXXt + bK + εKt+1, (145)

Xt+1 = bXXXt + bX + εXt+1, (146)

where εK , εX are mean-zero variables independent across periods. The mean of Xt satisfies:

X∗ = bXXX∗ + bX . (147)

The above procedure gives for the trend:

K∗,t+1 = bKKK∗,t + bKXX∗ + bK , (148)

and, calling Ŝt := St − S∗t, we have:

E
BR
[
Ŝt

]
= m̄t

E

[
Ŝt

]
. (149)

Proof We note that bXK = 0, meaning that the long-run trend doesn’t affect the short-run variables.
We can rewrite the system (145)-(146) as

St+1 = bSSSt + bS .

Step 1 directly gives, we have (148). In other terms, it gives:

S∗,t+1 = bSSS∗t + bS + εS. (150)

Step 2. Ŝt := St − S∗t, so that K̂t := Kt −K∗t. Step 2 is here:

St+1 = (1− m̄)
(
bSSS∗t + bS

)
+ m̄

(
bSSSt + bS + εSt+1

)
= bSSS∗t + bS + m̄bSSŜt + m̄εSt+1. (151)

Subtracting (150) from this gives:

Ŝt+1 = bSSm̄Ŝt + m̄εSt+1, (152)

so that
E
BR
[
Ŝt

]
= m̄t

(
bSS
)t
Ŝ0.

As the rational case corresponds to the special case where m̄ = 1, we have E
[
Ŝt

]
=
(
bSS
)t
Ŝ0. Hence,

we have EBR
[
Ŝt

]
= m̄tE

[
Ŝt

]
.!

XI.G Complements on Fiscal Policy

XI.G.1 Fiscal policy with government spending

I detail a variant of the model where the government can consume an amount Gt of goods. I call
gt =

Gt

ȳ the size of government spending as a fraction of steady state output, and do a linearization

11



around gt = 0. The following generalizes the basic behavioral IS curve. It extends in a behavioral
context previous analyzes of government spending (Eggertsson (2011); Woodford (2011)).

Proposition 23 (Model with government consumption). Given government consumption and deficits,
the basic two-equation behavioral New Keynesian model of Proposition 2 still holds, except that in the
IS curve the natural rate of interest given by

rnt = rn0t +
bg
σ
(gt −MEt [gt+1]) +

bd
σ
dt, (153)

where rn0t is the “pure” natural rate of interest that prevails without fiscal policy, bg = φ
φ+γ , and bd is

given in Proposition 7. The corresponding natural rate of consumption (i.e., the consumption level that
would prevail if prices were flexible) is:

ĉnt = −bggt +
1 + φ

γ + φ
ζt. (154)

Proof of Proposition 23. In the proof, we consider the case with zero deficit – as deficits enter
linearly and are treated in Proposition 7. The aggregate resource condition is Yt = ct +Gt = eζtNt (up

to second order terms due to price dispersion), i.e.

ĉt + gt = ζt + N̂t. (155)

The first order condition for labor supply is still

ω̂t = φN̂t + γĉt,

so
ω̂t = (φ+ γ) ĉt + φ (gt − ζt) . (156)

In the “natural” (i.e., flexible-price) economy we have ω̂t = ζt, so the natural rate of consumption
ĉnt satisfies

ζt = (φ+ γ) ĉnt + φ (gt − ζt) , (157)

i.e. (154). In that same natural natural economy, we still have (22):

ĉnt = MEt

[
ĉnt+1

]
− σr̂nt ,

so that the natural rate of interest is:

rnt = rn0t +
bg
σ
(gt −MEt [gt+1]) ,

where rn0t is the“pure” natural rate before government intervention, as in (23). The general case with

deficits enters additively, as we consider a linearization of the economy. Hence the natural rate of interest
is changed. But the IS curve otherwise does not change.

The Phillips curve also does not change. The proof is as at the end of the proof of Proposition 2 in
Section X.B. Taking (157) minus (156) gives, using xt = ĉt − ĉnt ,

µt := ζt − ω̂t = (φ+ γ) (ĉnt − ĉt) = − (φ+ γ) xt,

12



like in the basic model without fiscal policy. Hence, the Phillips curve does not change. !
The next proposition calculates the corresponding increase in GDP.

Proposition 24 (Impact of government spending with passive monetary policy). Suppose that at time

0, the government spends g0, financed by a deficit d0 at time 0, and the central bank does not adjust the
interest rate i0. Then, consumption changes by

ĉ0 = bdd0,

and GDP changes by:
Ŷ0 = g0 + bdd0. (158)

Hence, as long as the government spending is deficit-financed (d0 = g0), we have

Ŷ0 = (1 + bd) g0,

and the fiscal multiplier is 1 + bd.

Proof of Proposition 24. By linearity, we can suppose that we start from the steady state (so
i0 = rn00 = r̄). At time t ≥ 1, the economy will be fully at the steady state, with no deficit (i.e., no

deficit after payment of the interest rate on the debt, so dt = 0 for t ≥ 1). Hence, xt = πt = 0 for t ≥ 1.
At time t = 0, we have (using i0 = rn00 , and (153))

x0 = ME0 [x1]− σ (i0 − E0 [π1]− rn0 ) = −σ (i0 − rn0 )

= σ

(
bg
σ
(g0 −ME0 [g1]) +

bd
σ
d0

)

x0 = bgg0 + bdd0.

As ĉn0 = −bgg0,
ĉ0 = ĉn0 + x0 = bdd0,

and the GDP change is

Ŷ0 = g0 + ĉ0 = g0 + bdd0.

!

XI.G.2 Another formulation for deficits when debt mean-reverts

The formulation in the paper generates a random walk behavior for the public debt (if deficits have
mean 0): if there are not future deficits, Bt is constant. Here I study another formulation, where public

debt mean-reverts to a fixed value. We shall see that the economics is quite similar.
Debt is Bt = B∗ + B̂t, where B∗ is the steady-state level of debt. Transfers are

T
(
B̂t

)
= −

r

R
B∗ + T̂

(
B̂t

)
,

where − r
RB∗ is the payment of the permanent part of the debt, and T̂

(
B̂t

)
is the payment of its

temporary part. For instance, we could have T̂
(
B̂t

)
= −ψBB̂t. Debt B̂t is part of the state vector

13



Xt, so is seen only with cognitive discounting, and for simplicity we assume perceptions are otherwise

correct, i.e. T̂ BR
(
B̂t

)
= T̂

(
B̂t

)
.

Proposition 25 (Discounted Euler equation with sensitivity to budget deficits, in alternative formula-

tion) In the alternative formulation above, we have the following variant for Proposition 7 on the impact
of public debt. Because agents are not Ricardian, a temporary increase B̂t of public debt increases

economic activity. The IS curve (24) becomes:

xt = MEt [xt+1] + b̃d
(
dt +

(
1−

r

R

)
B̂t

)
− σ

(
it − Et [πt+1]− rn0t

)
, (159)

where rn0t is the “pure” natural rate with zero deficits (derived in (23)), dt is the budget deficit and

b̃d =
r

R−rmY

φ
φ+γ (1− m̄) is the sensitivity to temporary debt increases. When agents are rational, b̃d = 0,

but with behavioral agents, bd > 0. We can equivalently write this equation by saying that the behavioral
IS curve (25) holds, but with the following modified natural rate, which captures the stimulative action

of deficits:

rnt = rn0t +
b̃d
σ

(
dt +

(
1−

r

R

)
B̂t

)
. (160)

Hence, this formulation is close in spirit to that of the main text. The main difference is the now
the “default” perception of debt (when simulating the future at time t) is B∗ (the steady state level of
debt), rather than Bt. Hence, the stimulative impact now also includes the temporary deviations from

steady state debt, Bt − B∗. The “impact of the debt” can also be written:

dt +
(
1−

r

R

)
B̂t = T̂

(
B̂t

)
+ B̂t, (161)

as dt = T̂t +
r
RB̂t.

A simple application is the following. When we have T̂
(
B̂t

)
= −ψBB̂t, the impact on the debt is:

b̃d
(
dt +

(
1−

r

R

)
B̂t

)
= b̃d (1− ψB) B̂t. (162)

For instance, the natural rate becomes:

rnt = rn0t +
b̃d
σ
(1− ψB) B̂t. (163)

So, temporarily high debt has a stimulative effects on the natural interest rate, as it makes agents feel
richer.

Proof of Proposition 25 We apply Proposition 18 (setting interest rate deviations to 0, as they
are orthogonal to the rest of the discussion), which gives:

ĉt = bkkt + E
BR
t

[
∑

τ≥t

1

Rτ−t

(
bY ĉ (Xτ ) + bkT

(
B̂ (Xτ )

))]

, (164)
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with bY = r
RmY . Now, as kt = Bt = B∗ + B̂ (Xt), the terms in B∗ cancel out in (164), as

B∗ +
∑

τ≥t

1

Rτ−t

(
−

r

R
B∗

)
= 0.

This is a form of Ricardian equivalence: agents do not react to the “permanent” part of debt. Only
the deviations of debt from the baseline B∗ matter. Hence, the outcome will be the same as if B∗ = 0,
and we will assume that B∗ = 0 in what follows.

Using the language of forward operators (Fyt := yt+1), we can rewrite (164) as:

ĉt = bkB̂t + (1− βm̄F )−1
(
bY ĉt + bkT̂t

)
,

i.e.,

(1− βm̄F ) ĉt = bY ĉt + bkDt

with

Dt := (1− βm̄F ) B̂t + T̂t = T̂t + B̂t − βm̄B̂t+1,

and given B̂t+1 = R
(
B̂t + T̂t

)
, we have, using

dt := Tt +
r

R
Bt = T̂t +

r

R
B̂t (165)

Dt = (1− m̄)
(
T̂t + B̂t

)
= (1− m̄)

(
dt +

(
1−

r

R

)
B̂t

)
.

We have derived
ĉt = MEt [ĉt+1] + b̃d

(
dt +

(
1−

r

R

)
B̂t

)
,

with b̃d =
bk(1−m̄)
1−bY

, i.e.

b̃d =
r

R− rmY

φ

φ+ γ
(1− m̄) . (166)

Reintegrating interest rates,

ĉt = MEt [ĉt+1] + b̃d
(
dt +

(
1−

r

R

)
B̂t

)
− σ

(
it − Et [πt+1]− rn0t

)
.

The rest of the proof is as in the proof of Proposition 7. !

XI.G.3 The ex ante benefits of the possibility of future fiscal policy

Here I investigate further optimal policy at the ZLB. I suppose that we have a “crisis period” between

times T1 and T2: I = (T1, T2). During that period, we have a negative “pure” (pre-government deficits)
natural rate (rn0t < 0), so that the ZLB binds. But rn0t > 0 outside that period. The next proposition
details how with fiscal policy and behavioral agents, the first best can be restored.

Proposition 26 (Optimal mix of fiscal and monetary policy in a ZLB environment). The following
monetary and fiscal policies yield the first best (xt = πt = 0) at all dates: During the crisis (t ∈ (T1, T2)),

use fiscal policy

dt = −
σrn0t
bd

,
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i.e. run a deficit with low interest rates, it = 0. After the crisis (t ≥ T2), pay back the accumulated
debt by running a government fiscal surplus and keeping the economy afloat with low rates, e.g. dt =
R−1 (BT2

− B0) (1− ρd) ρ
t−T2

d < 0 for some ρd ∈ (0, 1), and adjust it = rnt ≡ rn0t + bddt
σ to ensure full

macro stabilization, xt = πt = 0. Before the crisis (t < T1), set it = dt = 0.

Proof. The proof is simply by examination of the basic equations of the NK model, (28)-(29). We
adjust the instruments so that xt = πt = 0 at all dates. Note that there are multiple ways to soak up

the debt after the crisis, so that dt = R−1 (BT2
− B0) (1− ρd) ρ

t−T2

d is simply indicative. !

The ex-ante preventive benefits of potential ex-post fiscal policy. Proposition 26 shows

that “the possibility of fiscal policy as ex-post cure produces ex-ante benefits”. Imagine that fiscal policy
is not available. Then, the economy is depressed at the ZLB during (T1, T2). However, it is also depressed

before: because the IS curve is forward looking, output threatens to be depressed before T1, and that
can put the economy to the ZLB at a time T0 before T1.104 Hence, the threat of a ZLB-depression
in (T1, T2) creates an earlier recession at (T0, T2) with T0 < T1. Intuitively, agents feel “if something

happens, monetary policy will be impotent, so large dangers loom”. However, if the government has
fiscal policy in its arsenal, the agents feel “worse case, the government will use fiscal policy, so there is

no real threat”, and there is no recession in (T0, T1). Hence, there is a possibility of fiscal policy as an
ex-post cure to produce ex-ante benefits.

In general, monetary and fiscal policies are substitutes (dt and it enter symmetrically in (28)), so a
great number of policies achieve the first best. However, fiscal policy dt helps monetary policy if there is
a constraint (e.g. at the ZLB), so the possibility of future fiscal policy is a complement to the monetary

policy (as it relieves the ZLB).105

XI.H Complements to the endogenization of attention

XI.H.1 Losses from inattention

Here I show the derivation of (71). The derivation is close to the derivation of Lemma 2 in Gabaix

(2014). The formulation a little more general than in Gabaix (2014), as I do not assume that v (a, x,m)
has the form vr (a,m1x1, ..., mnxn).

Call ar (St) = a (1,St) the rational response and ǎ (m,St) := a (m,St) − a (1,St) the “mistake” in

action due to inattention. The losses from attention m (rather than full attention, which would be
m = 1) are (calling ε2 = E

[
∥St∥

2], and in the limit of small ε):

L (St, m) = v (a (m,St) ,St, 1)− v (a (1,St) ,St, 1)

= v (a (1,St) + ǎ (m,St) ,St, 1)− v (a (1,St) ,St, 1)

=
1

2

[
ǎ (m,St)

′ vaa (a (1,St) ,St, 1) ǎ (m,St)
]
+ o

(
ε2
)

=
1

2

[
ǎ (m,St)

′ vaa
(
a
(
md, 0

)
, 0, md

)
ǎ (m,St)

]
+ o

(
ε2
)

(167)

104Future negative output gaps will creates a low output gap at times 0, 1, say, and so low that a central bank would
need negative rates to fight those gaps.
105This “second instrument” could be very useful even in normal times, in a richer model with capital. Suppose that

consumers get too optimistic about the future: the central bank should raise the interest rate. But then, that depresses
investment. We do not get the first best any more, without a second instrument.
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where the last equality comes from the fact that

vaa (a (1,St) ,St, 1) = vaa
(
a
(
md, 0

)
, 0, md

)
+O (ε) .

Let us first take the case where inattention enters linearly, i.e. when a (m,St) = ar (mSt) + O (ε2)
where ar (St) = a (1,St) is the rational response. This is the simpler case, and covers the situation with
mr, my, mf

π, m
f
x (and it was the case in Gabaix (2014)). We have:

a (m,St) = ar (mSt) +O
(
ε2
)
= ar (0) + ∂ar ·mSt +O

(
ε2
)

where ∂ar is the derivative of ar (St) at 0, so

ǎ (m,St) = ∂ar (m− 1)St +O
(
ε2
)

and as am,St

(
md, 0

)
= ∂ar,

ǎ (m,St) = am,St

(
md, 0

)
(m− 1)St +O

(
ε2
)

and

L (St, m) =

[
1

2
Sta

′
m,S

(
md, 0

)
vaa
(
a
(
md, 0

)
, 0, md

)
am,S

(
md, 0

)
St

]
(1−m)2 + o

(
ε2
)
.

which gives 71, as the agent takes this leading quadratic approximation of her utility losses when
choosing optimal attention m.

Let us next take the more complex nonlinear case where a (m,St) = ar (H (m)St) + O (ε2) for a
non-linear function H(m), such that H (0) = 0 and H (1) = 1. This is for instance the case when
considering m̄, where we have a non-linear response (see (225)). The same algebra shows:

a (m,St) = ar (H (m)St) +O
(
ε2
)
= ar (0) + ∂ar ·H (m)St +O

(
ε2
)

so
ǎ (m,St) = ∂ar · (H (m)− 1)St +O

(
ε2
)

As, evaluating derivatives at St = 0,

am,St (m, 0) = ∂ar ·H ′ (m)

we also have

ǎ (m,St) = am,St

(
md, 0

) H (m)− 1

H ′ (md)
St +O

(
ε2
)
= am,St

(
md, 0

)
J (m) (m− 1)St +O

(
ε2
)

where

J (m) :=
H (m)− 1

(m− 1)H ′ (md)
(168)

and

L (St, m) =

[
1

2
Sa′m,S

(
md, 0

)
vaa
(
a
(
md, 0

)
, 0, md

)
am,S

(
md, 0

)
S

]
J (m)2 (1−m)2 + o

(
ε2
)
. (169)
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When H (m) is linear, J (m) = 1, but otherwise it’s a bit different from 1. Hence, to be formal, we
assume that the agent also does a Taylor expansion of the losses in m, which implies that the agent
replaces J (m) by 1.

XI.H.2 Complements to the endogenous attention by firms

Here I complete section VIII.B on endogenous inattention.

Proposition 27 (Endogenizing the firm’s attention) The firm’s attention is:

m̄ = m̄f = A

(
λm̄

f
σ2
ζ

Kf
, m̄d

)

, mf
x = A

(
λm

f
xσ2

ζ

Kf
, mf,d

x

)

, mf
π = A

(
λm

f
πσ2

ζ

Kf
, mf,d

π

)

, (170)

with
(
λf ,λm

f
x ,λm

f
π

)
= ε−1

1−βθ

(
q2m̄,ζ, q

2
mf

x,ζ
, q2

mf
π,ζ

)
, where Kf is the firms’ cost of cognition, and the coeffi-

cients qm̄,ζ , qmf
x ,ζ

, qmf
π,ζ

on the right-hand size are given in equations (175), (177) and (178).

Proof of Proposition 27 Let us do some calculations first, using the notations of Section I.D.
At the steady state (which has q = µ = 0, c = 1), differentiating (14), and under the optimal subsidy
τ = 1

ε , we have:

vqq = vBR
qq = 1− ε. (171)

Next, as

V BR (qit,Xτ ) := E
BR
t

∞∑

τ=t

(βθ)τ−t vBR (qit,Xτ )

we have, again at the steady state:

V BR
qq =

1− ε

1− βθ
. (172)

Endogenization m̄ for firms Equation (27) gives:

qm̄ :=
∂qit(m̄)

∂m̄
= (1− βθ)

1

m̄

∞∑

k=0

(βθm̄)k kEt

[
mf
π (πt+1 + ... + πt+k)−mf

xµt+k

]
. (173)

In total, the expected losses from inattention are: 1
2Λ

f (1−m)2 = 1
2VqqE [q2m̄](1−m)2, i.e.

Λf =
1− ε

1− βθ
E
[
q2m̄
]
.

Now, let us go to the case of a one-factor model driven by ζt, the productivity shock, which follows

an AR(1) with coefficient ρ, and the central bank follows a Taylor rule. Then, we have πt = bπζ ζt and
µt = bµζ ζt in equilibrium. This implies that

qm̄ = qm̄,ζζt (174)
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for a coefficient

qm̄,ζ = (1− βθ)
1

m̄

∞∑

k=0

(βθm̄)k k
(
mf
π

(
ρ+ · · ·+ ρk

)
bπζ −mf

xb
µ
ζ

)

= (1− βθ)
1

m̄

∞∑

k=0

(βθm̄)k k

(
mf
π

1− ρk

1− ρ
ρbπζ −mf

xb
µ
ζ

)
,

so, using again (224),

qm̄,ζ = (1− βθ)
1

m̄

[
ρ

1− ρ

(
βθm̄

(1− βθm̄)2
−

βθm̄ρ

(1− βθm̄ρ)2

)
mf
πb
π
ζ −

βθm̄

(1− βθm̄)2
mf

xb
µ
ζ

]
(175)

evaluated at m̄ = m̄d.

So using Proposition 13, we have m̄f = A
(
λfσ2ζ
Kf , m̄d

)
with λf = ε−1

1−βθq
2
m̄,ζ .

Endogenization mf
π and mf

x The same reasoning holds for other attention factors. Equation

(27) gives:

qmf
x
= (1− βθ)

∞∑

k=0

(βθm̄)k Et [−µt+k] , (176)

so that in the AR(1) case, qmf
x
= qmf

x ,ζ
ζt with:

qmf
x ,ζ

= −
1− βθ

1 − βθm̄ρ
bµζ . (177)

Likewise, in the AR(1) case:

qmf
π

= (1− βθ)
∞∑

k=0

(βθm̄)k Et [πt+1 + ... + πt+k]

= (1− βθ)
∞∑

k=0

(βθm̄)k
(
ρ+ · · ·+ ρk

)
bπζ ζt = (1− βθ)

∞∑

k=0

(βθm̄)k ρ
1− ρk

1− ρ
bπζ ζt

= qmf
π ,ζ
ζt,

qmf
π ,ζ

= (1− βθ)
ρ

1− ρ

(
1

1− βθm̄
−

1

1− βθm̄ρ

)
bπζ ,

hence

qmf
π ,ζ

=
(1− βθ)βθm̄ρ

(1− βθm̄) (1− βθm̄ρ)
bπζ . (178)

where again expressions are evaluated at m̄ = m̄d.

XI.H.3 A one-factor economy

We consider a one-factor economy, that will be useful for Proposition 14 and 27. The primitive is the log

TFP level ζt, which follows an AR(1) with autocorrelation ρ. As a result, all variables are proportional
to ζt. Proposition 28 records their values. The Taylor rule is assume to be: it = φππt + φxxt + r̄.
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Proposition 28 In the one-factor economy where all shocks come from TFP and the central banks
follow a Taylor rule, we have (with r̂t = rt − r̄, ĉt = ct − c̄):

(r̂nt , xt, πt, r̂t, ĉt, ŷt, µt) =
(
br

n

ζ , bxζ , b
π
ζ , b

r
ζ , b

c
ζ , b

y
ζ , b

µ
ζ

)
ζt, (179)

with

br
n

ζ = −
1 + φ

σ (γ + φ)
(1− ρM) , (180)

bxζ =
σ

1−Mρ+ (φπ − ρ) κσ
1−ρβf + σφx

br
n

ζ , (181)

bπζ =
κ

1− ρβf
bxζ , (182)

brζ = (φπ − ρ) bπζ + φxb
x
ζ , (183)

bcζ = byζ = bxζ +
1 + φ

γ + φ
. (184)

bµζ = − (φ+ γ) bxζ (185)

Proof of Proposition 28 First, (23) gives

r̂nt =
−1

σ

1 + φ

γ + φ
(1− ρM) ζt,

hence the value of br
n

ζ . Next, by definition of xt, ĉt = xt + ĉnt and using (21), ĉnt = 1+φ
γ+φζt , which gives

the value of bcζ . Next, as ŷt = ĉt, b
y
ζ = bcζ . Also, b

r
ζ comes from the fact that:

r̂t = it − Et [πt+1] = φππt + φxxt − ρπt.

Next, in our AR(1) world, the 2-equation model of Proposition 2 reads (with βf := βMf ):

(1−Mρ) xt = −σ (φππt + φxxt − ρπt − rnt ) ,(
1− ρβf

)
πt = κxt,

which solves as:
xt =

1
1−Mρ
σ + φx + (φπ − ρ) κ

1−ρβf

rnt ,

which gives the value of bxζ , and then πt = κ

(1−ρβf)
xt gives the value of bπζ . Finally, we have µt =

− (γ + φ)xt (see 107), which gives bµζ = − (φ+ γ) bxζ .

XI.I Complements to the 2-period Model

This section gives complements to the 2-period model of Section IX.

Discounted Euler equation in the 2-period model We will see that the consumer satisfies a
discounted Euler equation. Call R = 1/β the steady state interest rate, so that R0 = R + r̂0 and the
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perceived interest rate is: R0 = R +mrr̂0. Rewrite (77) as

c0 = b

(
c0 +

cd1 + m̄ĉ1
R +mrr̂0

)
,

where cd0 = b
(
cd0 +

cd1
R

)
. Then, we have:

ĉ0 = b

(
ĉ0 +

m̄ĉ1 −
mr

R r̂0
R

)
,

i.e.

ĉ0 =
b

1− b

1

R

(
m̄ĉ1 −

mr

R
r̂0
)
.

In the rational model, we have c0 =
b

1−b
1
Rc1 and c0 = c1 = 1. Hence, b

1−b
1
R = 1. We obtain:

ĉ0 = m̄E0 [ĉ1]−
mr

R
r̂0. (186)

This is a “discounted Euler equation” (with discount factor m̄), i.e. instead of the rational Euler
equation, ĉ0 = E [ĉ1]− r̂0. The same factor m gives power to fiscal policy, and yields a discounted Euler

equation.

Derivation of (80). Call k1 the wealth at the beginning of period 1 (before receiving labor
income and profit), and T1 the transfer received from the government, and I1 the profit income from
the oligopolistic firms (so that ω1N1 + I1 = c1 when aggregating). The rational value function at time

1 is, given the labor supply fixed at 1 at t = 1:

V r (k1, T1) = max
c1

u (c1, 1) s.t. c1 ≤ ω1 + I1 + k1 + T1.

The decision at time 0 is

smax
c0,N0|m̄

u (c0, N0) + βV r (R0 (ω0N0 + I0 + T0 − c0) , m̄T1) , ,

where m̄ is optimized upon in the sparse max. Taking here the m̄ as given, then the decision is simply:

max
c0,N0

u (c0, N0) + βV r (R0 (ω0N0 + I0 + T0 − c0) , m̄T1) .

The first order conditions are:

uc0 = βR0Vk1 ,

uN0
= −ω0βR0Vk1,

so that the intra-period labor supply condition ω0uc0 + uN0
= 0 holds. Given that Vk1 = uc1, we obtain

uc0 (c0, N0) = βR0uc1 (c1, N1) .
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Now, we have V r
k1 = u′ (c1) = u′ (k1 + y1) with y1 = ω1N1 + I1 + m̄T1, so

1

c0
=
βR0

c1
,

with c1 = y1 +R (y0 − c0) i.e. c0 +
c1
R = y0 +

y1
R , and with the Euler equation c1 = βR0c0:

c0 =
1

1 + β

(
y0 +

ys1
R

)
= b

(
y0 +

y1 + m̄ŷ1
R

)
.

XI.J A dynamic programming formulation

Here I show another proof for Proof of Proposition 8. It is a bit less intuitive, but may be handy to
automatize when considering medium-scale extensions of this model.

In the perceived model, the value function is:106

V (k,X) = max
c,N

u (c, N) + βEV (R (X) (k + ȳ +my ŷ (X) + w (X) (N −N (X))− c) , m̄ (ΓX + ε)) ,

(187)
and optimal consumption satisfies uc (c (k,X) , N) = Vk (k,X) (independently of N because utility is

separable), so that cX = VkX

ucc
and (using the fact that we linearize around c̄ = N̄ = 1):

cX = −
VkX

γ
, (188)

which gives ĉt = cXXt. Hence, to derive consumption, we simply need to calculate VkX .

To calculate VkX , I use the general procedure outlined in Gabaix (2016a), Section 10.1 — but the
present derivation is self-contained. Call a = (c, N) the action, and define:

K (k,X, a) = k + ȳ +my ŷ (X) + w (X) (N −N (X))− c, (189)

so that, taking the deterministic limit:

V (k,X) = max
a

u (a) + βV (R (X)K (k,X, a) , m̄ΓX) . (190)

Behavior at the default, steady state model. I call the default model the model at the steady state
(X = 0), with steady state values for income, wage and interest rate, and only private wealth kt
potentially variable (but close to the steady state value, which is 0). At the default (with constant
interest and income), the optimal policy is c (k) = ȳ+bkk, bk = χ r

R , χ = φ
φ+γ , andN (k) = 1− r

R (1− χ) k

(linearizing for small k). This is the permanent-income analog of Section XI.B.1, when the agent
consumes a fraction r

R of his wealth every period on higher consumption and leisure. So, using c−γ = Vk,

we have:Vk (k) = (1 + bkk)
−γso at k = 0

Vk = 1, Vkk = −
γφ

φ+ γ

r

R
,

106Here I use the notation R (X) = 1 + r̄ +mrr̂ (X) for the perceived gross interest rate. To lighten up the notation, I
use R (X), rather than the slightly more precise RBR (X).
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Nk = −
r

R

γ

φ+ γ
, ck =

φ

φ+ γ

r

R
.

We use the notation Dk for the total derivative with respect to k: for a function f(k, a),

Dkf (k, a (k)) = ∂kf + (∂af) ∂ka (k) . (191)

We do a few more preparatory calculations. As at the default policy preserves capital,

K (k, 0, a (k, 0)) = βk, (192)

so that
DkK (k, 0, a (k, 0)) = β. (193)

Also (189) gives:

DkKX = wXNk = −
r

R

γ

φ+ γ
wX . (194)

We also calculate, using the first order condition NX = wX

φ − γ
φcX and c = y in equilibrium:

KX = my ŷX −NX = my ŷX +
γ

φ
ĉX −

wX

φ
=

(
my +

γ

φ

)
ŷX −

wX

φ
.

We next proceed the to main derivation. We first differentiate (190) w.r.t. X, using the envelope
theorem:

VX (k,X) = βVk · (R (X)KX (k,X, a (k,X)) +RXK (k,X, a (k,X)) , m̄ΓX) + βVXm̄Γ.

Next, we totally differentiate w.r.t k, and evaluate all derivatives at (k,X) = (0, 0), using RDkK = 1,

VkX = βVkk [RKX +RXK] + βVk [RDkKX +RXDkK] + βVkXm̄Γ.

This gives:

(1− βm̄Γ) VkX = Vkk [βRKX + βRXK] + Vk [βRDkKX + βRXDkK]

= −
γφ

φ+ γ

r

R

[(
my +

γ

φ

)
ŷX −

wX

φ

]
−

r

R

γ

φ+ γ
wX + βRXβ

= −mY ŷXγ
r

R
+ β2RX ,

with mY := φmy+γ
φ+γ ; and

VkX = (1− βm̄Γ)−1
(
−γ

r

R
mY ŷX + β2RX

)
. (195)

Now, we use (188), cX = −VkX

γ , which gives:

cX = (1− βm̄Γ)−1

[
r

R
mY ŷX −

β2

γ
RX

]
. (196)
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We are now almost done. Let us observe that

(1− βm̄Γ)−1
Xt =

∑

τ≥t

(βm̄Γ)τ−t
Xt =

∑

τ≥t

(βm̄)τ−t
EtXτ .

Given that
ĉt = cXXt, ŷ (Xτ ) = yXXτ , r̂ (Xτ ) = rXXτ ,

this equivalently expresses:

ĉt = Et

∑

τ≥t

(βm̄)τ−t

[
r

R
mY ŷX −

β2

γ
RX

]
Xτ (197)

= Et

[
∑

τ≥t

(βm̄)τ−t

(
r

R
mY ŷ (Xτ )−

β2

γ
mr r̂ (Xτ )

)]

. (198)

which is the statement of Proposition 8.

XI.K Cognitive discounting: Link with some empirical evidence on expec-

tations

This paper is not the proper place to assess the respective merits of models of expectations formation,
which would require a full paper. The limited goal of the present section is to give pointers for such a

future assessment.
I offer here a brief discussion of how extant evidence relates to cognitive discounting. Before this, let

us note that most evidence is on professional forecasters, whereas the model is about regular consumers
and workers: hence, matching professional forecasters is not the main metric. Still, it is useful to think

about that.
Three facts are salient in the empirical evidence: (a) looking at the aggregate forecast, past revisions

predict future forecast errors (Coibion and Gorodnichenko (2015a)), pointing to under-reaction to news;

(b) there is evidence of slow incorporation of information (Coibion and Gorodnichenko (2012)); (c) at
the individual level, forecasters appear to over-react to news (Bordalo et al. (2018)).

Cognitive discounting generates (a) well, as we shall see, if it is viewed as a theory of aggregate fore-
casting behavior. However, it does not generate (b). That fact is captured, for example, by behavioral
models of slow incorporation of news (Gabaix and Laibson (2002); Mankiw and Reis (2002)). It would

be easy to mix cognitive discounting with slow incorporation of information.
Cognitive discounting without embellishments would also not generate (c), as it is more of a model

of under-reaction. However, that would be easy to amend: one would assume that forecasters receive
noisy signals with noise σε, and they think that their signals are more precise than they truly are: as

Bordalo et al. (2018) show, this can account for the individual-level overreaction.
Models of learning with noisy signals (e.g. Angeletos and Huo (2019)) can also get (a) and (b),

and also generate no under-reaction or over-reaction in individual forecasts, since individual forecasters

act rationally given their information set. If these models had to match strict over-reaction as in (c),
they could be amended in the way indicated above (by assuming overconfidence about the precision of

private signals), as also discussed by Angeletos and Huo (2019).

24



Momentum in revision and cognitive discounting Here I detail how cognitive discounting might
explain (a), when viewed as a theory of the aggregate forecasting agent. Coibion and Gorodnichenko
(2015a) run the regression:

xt+h − Ftxt+h︸ ︷︷ ︸
Forecast error

= c+ β(Ftxt+h − Ft−1xt+h︸ ︷︷ ︸
Forecast revision

) + errort,

and find that forecast revision predicts ex-post forecast errors (when averaging across agents), i.e. β̂ > 0.

I consider the univariate case, and show how cognitive discounting framework maps to this result.
The true dynamics is xt+1 = Γxt + εt+1, but agent perceives instead xt+1 = m̄(Γxt + εt+1). The
subjectively expected value at time t of the future variable xt+h is

Ftxt+h = E
BR
t xt+h = (m̄Γ)hxt. (199)

Hence forecast revision for xt+h between date t− 1 and date t are:

Forecast revisionh = E
BR
t xt+h − E

BR
t−1xt+h = (m̄Γ)hxt − (m̄Γ)h+1xt−1

= (m̄Γ)hΓ(1− m̄)xt−1 + (m̄Γ)hεt.

We note that when m̄ = 1, then forecast revision is exactly in the rational case: Γhεt, i.e. one
iterates the shock forward to revise forecast.

Now we turn to the ex-post forecast error:

Ex-post forecast error = xt+h − E
BR
t xt+h = Γhxt − E

BR
t xt+h + FErat

t,t+h

= Γh(1− m̄h)Γxt−1 + Γh(1− m̄h)εt + FErat
t,t+h,

where FErat
t,t+h =

∑h−1
j=0 Γ

jεt+h−j is the forecast error in the rational case.
We can see already that if m̄ < 1, forecast revisions predict ex-post forecast errors, as found in

Coibion and Gorodnichenko (2015a).
For a sharper mapping, we can show that an unconditional regression of ex-post forecast error on

forecast revision for forecast horizon h will have a β bounded below by

βh ≥ βh ≡
1− m̄h

m̄h
,

which is quite similar to the βCG = λ
1−λ in their theory framework, where λ is the level of information

rigidity. If we set λ = 1 − m̄h, i.e. my inattention to future variable is the source of rigidity, then we
map our theory to their empirical finding. Empirically, they find λ ≃ 0.23 at the one-period horizon107,

which would give m̄ ≃ 0.73 – much in line with the calibration. For other horizons, the standard errors
become big, but they find λ ∈ [0.3, 1] .

In conclusion, applying the cognitive discounting model to the professional forecasters of Coibion

and Gorodnichenko (2015a), one estimates m̄ ≃ 0.73. Of course, the model is not about professional
forecasters, but about the average consumer, which might have a lower m̄. I conclude that use the

Coibion and Gorodnichenko (2015a), coupled the cognitive discounting parameterization, would be a

107See their Figure 1, β = λ
1−λ

= 0.3, which gives λ = 0.23.
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Figure 6: This figure shows the optimal interest rate policy in response to a cost-push shock (νt),
when the central bank follows the optimal discretionary strategy. The behavior is very similar in
the two cases, as the central bank does not rely on future commitments for its optimal policy. This
illustrates Proposition 6. Units are percentage points. The cost-push shock follows an AR(1) process
with autocorrelation ρν = 0.2.

fruitful path of future research – potentially estimating the whole “term structure of attention” with
some mr and m̄.

XI.L Optimal no-commitment policy: a graphic illustration

Figure 6 illustrates the optimal policy of Proposition 6. It is the analogue of Figure 3, which illustrated

the commitment case.

XI.M Robustness check on parameters

Figure 7 shows how Figure 1 changes with other parameters of the literature. The plots are similar,

but the output gap at the ZLB is even more strongly negative, as those other parameterizations have
somewhat higher values of κσ.108

XII Further proofs

Proof of Proposition 4 Go back to (37), assuming the first best after the ZLB, so zT = 0. Then,

z0 (T ) = (AZLB − I)−1(AT
ZLB − I)b.

When condition (35) fails, one of the eigenvalues of AZLB is greater than 1 in modulus. Then,

limT→∞∥AT
ZLBb∥ = ∞ (it is easy to verify that b is not exactly the eigenvector corresponding to

the root less than 1 in modulus). Hence, limT→∞∥z0 (T ) ∥ = ∞. Furthermore, this explosion is a

recession: given that the entries of AZLB are positive, and those of b are negative, each of the terms

108Note that Werning (2015) parameter’s is κ̄ = 0.5 year−2 in continuous time, it is κ = κ̄ 1
42 in discrete time with

quarterly units.
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Figure 7: Cost of ZLB under various calibrations. This paper (connected line) uses κ = 0.11, σ = 0.20,
β = 0.99 for quarterly time units. Eggertsson and Woodford (2003a) (dashed line) uses κ = 0.02,
σ = 0.5, β = 0.99. Werning (2015) (dashed and dotted) uses κ = 0.0312, σ = 1, β = 0.99. Units are
percentage points.

in
(
I +AZLB + ...+AT−1

ZLB

)
b is negative, hence z0 (T ) has unboundedly negative inflation and output

gap.

When condition (35) holds, all roots of AZLB are less than 1 in modulus. Hence, limT→∞z0 (T ) =
−(AZLB − I)−1b, a finite value.

Proof of Lemma 3 The proof mimics the ones in Woodford (2003c) and Gaĺı (2015). We have

W = −
1

2
uccE0

∞∑

t=0

βt
[
(γ + φ)x2

t + εvari (pt (i))
]
,

where vari (pt (i)) is the dispersion of prices at time t. As in Woodford (2003, Chapter 6),

∞∑

t=0

βtvari (pt (i)) =
θ

(1− θ) (1− βθ)

∞∑

t=0

βtπ2
t +

θ

1− βθ
v−1

=
γ + φ

κ̄

∞∑

t=0

βtπ2
t +

θ

1− βθ
v−1,

using the value of κ̄ in Proposition 2, and calling v−1 := vari (p−1 (i)).
Hence,

W = −
1

2
uccE0

∞∑

t=0

βt

[
(γ + φ)x2

t + ε
γ + φ

κ̄
π2
t

]
−

1

2
uccε

θ

1− βθ
v−1

= −
1

2
ucc (γ + φ)

ε

κ̄
E0

∞∑

t=0

βt
(
π2
t +

κ̄

ε
x2
t

)
+W−

= −
1

2
KE0

∞∑

t=0

βt
[
π2
t + ϑx2

t

]
+W−,
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with K := ucc (γ + φ) εκ̄ ,ϑ := κ̄
ε ,and

W− := −
1

2
uccε

θ

1− βθ
vari (p−1 (i)) . (200)

Proof of Proposition 5 The Lagrangian is

L = E0

∞∑

t=0

βt

[
−
1

2

(
π2
t + ϑx2

t

)
+ Ξt

(
βMfπt+1 + κxt − πt + νt

)]
,

where Ξt are Lagrange multipliers. The first order conditions are: Lxt = 0 and Lπt = 0, which give re-
spectively −ϑxt+κΞt = 0 and −πt−Ξt+MfΞt−11t>0 = 0, i.e. Ξt =

ϑ
κxt and πt =

−ϑ
κ

(
xt −Mfxt−11t>0

)
.

Let us now explicitly solve for the dynamics of xt. We define α := ϑ
κ . For t > 0, using the Phillips

curve and πt = −α
(
xt −Mfxt−1

)
, we get,

−
(
xt −Mfxt−1

)
= −βMf

(
xt+1 −Mfxt

)
+
κ

α
xt +

νt
α
,

i.e.
G (F ) xt =

νt+1

α
, (201)

where F is the forward operator (F kxt := xt+k), and

G (X) := βMfX2 −
(
β
(
Mf
)2

+ 1 +
κ

α

)
X +Mf . (202)

Given that

G (0) > 0 > G (1) , (203)

one of the roots of G (X) = 0, which we call Λ, is between 0 and 1, while the other root is greater than

1. Given that νt = ν0ρtν , the solution of (201) has the form

xt = aΛt+1 + bρt+1
ν

for some numbers a and b.109 We next determine their value.
Using the boundary condition π0 = −αx0, i.e. formally x−1 = 0, we have a+ b = 0, i.e.

xt = b
(
ρt+1
ν − Λt+1

)
. (204)

Plugging this in (201) gives bG (ρν) ρt+1
ν = ν0ρ

t+1
ν

α , i.e.

b =
ν0

αG (ρν)
. (205)

This also gives an explicit path for πt and pt, via (40) and (41).

To study the sign of xt, suppose without loss of generality a positive cost-push shock, i.e. ν0 > 0.
We recall (203). If ρν ∈ (Λ, 1), then G (ρν) < 0 so xt < 0 for all t. If ρν ∈ [0,Λ), then G (ρν) > 0 and
again xt < 0 for all t.110 We conclude that at all dates, sign (xt) = −sign (ν0). Economically, a cost

109For simplicity we don’t consider separately the singular case ρν = Λ. Then, xt = (−at+ b)ρt+1
ν .

110In the singular case ρν = Λ has the same sign by continuity.
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push shock always entails a negative output gap (to “fight inflation”) under the optimal commitment
policy. As by (41),

pt =
−ϑ

κ

(

xt +
(
1−Mf

) t−1∑

τ=0

xτ

)

,

and xt < 0 at all dates, we see that pt is strictly positive at all date, and so is its long run value, under
the optimal commitment policy following a cost-push shock.

Proof of Proposition 6 The central bank today takes its future actions as given, and chooses xt,

πt, it to minimize today’s loss −1
2(π

2
t + ϑx2

t ) subject to the behavioral IS equation and behavioral NK
Phillips curve. This is equivalent to

max
πt,xt

−
1

2

(
π2
t + ϑx2

t

)
subject to πt = βMf

Eπt+1 + κxt + νt,

and it can be read off the IS equation. Hence, the Lagrangian is simply:

L = −
1

2

(
π2
t + ϑx2

t

)
+ Ξ

(
βMf

Eπt+1 + κxt + νt − πt
)
.

The first order conditions are: Lxt = 0 and Lπt = 0, i.e. −ϑxt + κΞ = 0 and −πt − Ξ = 0, which
together yields πt = −ϑ

κxt. The explicit value of it is in Section XII.

Proof of Proposition 6: Complements Here is the derivation of it. Substitute (42) into the

Phillips curve:

πt = βMf
Etπt+1 + κ

(
−
κ

ϑ

)
πt + νt ⇒ πt =

βMfϑ

ϑ+ κ2
Etπt+1 +

ϑ

ϑ+ κ2
νt.

Iterating forward:

πt =
∞∑

τ=t

(
βMfϑ

ϑ+ κ2

)τ−t
ϑ

ϑ+ κ2
Etντ =

∞∑

τ=t

(
βMfϑρν
ϑ+ κ2

)τ−t
ϑ

ϑ+ κ2
νt =

ϑ

ϑ+ κ2
1

1− βMfϑρν
ϑ+κ2

νt

=
ϑ

ϑ+ κ2 − βMfϑρν
νt = ϑΦνt

for Φ := (ϑ+ κ2 − βMfϑρν)−1. It quickly follows that xt = −κΦνt.

Plug these expressions for xt and πt into the Behavioral IS curve, we can solve for the nominal
interest rate:111

it =
xt −MEtxt+1

−σ
+ Etπt+1 + rnt =

−κΦνt +MκΦEtνt+1

−σ
+ ϑΦEtνt+1 + rnt .

Again, Etνt+1 = ρννt. Simplifying the expression gives us

it = (κσ−1(1−Mρν) + ϑρν)Φνt + rnt .
111Take for simplicity rnt = 0.
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Proof of Proposition 7 To lighten up the proof, we take the case with no deviation of the interest
rate. The general case is the same, as all things enter additively. I give the proof in the case my = 1
(so that mY = 1) – the 2018 NBER Working paper version of this paper has the general case.

We start from Proposition 18, which gives optimal consumption with fiscal policy.112 We have, with
bk = r

Rχ, bY = r
R ,

ĉt = bkkt + E
BR
t

[
∑

τ≥t

1

Rτ−t
(bkT (Xτ ) + bY ĉ (Xτ ))

]

= bkBt + bk
∑

τ≥t

EBR
t [T (Xτ )]

Rτ−t
+ Ft,

with

Ft := bY E
BR
t

∑

τ≥t

1

Rτ−t
ĉ (Xτ ) = bY Et

∑

τ≥t

m̄τ−t

Rτ−t
ĉ (Xτ ) . (206)

We also use (98)

E
BR
t [T (Xτ )] = −

r

R
Bt + m̄τ−t

Et

[

dτ − r
τ−1∑

u=t

du

]

,

so we have:

ĉt = bkBt + bk
∑

τ≥t

1

Rτ−t

(

−
r

R
Bt + Et

[

m̄τ−t

(

dτ − r
τ−1∑

u=t

du

)])

+ Ft (207)

= Et

[
∑

τ≥t

m̄τ−t

Rτ−t
bk

(

d (Xτ )− r
τ−1∑

u=t

d (Xu)

)]

+ Ft. (208)

We see that the impact of Bt cancels out, a form of partial Ricardian equivalence. Old debt (Bt) does

not make the agent feel richer. But a new deficit today (d (Xt)) does. Let us calculate the cumulative
impact of a deficit in (208)

J := 1− r
∑

k≥1

m̄k

Rk
= 1− r

m̄
R

1− m̄
R

= 1−
rm̄

R− m̄
=

R (1− m̄)

R− m̄
.

So,

ĉt = Et

[
∑

τ≥t

m̄τ−t

Rτ−t
bkJd (Xτ )

]

+ Ft

= Et

[
∑

τ≥t

m̄τ−t

Rτ−t

(
bkJd (Xτ ) + b̃Y ĉ (Xτ )

)]

We now solve for equilibrium consumption, like in the derivation of Proposition 1:

ĉt =
r

R
ĉt + bkJdt +

m̄

R
Et[ĉt+1].

112Note that this uses some notations from Section V.A, but the logic is not circular of course.
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So, multiplying by R and gathering the ĉt terms:

ĉt = RbkJdt + m̄Et[ĉt+1] = bddt + m̄Et[ĉt+1],

with bd = RbkJ , i.e.

bd =
φrR (1− m̄)

(φ+ γ) (R− m̄)
. (209)

Re-integrate the interest rate terms, we have:

ĉt = MEt [ĉt+1] + bddt − σr̂t.

The rest is as in the proof of Proposition 1. We have:

ĉnt = MEt

[
ĉnt+1

]
− σr̂n0t ,

so, with the output gap: xt = ĉt − ĉnt , we have:

xt = MEt [xt+1] + bddt − σ
(
r̂t − r̂n0t

)
.

!

Proof of Proposition 8 First, we state a simple result.

Proposition 29 (Consumption given beliefs) Consider an agent maximizing over (cτ , Nτ) utility Ut =

EBR
t

∑∞
τ=t β

τ−tu (cτ , Nτ ) subject to the law of motion for wealth (49). Up to second order terms (and
for small wealth k0), consumption is:

ct =
r

R
kt + ȳ + E

BR
t

[
∑

τ≥t

1

Rτ−t

(
brr̂

BR (Xτ ) + by ŷ
BR (Nτ ,Xτ )

)
]

, (210)

where expectations are taken under the agent’s subjective model of the world, br =
−1
γR2 , by =

r̄
R , and Nτ

labor supply at the perceived optimum. The chosen labor supply is given by Nφ
t = ŷBR

N (Nt,Xt) c
−γ
t .

It is stated as a function of an endogenous labor supply, because this is the form that is most useful

in some derivations (Section XI.B develops the case that explicitly solves for labor supply). Versions of
this proposition were proven a number of times with minor variants (e.g. Eusepi and Preston (2011);
Woodford (2013); Gabaix (2016a); Auclert (2019)), but for completeness let us derive it.113 !

Proof of Proposition 29. For simplicity, we take the deterministic case (as we consider first order
Taylor expansions, the general case is the deterministic case where the path of variables are their

expected values). The agent wants to maximize, over ct and Nt:

L =
∑

t≥0

βtu (ct, Nt) + λ

(

k0 +
∑

t≥0

qt
(
ȳ + ŷBR (Nt,Xt)− ct

)
)

, (211)

where qt := 1/
∏t−1

τ=0

(
1 + r̄ + r̂BR (Xτ )

)
. Here we consider the decision at time 0, which is just a

113See also the proof of Lemma 4.2 in Gabaix (2016a) for another style of derivation, using dynamic programming.
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normalization. Consider first the problem of optimizing L over ct (taking the value of yt := ȳ +

ŷBR (Nt,Xt) as given), the FOC is βtc−γt = λqt, so ct = c0
(
βt

qt

)ψ
(with ψ := 1

γ ), for some c0 = λ−ψ.

With Ω := k0+
∑

t≥0 qtyt the total perceived wealth, the perceived budget constraint is Ω =
∑

t≥0 qtct =

c0
∑

t≥0 β
tψq1−ψt . This gives consumption at decision time:

c0 =
k0 +

∑
t≥0 qtyt∑

t≥0 β
tψq1−ψt

. (212)

From there, let us see the impact of a small change in income. We have, at the default value of interest
rates, qt = βt , so

∑
t≥0 β

tψq1−ψt = 1
1−β , so c0 = (1− β)

(
k0 +

∑
t≥0 β

tyt
)
. This yields by = 1− β = r

R in
(210). The impact of the interest rate on current consumptions is similar, though a little tedious (it is

done in Section XII).
Next, for labor supply at time 0, the behavioral agent optimizes (211) given his perceived model of

the world. This gives LN0
= 0, i.e. −Nφ

0 + λŷBR
N (N0,X0) = 0. As we saw that c−γ0 = λ, we obtain

Nφ
0 = c−γ0 ŷBR

N (N0,X0). !

Application to this paper’s behavioral agent When my = 1, and no initial wealth. This is the
simplest case. The behavioral agent perceives his dynamic budget constraint is (49) and (50). Hence,

we apply Proposition 29 to (50). At the optimum policy, we have Nt = N (Xt) under the perceived
motion for Xt, so the planned labor supply also verifies Nτ = N (Xτ ), so ŷBR (Nt,Xt) = ŷ (Xt). Now,

using cognitive discounting (10), we have (51). This gives the consumption:

ĉt = E
BR
t

[
∑

τ≥t

1

Rτ−t

(
brr̂

BR (Xt) +
r

R
ŷ (Xt)

)]

= Et

[
∑

τ≥t

m̄τ−t

Rτ−t

(
brr̂ (Xt) +

r

R
ŷ (Xt)

)]

.

With a general my or non-zero initial wealth. Here things are more complex, because the aggregate
wealth is 0, and the agent plans to have non-zero wealth next period (as he misperceives income),

so the agent doesn’t plan that her future labor supply will be equal to the aggregate labor supply,
Nτ = N (Xτ ). Section XI.B gives the proof.

Another method: Dynamic programming with Taylor expansion. The following method is a bit less
intuitive, but may be handy to automatize when considering medium-scale extensions of this model.
The subjective value function of the agent satisfies:

V (k,X) = max
c,N

{u (c, N)

+βEV
(
(1 + r +mr r̂ (X)) (k + ȳ +my ŷ (X) + w (X) (N −N (X))− c) , m̄GX (X, ϵ)

)
}

and optimal consumption satisfies uc (c (k,X) , N) = Vk (k,X) (independently of N because utility is

separable), so that cX = VkX

ucc
= −VkX

γ . In turn, ĉt = cXXt. Hence, to derive consumption, we simply
need to calculate VkX . This is done in Section XI.J.

Proof of Proposition 8: Complements Recall that we have: c0 = µΩ with

µ =
1

∑
t≥0 β

tψq1−ψt

, Ω = k0 +
∑

t≥0

qty
BR
t ,
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with qt = 1/
∏t−1

τ=0

(
1 + rBR

τ

)
. To lighten up the notation, I drop here the BR superscripts—still remem-

bering that we reason in the space of perceived interest rate and incomes.
I linearize around the steady state, which has qt = βt and 1 = βR = β (1 + r̄). This gives, at the

steady state, µ = 1− β = r̄
R = by, and Ω = k0 +

ȳ
1−β , so c0 = µΩ = r

Rk + ȳ.
The impact of a change dyτ is easy to derive:

dc0 = µdΩ = µ
dyτ
Rτ

= by
dyτ
Rτ

.

This implies:
∂c0
∂yτ

= by
1

Rτ
.

The impact of an interest rate is more delicate. Consider a change change drτ , for just one date τ .

It creates a bond price change dqt =
−1

Rt+1drτ1t>τ , so that

∑

t≥0

dqt =
∑

t≥0

−1

Rt+1
drτ1t>τ =

∑

t≥τ+1

−1

Rt+1
drτ =

−1

rRτ+1
drτ .

This gives

dµ

µ
= −µ (1− ψ)

∑

t≥0

βtψq−ψt dqt = −
r

R
(1− ψ)

∑

t≥0

dqt

= (1− ψ)
r

R

1

rRτ+1
drτ = (1− ψ)

drτ
Rτ+2

.

Also,

dΩ = ȳ
∑

t≥0

dqt =
−ȳ

rRτ+1
drτ .

Recalling that c0 = µΩ:

dc0 = µΩ
dµ

µ
+ µdΩ = c0 (1− ψ)

drτ
Rτ+2

+
r

R

−ȳ

rRτ+1
drτ

= (−ψc0 + c0 − ȳ)
drτ
Rτ+2

=

(
−ψc0 +

rk0
R

)
drτ
Rτ+2

=
br
Rτ

drτ ,

with br =
r̄
R
k0−ψc0
R2 . In the main text, we linearize around c0 = c̄ = 1, k0 = 0, so br = −1

γR2 . We just
showed that:

∂c0
∂rτ

= br
1

Rτ
.

Proof of Proposition 9 Proposition 8 gives:

ĉt = Et

[
∑

τ≥t

m̄τ−t

Rτ−t

( r

R
mY ŷτ + brmr r̂τ

)]

. (213)

Now, since there is no capital in the NK model, we have ŷτ = ĉτ : income is equal to aggregate
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demand. Hence, using b̃y :=
r
RmY and b̃r := brmr = − mr

γR2 , (213) becomes:

ĉt = Et

[
∑

τ≥t

m̄τ−t

Rτ−t

(
b̃y ĉτ + b̃rr̂τ

)]

. (214)

Taking out the first term yields:

ĉt = b̃y ĉt + b̃r r̂t + Et

[
∑

τ≥t+1

m̄τ−t

Rτ−t

(
b̃y ĉτ + b̃r r̂τ

)]

.

Given that (214), applied to t+ 1, yields ĉt+1 = Et+1

[∑
τ≥t+1

m̄τ−t−1

Rτ−t−1

(
b̃y ĉτ + b̃rr̂τ

)]
, we have:

ĉt = b̃y ĉt + b̃rr̂t +
m̄

R
Et [ĉt+1] =

r

R
mY ĉt + b̃rr̂t +

m̄

R
Et [ĉt+1] .

Multiplying by R and gathering the ĉt terms, we have ĉt =
m̄Et[ĉt+1]+Rb̃r r̂t

R−rmY
. This suggests defining

M := m̄
R−rmY

and σ := −Rb̃r
R−rmY

= mr

γR(R−rmY ) , and we get (19). This then translates into (25).

Proof of Equation (57) If the firm were free to choose its real (log) price qit freely, it would

choose price q∗it maximizing (14), i.e. eq
∗
it =

1−τf
1− 1

ε

MCt. The subsidy τf = 1
ε was chosen to eliminate the

monopoly distortion on average.
The FOC for the (subjectively) optimal flexible price is q∗,BR

i (Xτ ) := argmaxqi v
BR (qi,Xτ ). For

firms facing the Calvo pricing friction, we have, much as in the traditional model, that the price is the

weighted average of future optimal prices:114

qit = (1− βθ)
∑

τ≥t

(βθ)τ−t
E
BR
t

[
q∗,BR
i (Xτ )

]
, (215)

which is a behavioral counterpart to Gaĺı’s (G11).

Given the behavioral perceptions in (55), we have, i.e., linearizing:

q∗,BR
i (Xτ ) = mf

πΠ (Xτ )−mf
xµ (Xτ ) . (216)

Now, by the now usual cognitive discounting (11), we have:

E
BR
t [Π (Xτ )] = m̄τ−t

Et [Π (Xτ )] , E
BR
t [µ (Xτ )] = m̄τ−t

Et [µ (Xτ )] .

114The proof is as in the traditional model: the FOC of problem (17) is EBR
∑

τ≥t (βθ)
τ−t

vBR
qi (qit,Xτ ) = 0 and

linearizing around q∗,BR
i (Xτ ), the FOC is EBR

∑
τ≥t (βθ)

τ−t vBR
qiqi

(
q∗,BR
i (Xτ ) ,Xτ

)
·
(
qit − q∗,BR

i (Xτ )
)

= 0. Tak-

ing the Taylor expansion around 0 disturbances so q∗,BR
i (Xτ ) close to 0, the terms vBR

qiqi

(
q∗,BR
i (Xτ ) ,Xτ

)
are ap-

proximately constant and equal to vBR
qiqi

(0, 0) up to first order terms, and the FOC is (up to second order terms)

EBR
∑

τ≥t (βθ)
τ−t

(
qit − q∗,BR

i (Xτ )
)
= 0, which gives (215).
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So, we have the following counterpart to the equation right before (G16):

qit = (1− βθ)
∑

τ≥t

(βθ)τ−t
E
BR
t

[
mf
πΠ (Xτ )−mf

xµ (Xτ )
]

= (1− βθ)
∑

τ≥t

(βθ)τ−t m̄τ−t
Et

[
mf
πΠτ −mf

xµτ
]
.

Proof of Proposition 12 The state vector is zt =
(
xt, πt, πd

t

)′
. We can write the system of

Proposition 11, together with the Taylor rule, as Etzt+1 = Bzt + b̃
(
at, π̄CB

t

)′
, for a matrix B and

coefficient b̃, where as before at = jt − rnt . Calculations show that:”

B =

⎛

⎜⎝

1+σφx
M + σκ

Mβf
σ
M (φπ −

1
βf − (1− ζ)η) − σ

M (1− η − 1
βf )

− κ
βf

1
βf + (1− ζ)η 1− η − 1

βf

0 (1− ζ)η 1− η

⎞

⎟⎠ . (217)

To study equilibrium multiplicity, we dispense with the forcing term b̃
(
at, π̄CB

t

)′
: indeed, the difference

between two candidate equilibria will satisfy Etzt+1 = Bzt. Hence, we study the system Etzt+1 = Bzt,
Consider also the characteristic polynomial ofB, Φ (Λ) := det (ΛI −B) (with I the identity matrix),

which factorizes as Φ (Λ) =
∏3

i=1 (Λ− Λi), where the Λi’s are the eigenvalues of B.
Inflation πd

t is a predetermined variable, not a jump variable. Hence, for the Blanchard and Kahn
(1980) determinacy, B needs to have 1 eigenvalue less than 1 in modulus (corresponding to the prede-

termined variable πd
t ), and 2 greater than 1 (corresponding to the free variables xt, πt). This implies

that a necessary condition is Φ(1) > 0. We can calculate this term:

Mβf

κση
Φ(1) = φπ − 1 + ζ

(1− βMf)(1 + σφx −M)

κσ
> 0, (218)

which is equivalent to the behavioral Taylor criterion, (62). This, however, is not sufficient. The

sufficient conditions are the “auxiliary Routh-Hurwitz” conditions, to which I now turn.

“Auxiliary Routh-Hurwitz” conditions for determinacy To derive sufficiency conditions,

consider a Möbius transformation of the characteristic polynomial:

Ψ(λ) := (λ− 1)3Φ

(
λ+ 1

λ− 1

)
. (219)

There is a one-to-one mapping from any (non-unitary) root of Ψ(·) to a root of Φ(·) by construction:
λ +→ Λ (λ) = λ+1

λ−1 . It is easy to show that Re (λ) < 0 if and only if |Λ (λ) | < 1. Thus, the conditions

for B to have exactly two eigenvalues Λ outside the unit circle is the same as the conditions for Ψ(·) to
have exactly two roots λ with positive real parts. We next use the Routh-Hurwitz theory, which has
been developed to handle that case.

We write Φ (Λ) as

Φ(Λ) =
3∑

i=0

aiΛ
i
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with

a3 = 1,

a2 = −

(
1− ηζ +

1

βf

)
− C1 − C2 < 0,

a1 =
1

βf
(1− ηζ) +

(
1

βf
+ 1− ηζ

)
C1 + (φπ + 1− η)C2 > 0,

a0 = −
1 − ηζ

βf
C1 − (1− η)φπC2 < 0,

with C1 ≡
1+σφx

M and C2 ≡
κσ

Mβf are defined for convenience.

We can then rewrite Ψ(λ) as

Ψ(λ) =
3∑

i=0

biλ
i,

where

b3 = a3 + a2 + a1 + a0,

b2 = 3a3 + a2 − a1 − 3a0,

b1 = 3a3 − a2 − a1 + 3a0,

b0 = a3 − a2 + a1 − a0.

The criterion b3 > 0 is exactly the Taylor criterion in the text. Also, by inspection, b0 > 0 (since

a3, a1 > 0 while a2, a0 < 0). We assume that φπ,φx are nonnegative.
Applying the Routh-Hurwitz determinacy criterion for polynomial, Ψ(λ) has exactly two roots with

positive real parts if and only if when going through the sequence

b3 → b2 → b′1 :=
b2b1 − b3b0

b2
→ b0

signs change exactly twice (see for example Meinsma (1995)). Given b3 and b0 are positive, this is

possible if and only if (b2, b′1) are not both positive, i.e. if and only if b2 and b′1 := b2b1 − b3b0 are not
both positive (i.e., Not(b2 > 0 and b′1 > 0)). Thus we have proven the following.

Proposition 30 (Equilibrium determinacy with behavioral agents – with backward looking terms)

Assume that φπ,φx are nonnegative. A necessary and sufficient condition for equilibrium determinacy is
that the Taylor criterion (62) in the text holds, and that the following “auxiliary Routh-Hurwiz condition”
holds:

b2 and b′1 := b2b1 − b3b0 are not both positive. (220)

I conducted some numerical explorations, making sure that the main Taylor criterion was verified.
Then, the auxiliary Routh-Hurwitz condition (220) was always verified. Without claiming that it is
actually always verified, it seems that the “hard” economic essence is in the Taylor criterion of the main

text, while auxiliary Routh-Hurwitz condition (220) is a much less demanding condition.

Proof of Proposition 14 Call δct = ĉ (m)− ĉ (1), the difference between the actual consumption
ĉ (m) given inattention m, and the ideal consumption with full attention (which would have m = 1).
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As the agent pays full attention to the wage, we can write the first order condition for labor supply at
decision time as N̂t (m) = −γ

φ ĉt (m) + 1
φ ω̂t, which gives δNt =

−γ
φ δct. So, with at = (ct, Nt), we have the

following expression:

(δa)′uaaδa = ucc (δc)
2 + uNN (δN)2 = −

(

γ + φ

(
−γ

φ

)2
)

(δc)2 = −
γ (γ + φ)

φ
(δc)2 . (221)

This represents the leading Taylor expansion term of the utility losses from a suboptimal action driven
by inattention, times two.

Endogenizing m̄ Consumption is (see (52)):

ĉt (m̄) = Et

∑

τ≥0

βτm̄τft+τ , ft := b̃y ŷt +mrbrr̂t,

with b̃y = mY
r
R =

φmd
y+γ

φ+γ
r
R . This gives the following marginal impact of attention m̄ on consumption:

cm̄ :=
∂ĉt(m̄)

∂m̄
= Et

[
∑

τ≥0

τβτm̄τ−1ft+τ

]

. (222)

I consider the limit of small time intervals. The reason is in (68), we obtain vaa = uaa in the limit

of small time intervals (this is quite well-known; see e.g. Gabaix (2016a), footnote 38). Hence, the
prefactor for the losses from inattention is:

Λ =
γ (γ + φ)

φ
E
[
c2m̄
]
. (223)

I now consider the case where all fluctuations are driven by productivity ζt, as in the setup of Section

XI.H.3. So, ft is an AR(1) with autocorrelation ρ, and

cm̄ =
1

m̄

∑

τ≥0

τβτm̄τρτft =
1

m̄

βρm̄

(1− βρm̄)2
ft

where I used: ∑

τ≥0

αττ =
α

(1− α)2
for |α| < 1. (224)

Hence,

cm̄ =
βρ

(1− βρm̄)2
ft, (225)

As all is by productivity, then ŷt = byζζt and r̂t = brζζt, so

ft =
(
b̃yb

y
ζ +mrbrb

r
ζ

)
ζt,

so that cm̄ = cm̄,ζζt with

cm̄,ζ =
βρ

(1− βρm̄)2

(
b̃yb

y
ζ +mrbrb

r
ζ

)
. (226)
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So, the endogenization of m̄ follows from Proposition 13, with

λσ2
S = Λ =

γ (γ + φ)

φ
E
[
c2m̄
]
=
γ (γ + φ)

φ
c2m̄,ζσ

2
ζ . (227)

Endogenizing attention to interest rate and income. Let us now endogenize attention to the
interest rate. The marginal impact of attention to the interest rate on consumption is: (e.g. starting
from (52) or (127))

cmr = Et

[
∑

τ≥0

βτm̄τ brr̂t+τ

]

,

and in the AR(1) case,

cmr = Et

[
∑

τ≥0

βτm̄τ brb
r
ζζt+τ

]

=
∑

τ≥0

βτm̄τ brb
r
ζρ
τζt,

so that cmr = cmr ,ζζt with

cmr ,ζ =
1

1− βm̄ρ
brb

r
ζ . (228)

So, the announced endogenization of mr follows from Proposition 13.
The endogenization of attention to income is very similar. We have (e.g. starting from (52) or (127))

cmy = Et

[
∑

τ≥0

βτm̄τby ŷt+τ

]

,

with by =
r
R

φ
φ+γ , and in the AR(1) case,

cmy = Et

[
∑

τ≥0

βτm̄τbyb
y
ζζt+τ

]

= Et

[
∑

τ≥0

βτm̄τbyb
y
ζρ
τζt

]

,

so that cmy = cmy ,ζζt with

cmy ,ζ =
1

1− βm̄ρ
byb

y
ζ . (229)

So, the announced endogenization of my follows from Proposition 13.
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