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This online appendix provides various proofs and complements. Its main
part is section C which gives other applications of the framework, and a
behavioral version of: dynamic portfolio choice, linear-quadratic problems,
precautionary savings, dynamic investment in general equilibrium, addictive
behavior, Ricardian equivalence, a discussion of whether the active decision of
a consumer is about consumption or savings, the measurement of intertemporal
elasticities of substitution when consumers are partially inattentive to the
interest rate, and a model with a source-dependent marginal propensity to
consume.

Appendix A: Complements

A.1. Tools to Expand a Simple Model Into a More Complex one

Calculating the marginal impact of a new variable: Vx, Vw,x. Here I develop
the method to derive the Taylor expansion of a richer model, when starting from
a simpler one. The methods are entirely paper and pencil.68

The state variables evolve according to:

w′ = Fw (w,x, a) , x′ = F x (w,x, a)

where the ′ denote next-period variables. Also, x is stable around 0:
F x (w, 0, a) = 0.

Consider the fully rational model:

V r (w,x) = max
a

u (w,x, a) + βEV r (Fw (w,x, a) , Fx (w,x, a)) (A.1)

We start with a simpler model, where x is always 0: x ≡ 0, F x
′
= 0, i.e.

V d (w) = max
a

u (w, 0, a) + βEV d
(
Fw

′
(w, 0, a)

)

68. They draw from the techniques surveyed by Judd (1998) (Chapter 14), who has a more
computer-based perspective. Section F.9 extends this to continuous time.
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We use the notation, for a function f(w,a),

Dwf = ∂wf + (∂af)∂wa
d (w) (A.2)

which is the total derivative with respect to w, e.g. the full impact of a change
in w, including the impact it has on a change in the action a.69

Bellman method.

Lemma A.A.1. The impact of a change x on the value function and its
derivative is, respectively:

Vx =
ux + βV ′

w′Fwx (w,x, a)

1− βFxx
(A.3)

Vw,x =
Dwux + βDw [Fwx (w, 0, a)V ′

w′ (w′, 0)] + βV ′
x′F xxw

1− βFxxDww
′ (A.4)

where all derivatives are evaluated at (a, x) =
(
ad (w) , 0

)
.

Proof. The proof yields the general method of calculation. We shut down
uncertainty and differentiate the rational Bellman equation (A.1), first with
respect to the new variable x (using the envelope theorem):

Vx (w,x) = ux + βV ′
w′Fwx + βV ′

x′Fxx

which yields the announced expression for Vx. Then we take the total derivative
w.r.t. w:

Vw,x (w,x) = Dwux + βDw
[
V ′
w′Fwx (w,x, a)

]
+ βFxx V

′
w′,x′Dww

′ + βV ′
x′DwF

x
x

so

Vw,x (w, 0) =
Dwux + βDw [Fwx (w, 0, a)V ′

w′ (w′, 0)] + βV ′
x′DwF

x
x

1− βFxxDww
′ .

□

Lemma A.A.2. Assume the local autonomy condition (32), F xa = 0, and
consider some value function V (w,x). Then, the impact of a change x on the
optimal action is (around x = 0):

ax = −Ψ−1
a Ψx (A.5)

69. The notations are a bit awkward when variables are multidimensional, and can be
made clearer by using tensors. To keep things elementary, I don’t explicitly use tensors
here.
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with Ψ(a, x) = ua + βV ′
w′Fwa , and

Ψa = uaa + βFwa V
′
w′w′Fwa + βV ′

w′Fwaa (A.6)

Ψx = uax + βV ′
w′Fwax + βFwx V

′
w′w′Fwa + βFxx V

′
w′x′Fwa . (A.7)

evaluated at (a, x) =
(
ad (w) , 0

)
. They depend only on the transition functions

and the derivatives of the simpler baseline value function V d (w′).

Proof. The first order condition for a is Ψ (a, x) = 0 with

Ψ(a, x) = ua + βV ′
w′Fw

′

a + βV ′
x′Fx

′

a

The rest follows by the implicit function theorem: terms in Vxx drop out because
F x

′

a = 0 at the default action. □
When the local autonomy condition (32) doesn’t hold, a term Vxx appears.

Then, the situation is more complex, and requires solving for a fixed point, in
the form of a matrix Ricatti equation.

Feynman-Kac method. In some cases, it is useful to do the same via a
Feynman-Kac type of approach.70 Here we view xt as exogenous, i.e. assume
xt+1 = F x (xt). Calling w the initial condition for wealth, the Lagrangian is:

L =
∞∑
t=0

βtu (wt, xt, at)

+
∞∑
t=1

βtqwt (−wt + Fwt (wt−1, xt−1, at−1)) + qw0 (−w0 +w)

where qwt = Vw (wt) are the Lagrange multipliers. At the optimum, the agent
solves V (w) = max(at,wt)t≥0

L. This implies that Lat = Lwt = 0. The envelope

theorem gives:

Vxt = Lxt = βt
[
ux (wt, xt, at) + βqwt+1F

wt+1
x (wt, x, at)

]
so that, using the total derivative notation (A.2),

Vxt,w0 = βt
Dwt
Dw0 |x=0

Dwt

[
ux
(
wt, xt, a

d
t (wt)

)
|xt=0

+βVw (wt+1)F
wt+1
x

(
wt, xt, a

d
t (wt)

)
|xt=0

]
or in short

Vxt,w0 = βt
Dwt
Dw0

Dwt

[
utx + βV t+1

wt+1
Fwt+1
x

]
(A.8)

70. I call it “Feynman-Kac” because this approach deals particularly well with stochastic
problems.
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Application. In the consumption problem with βR = 1, let us derive
again at the impact of a one-time change of interest rate r̂t from Lemma
7. Under the default model ct = c0 and wt = w0. So Dwt

Dw0
= 1, uxt = 0,

V dw (wt) = u′ (ct) =
(
rwt+y
R

)−γ
, and given Fwt+1 = (1 + rt) (wt − ct) + ȳ,

Fwt+1
rt = wt − ct = wt −

rwt + ȳ

R
=
wt − ȳ

R
=
w−
t

R

using the notation w−
t := wt− ȳ for the beginning of period wealth. Using (A.8)

gives:

Vxt,w0 = βtDwt

[
β

(
rwt+1 + y

R

)−γ
w−
t

R

]
=

1

Rt+2
Dwt

[(
rwt+1 + y

R

)−γ
w−
t

]

=
1

Rt+2

(
−γ r̄

R
c−γ−1
t+1

Dwt+1

Dwt
w−
t + c−γt

)
=

1

Rt+2
c−γ−1
0

(
−γ r̄

R
w−

0 + c0

)
as under the default model ct = c0. As time-0 consumption satisfies uc0 = Vw0 ,
we have ucc∂r̂tc0 = ∂r̂tVw0 , and

∂r̂tc0 =
∂r̂tVw0

ucc

=
1

Rt+2 c
−γ−1
0

(
−γ r̄Rw−

0 + c0
)

−γc−γ−1
0

=
1

Rt+2

( r̄
R
w−

0 − ψc0

)
=

1

Rt+2

( r
R

(w0 − ȳ)− ψc0

)
.

which gives again Lemma 7 (the income part being easy as always).

A.2. Extension: Proportional Thinking and Scale-Free κ

Here are some notes for a practical use of the model.

A.2.1. Using the model without κ. First, one could imagine directly measuring
m. For instance, take the basic life-cycle model of Section 2. Suppose we had
data on retirement saving, one could measure the mt of say high-educated
people vs less educated people, at different points in time t. That would be
interesting. This way, we could back out the correct attention function, or see
its determinants over time – a useful research enterprise.

Second, suppose that we keep κ as a more basic parameter, and measure
κ it – for one given type of decision. For instance, in the life-cycle model, one
could study just one variable, consumption, fitting a κ for it, say over a lifetime.

One important difficulty is that κ is not “scale-free” – it depends on the
units of utility. To remedy that problem, I discussed earlier a “scale-free κ”
(Gabaix (2014)), which I state and generalize here.
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A.2.2. Scale-free κ and Proportional Thinking.
Scale-free parametrization with a one-dimensional action. Suppose first

that there is just a one-dimensional action. The following formulation is easy
to microfoundation, and proves sensible and convenient:71

κ =
(
κ̄a♮
)2 ∣∣vaa (ad (x,md

))∣∣ (A.9)

where κ̄ is a unitless parameter, which might portable from one situation to
the next (Rabin (2013) advocates such portability of parameters). Here a♮ is
the “natural” or “typical scale” of the action. In music, ♮ means the “natural”
pitch of a note, so perhaps it’s a mnemonic symbol for the “natural scale” of
variable).

What is a natural scale? In many cases, this is reasonably clear. If the action
is a purchase ck in dollar of good k, then a♮ = cd. If the action is a transform
f (ck) of that purchase, then a♮k =

∣∣f ′ (cdk)∣∣ c♮k. As a result, if we consider log

consumption, the natural scale is a♮k = 1.72

Formulation (A.9) implies that attention to dimension i is:73

mi = A
(
E
[
a2mi

]
(κ̄a♮)

2

)

In turns, we obtain a rule (with A = A1): “Keep only dimensions of reality that
matter for more than κ̄ of the typical scale a♮ of the decision” .

For instance, a reasonable parameter might be κ̄ = 5%. People then
eliminate all considerations that matter for less than 5% of the decision,
whether it is for a small decision (e.g., buying at the supermarket) or a big
decision (e.g., buying a car).

Some evidence consistent with that is presented by Samuelson and
Zeckhauser (1988), who show similar percentage price dispersion between cheap
and expensive goods, and by Tversky and Kahneman (1981) : people consider
a $5 discount more worthy of an extra shopping trip if it is for a $15 calculator
than for a $125 jacket. Bordalo et al. (2013) and Bushong et al. (2021) have
emphasized the importance of this proportional thinking.

I conjecture that this feature is a good benchmark which would be
interesting to evaluate empirically (I do not claim it will work perfectly, but I

71. Section F.5 provides a microfoundation, which I outline here. Mental effort creates

trembling in the action, with a standard deviation σa =
√
2κ̄a♮

(∑
i g (mi)

)1/2
proportional

to the typical scale of the action (as in much of psychophysics, e.g. in the Weber-
Fechner law), and increasing in mental activity m. The resulting utility losses are then
−1
2
vaaσ2

a = κ
∑

i g (mi) with the value of κ in (A.9).

72. In addition, if a is presented as belong to a natural range a ∈ [a, a] (as in many lab
experiments): then we can take a♮ = 1

2
(|a+ a|+ |a− a|), which reflects the absolute value of

the midpoint, and the width of the range. In other contexts, we can take a♮ = var (ar(x))1/2.

73. I use m∗
i = A (−E [amiuaaami ] /κ), from (10).
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conjecture that it will hold more likely than the polar opposite prediction that
people would be 100 times more precise for a good that costs 100 times more).

Scale-free parametrization with many actions. We can generalize the idea
above to many actions. To do that, formally, I use a variant of sparse max,
which specifies a different attention for each type of action (formally, for each
coordinate of the action vector).74

Definition A.1. (Sparse max: scale-free with action-specific attention).
When it is scale-free, with action-specific attention, the sparse max
smaxSF

a;m|a♮ v (a, x,m) is defined as follows.

Step 1: For each dimension k of the action, the attention vector mk =(
mk
i

)
i=1...n

is given by:

m∗ = arg min
m∈[0,1]n

∑
i

[
1

2

(
akmi

)2
(1−mi)

2 +
(
κ̄ak,♮

)2
g (mi)] (A.10)

Step 2: The k−th dimension of the action (a∗k) is the optimal under the model
mk, given the other dimensions of actions (a∗−k) .

a∗k ∈ argmax
ak

v
((
ak, a

∗
−k
)
, x,mk

)
. (A.11)

Practically, Definition A.1 yields an explicit formula for attention:

mk
i = A

E
[(
akmi

)2]
(κ̄ak,♮)

2

 (A.12)

and a first order condition for action is, for each k:75

vak
(
a∗, x,mk

)
= 0 (A.13)

In conclusion: based on the psychological evidence on proportional thinking,
it seems plausible that the above formulation will calibrate reasonable well, with
one scale-free parameter κ̄, which I conjecture to be around κ̄ = 5% – if people
omit factors that matter by less than 5%.

For concreteness, here is an example. Suppose that there are two actions,
a1, a2, and:

v (a, x) = −1

2

2∑
k=1

wk

(
ak −

∑
i

bki xi

)2

74. See Gabaix (2014) (Section XV.D of the online appendix)

75. If several actions are possible (which is not a generic situation) then for instance we
take one closest to the default action by some metric.
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where wk > 0 is a scale, bk is a vector. Then, the attention-augmented utility

function is v (a, x,m) = −1
2

∑2
k=1w

k
(
ak −∑i b

k
imixi

)2
. The basic sparse max

yields:

mi = A
(
−E [amivaaami ]

1

κ

)
= A

(
1

κ

2∑
k=1

wk
(
bki
)2
σ2xi

)
and ak =

∑
i b
k
imixi. In contrast, the scaled sparse max of Definition A.1 gives:

mk
i = A

(
−E

[
akmi

vakaka
k
mi

] 1
κ

)
= A

((
bki
)2
σ2xi

(ak,♮)
2

1

κ̄2

)

and ak =
∑
i b
k
im

k
i xi for k = 1, 2. Here, the attention is independent of wk: for

action k, the agent makes sure to include all considerations i that makes him
change his decision by more than κ̄ times the typical scale ak,♮.

A.3. Complements: Life-cycle model with T periods

Here are some more precisions to see how the intuitive procedure of Section 2
is an outcome of the general formalism. The action is consumption ct and the
state vector is

zt = (wt, x, t)

Note that x∗ := (T − L) ŷ is the objective value, so z0 = (w0, x
∗, 0). But it is

useful to consider x a variable.
The objective laws of motion are expressed in F z (c, zt)

76. So, the rational
agent at time t solves crt = argmaxt v (c, zt), with v defined in (3): v (c, zt) :=
u (c) + V r (wt + ȳ − c, x, t+ 1).

For the behavioral agent, the attention-augmented law of motion is
F z (zt,m) := F z (wt,mx, t) before retirement (for t < L): only x is misperceived.
After retirement, I assume correct perception, F z (zt,m) := F z (zt).

77 The
proxy value function is V p = V r (equation (2)). Then, Definition 2 gives:

ct = arg smax v (c, zt,m) with v (c, zt,m) := v (c,wt,mx, t) (A.14)

When we apply the sparse max of Definition 1. Step 1 gives the value of mt

in (6). Step 2 gives the value of ct in (6).

76. Formally,

Fw (c, zt) = wt + ȳ +
x

T − L
1t≥L − ct, Fx (c, zt) = x, F t (c, zt) = t+ 1.

77. Formally, there is an element of arbitriness: one could conceive a partial misperception
of time t, or misperception income after retirement. A medium-run open question is a way
to endogenize such “intuitively reasonable” choices. Still, the model produces a lot of
reasonable behavior “on its own” , e.g. in Figure 1.
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Appendix B: Proofs

Sections C to G contain most proofs.
Proof of Lemma 2. The rational reaction function satisfies: ar (x) = ad +∑
i bixi + λ (x) for a function λ (x) = O

(
∥x∥2

)
. So, ∂a/∂xi = bi and:

m∗
i = τ

(
1,

κa
σi · ∂a/∂xi

)
= τ

(
1,

κa
σi · bi

)
We shall use the notation λ (x) := λ

(
(m∗

i xi)i=1...n

)
, which also satisfies

λ (x) = O
(
∥x∥2

)
. The sparse reaction function is:

as (x) = argmax
a

u (a,m∗
1x1, ....,m

∗
nxn)

= as (m∗
1x1, ....,m

∗
nxn)

= ad +
∑
i

bim
∗
i xi + λ ((m∗

i xi)i=1...n)

= ad +
∑
i

biτ

(
1,

κa
σi · bi

)
xi + λ (x)

= ad +
∑
i

τ

(
bi,

κa
σi

)
xi + λ (x) = ad +

∑
i

τ

(
bi,

κa
σi

)
xi +O

(
∥x∥2

)
.

Proof of Proposition 7. Suppose first that the problem is deterministic.
Given attention mr,my, the agent’s problem is identical to the rational agent’s
problem, in a world in which the true interest rate is r̄ + mr r̂t, and true
income is ȳ +myŷt, and the transition function is the one perceived by the

agent. Hence, calling cr0

(
w0, (r̂τ , ŷτ )τ≥0

)
the rational consumption given flows

cs0

(
w0, (r̂τ , ŷτ )τ≥0

)
= cr0

(
w0, (mr r̂τ ,myŷτ )τ≥0

)
. Using the Taylor expansion

in Lemma 7 gives the result. When the problem is stochastic, as in the proof
of Lemma 7, we take the certain equivalent at each period.

Proof of Proposition 10. If φd ≥ φr, we have φ0 = ξ
r+φd ≤ ξ

r+φr = φr,

hence φ = mKφ0 < φ0 ≤ φr. If φd ≥ φ then φ0 = ξ
r+φd ≤ ξ

r+φ , so that

φ = mKφ0 < φ0 ≤ ξ
r+φ , and φ (r + φ) < ξ. Given that ξ = φr (r + φr), that

implies φ < φr.

By (60) φ < φr implies that fluctuations in capital var
(
K̂t

)
are more

volatile in the sparse economy. Given Yt = f (Kt) + δKt, we have Ŷt =
(f ′ (K∗) + δ) K̂t. So the same properties holds for GDP fluctuations Ŷt as
capital K̂t, as the two are proportional.

For consumption have Ĉt = (r + φ) K̂t, so σC = (r + φ)σK = (r + φ) σε√
2φ

from (60). The latter function is increasing in φ for φ ≥ r. Hence, σC
is higher in the sparse economy (r ≤ φ ≤ φr). Next, Ît = Ŷt − Ĉt =
(f ′ (K∗) + δ − (r + φ)) K̂t = (δ − φ) K̂t, so σÎt = |δ − φ|σK = |δ − φ| σε√

2φ
a
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U-shaped function of φ with minimum at φ = δ. So, if φr ≤ δ, investment is
more volatile in the sparse economy.

Proof of Proposition 11. In continuous-time limit, the second derivative of
the value normalized function

v (c) := [u (c)dt+ βV (kt + yt − (1 + rtdt) ctdt,Kt+1)− V (kt,Kt)] /dt

is vcc = ucc, this is a quite general phenomenon. Applying (10) with cK = φ0,
we obtain:

mK = A
( |ucc|φ2

0σ
2
K

κ

)
= A

( |ucc|φ2
0σ

2
ε

2φκ

)
= A

(
φ2
0

Bφ

)
, B :=

2κ

|ucc|σ2ε

using (60), σ2K =
σ2
ε

2φ . Using φ = φ0mK = φ0max
(
1− Bφ

φ2
0
, 0
)
, so φ = φ0

1+ B
φ0

.

Appendix C: Some Other Applications

To make sure that the model is widely applicable, I developed a behavioral
version of a few other important machines of dynamic economics.

C.1. Dynamic Portfolio Choice

I now study a Merton (1971) problem with dynamic portfolio choice. The

agent’s utility is: E
[

1
1−γ

∫∞
0 e−ρsc1−γs ds

]
, and his wealth wt evolves according

to:
dwt = (−ct + rwt)dt+wtθt (πtdt+ σdZt)

where πt is the equity premium and θt the allocation to equities.
I start by describing the rational problem, and then the behavioral solution.

I call ψ = 1
γ the IES. Although for simplicity I use a CRRA utility function, I

try to write the expressions in a way that involves both γ and ψ, a way that
would generalize correctly to Epstein-Zin utility, where the two notions are
disentangled.

C.1.1. Taylor expansions of the value function: rational case. We examine
the problem in the rational case first, with a reminder of notions of portfolio
choice. In a deterministic context with interest rate rt, the SDF is simply

Mt = e−
∫ t
0
rsds. Next, suppose that there is a stochastic opportunity set:

set of assets with risk premium πt and covariance matrix Σt. In a static
maximization, the optimal portfolio of the certainty equivalent is a return:
Rt (θt) = rt + θtπt − γ

2 θtΣtθt, so that the (static) optimal portfolio choice is

θt = argmaxθRt (θ), i.e. θt =
1
γΣ

−1
t πt, and the certainty equivalent is finally:

Rt = maxθt Rt (θt)

Rt = rt +
1

2γ
Λt (C.1)
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where
Λt = π′tΣ

−1
t πt (C.2)

the “squared Sharpe ratio” of the investment opportunity set. Suppose that the
process is driven by a Brownian motion Bt (which may be multidimensional)

- if the price of risk is λt (so that Λt = ∥λt∥2), the stochastic discount factor
can be represented as:

Mt = exp

[
−
∫ t

0

((
rs +

Λt
2

)
ds− λsdBs

)]
(C.3)

The value function is as follows.

Lemma C.1. (Value function, traditional case) Suppose that the interest rate
rt and and the price of risk λt are deterministic, and that the agent is the
traditional rational agent. The value function derivative is

Vw (wt, xt) = (µtwt)
−γ

and the optimal policy is to consume ct = µtwt (µt is the MPC to consume out
of wealth), where:

µ−1
t = Et

[∫ ∞

0

e−ψρs
(
Mt+s

Mt

)1−ψ
ds

]
= Et

[∫ ∞

0

e−
∫ s
t
(ψρu+(1−ψ)Ru)dudt

]
where

Rt = rt +
1

2γ
Λt.

is the certainty equivalent of expected portfolio returns (comprising stocks and

bonds), with Λt = ∥λt∥2 is the square Sharpe ratio of the investment opportunity
set.

When the opportunity set is constant, we have Rt = R∗ and µt = µ∗ with

µ∗ = ψρ+ (1− ψ)R∗. (C.4)

When it is not constant, we have, up to second order terms:

µt = ψρ+ (1− ψ)Rt (C.5)

where Rt = µ∗V
R
t is the average future portfolio returns, and V Rt is the present

value of future portfolio returns.

V Rt := Et
[∫ ∞

t

e−µ∗(s−t)Rsds

]
(C.6)

Here Rt is the future average return of the portfolio (including stocks and
bonds). Hence, the marginal propensity to consume is a weighted average (with
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weights ψ and 1−ψ) of the pure rate of time preference ρ and the average future
return of the portfolio.

Lemma C.1 summarizes and somewhat generalizes well-known notions,
particularly from the work of Campbell and Viceira (2002). It indicates that
what matters is the risk-adjusted rate of return of the portfolio, Rt: it is the
safe short-term rate rt, plus the square Sharpe ratio Λt, divided by two times
the risk aversion. The future average return Rt is key to capture the (leading
order of) the value function. Related ideas are found in Basak and Chabakauri
(2010) andMalamud and Vilkov (2018)).

To structure the problem, suppose that the vector of asset returns dr̃t
(where dr̃it is the return of asset i) :

dr̃ = (r + π∗ + π̂t)dt+ σdZt

π̂t = f ′Xt

where Xt is a vector of factors, following an AR(1):78

dXt = −ΦXtdt+ σXdZt

and f is a matrix of weights. We call

Σr,X = cov
(
dr̃, dX ′

t

)
/dt = σσX′.

the matrix of covariance, i.e. Σr,Xij = cov (dr̃it, dXjt) /dt. We define θ∗ =
1
γΣ

−1
∗ π∗ as the portfolio choice in the model with constant variance and

expected returns.
Then, the portfolio return is

Rt =
1

2γ
(π∗ + π̂t)

′Σ−1
t (π∗ + π̂t) =

1

2γ
π∗Σ

−1
∗ π∗ + θ′∗π̂t +O

(
∥Xt∥2

)
= R∗ + θ′∗π̂t

= R∗ + θ′∗f
′Xt = R∗ + b′Xt

i.e. the return is augmented by θ′∗π̂t, with

b := fθ∗.

Then, the present value of returns (C.6) is

V Rt =
R∗
µ∗

+ b′ (µ∗I +Φ)−1Xt (C.7)

where I is the identity matrix of the X’s dimension.

78. Or Xt could be a linearity-generating twisted-AR(1), so that the derivations below can
be exact (Gabaix (2009)).
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For instance, if Xt is one-dimensional, then bXt = R̂t := Rt − R∗, and
Rt := R∗ +

µ∗
µ∗+Φ R̂t.

µt = µ∗ + (1− ψ)
µ∗

µ∗ +Φ
R̂t (C.8)

Hence, we obtain a tractable representation of the value function to the
leading order.

C.1.2. The hedging demand. We can calculate the hedging demand.

Lemma C.2. (Hedging demand, rational) The stock demand is

θt =
1

γ
Σ−1
t (πt +Ht) (C.9)

where Ht is the hedging demand premium, equal to (up to second order terms):

Hit = (1− γ) cov
(
dr̃i, dV

R
t

)
(C.10)

i.e. Hit is (1− γ) times the covariance between asset i’s return (dr̃i) and the
present value of future returns V Rt (equation C.6).

In the AR(1) framework above,

Ht = (1− γ)Σr,X
(
µ∗I +Φ′)−1

b. (C.11)

Suppose that returns mean-revert, i.e. cov
(
dr̃it, d

Rt

µ∗

)
< 0. So, if ψ < 1,

then investors load more on stocks because of the hedging demand.
We next state the modification of the value function.

Lemma C.3. (Value function with hedging demand, rational) In the hedging
demand context, we have:

µt = ψρ+ (1− ψ)
(
Rt + θ′Ht

)
(C.12)

where Rt = µ∗V
R
t is the expected present value of returns, and Ht is the hedging

demand term; they are explicit in (C.7) and (C.11).

The intuition for (C.9) is that Hit is a risk-adjusted risk premium of asset
i. This intuition carries over to (C.12). Compared to (C.5), the expression for
µ (Xt) offers one more term, the term (1− ψ) θ′Ht.

A tractable case. The equity premium πt = π + π̂t has a variable part π̂t,
which follows

dπ̂t = −φRπ̂tdt− χtσdZ
1
t + σ′πdZ

2
t

where the return is dr̃t = (rt + πt)dt+ σdZ1
t . The parameter χt ≥ 0 indicates

that equity returns mean-revert: good returns today lead to lower returns
tomorrow. That will create a hedging demand term.

We call θ∗ := π
γσ2 the standard, myopic demand for stocks.
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C.1.3. The sparse agent’s investment and consumption. We can calculate the
sparse agent’s demand. Recall that ψ = 1/γ is the IES. We state again the
proposition.

Proposition C.1. (Behavioral dynamic portfolio choice) The fraction of
wealth allocated to equities is, with θ∗ := π

γσ2 ,

θst = θ∗ + τ

(
π̂t
γσ2

, κ

)
+ τ

(
Ht
γσ2

, κθ

)
while consumption is cst = µstwt with

µst = µ∗ + τ

(
(1− ψ)

µ∗
µ∗ +Φ

θ∗π̂t, κc/w

)
+ τ

(
(1− ψ) θ∗Ht, κc/w

)
where Ht is the hedging demand term (C.13)

Ht = (1− γ) cov
(
drt, dV

R
t

)
= − (1− γ) θ∗

1

µ∗ +Φ
σ2χt

Proof. We first calculate the rational values. In that case

Rt = r∗ +
Λ∗
2γ

+ θ∗
µ∗

µ∗ +Φ
π̂t

Ht = (1− γ) cov

(
drt, d

(
Rt
µ∗

))
= − (1− γ) θ∗

1

µ∗ +Φ
σ2χt (C.13)

so that

θt =
π∗ + π̂t +Ht

γσ2

In addition

µt = ψρ+ (1− ψ)
(
Rt + θ′∗Ht

)
= µ∗ + (1− ψ)

(
θ∗

µ∗
µ∗ +Φ

π̂t + θ′∗Ht

)
As in Proposition 2, with ex-post attention, the BR agent just truncates

those terms.
□
Proposition C.1 predicts the choice of a sparse agent. When κ = 0, it is the

policy of a fully rational agent, e.g. as inCampbell and Viceira (2002). When
κ > 0, it is the policy of a sparse agent. When κ is larger, portfolio choice
becomes insensitive to the change in the equity premium, π̂t, and the agent
thinks less about the mean-reversion of asset, the Bχ terms.

In addition, the agents’ consumption function pays little attention to the
mean-reversion of assets.

C.1.4. Proofs for the Merton portfolio problem.
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Proof of Lemma C.1. Here we present a proof sketch, in part because those
notions are well-known. We record the values with a time-discounting of Dt,
with Dt = e−ρt in the infinite horizon, but Dt could be different to capture
finite-time horizon effects. For instance, with a finite horizon of T , and a
terminal weight b on the last consumption, then Dt = ae−ρt1t≤T + bδ (t− T ).

First, in the SDF approach, the problem is

maxE
∫ ∞

0

Dtc
1−γ
t dt s.t. E

∫ ∞

0

Mtctdt = w0

This leads to Dc−γt = k′Mt and ct = kDψ
t M

−ψ
t for constant k, k′. The

constant is determined by the budget constraint , w0 = E
∫∞
0 Mtctdt =

kE
∫∞
0 kDψ

t M
1−ψ
t . This leads to a utility derivative Vw = (µ0w0)

−γ , with

µ−1
0 = E

[∫ ∞

0

Dψ
t M

1−ψ
t dt

]
(C.14)

When Mt follows (C.3), routine calculations show that

µ−1
0 = E

[∫ ∞

0

Dψ
t e

−(1−ψ)
∫ t
0
Rududt

]
We next proceed to a Taylor expansion:

µ−1
0 = E

[∫ ∞

0

Dψ
t e

−(1−ψ)
∫ t
0 (R∗+R̂u)dudt

]
= E

[∫ ∞

0

Dψ
t e

−(1−ψ)R∗t

(
1− (1− ψ)

∫ t

0

R̂udu

)
dt

]
With an infinite horizon, Dt = e−ρt and

µ−1
0 = E

[∫ ∞

0

e−µ∗t

(
1− (1− ψ)

∫ t

0

R̂udu

)
dt

]
=

1

µ∗
− (1− ψ)E

[∫ ∞

t=0

e−µ∗t

∫ t

0

R̂ududt

]
=

1

µ∗
− (1− ψ)E

[∫ t

0

(∫ ∞

t=u

e−µ∗t

)
R̂udu

]
=

1

µ∗
− (1− ψ)E

[∫ t

0

1

µ∗
e−µ∗uR̂udu

]
=

1

µ∗
− (1− ψ)

1

µ2∗
E
[∫ t

0

µ∗e
−µ∗uR̂udu

]
=

1

µ∗
− (1− ψ)

1

µ2∗
(R0 −R∗) with R0 −R∗

= E
[∫ t

0

µ∗e
−µ∗uR̂udu

]
=

1

µ∗ + (1− ψ) (R0 −R∗)
+O (R0 −R∗)

2 .
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Then,

µ0 = µ∗ + (1− ψ) (R0 −R∗)

= ψρ+ (1− ψ)R∗ + (1− ψ) (R0 −R∗)

= ψρ+ (1− ψ)R0

When the consumer has a finite horizon and only cares about date T
consumption, then Dt = δ (t− T ), and

µ−1
0 = E

[∫ ∞

0

Dψ
t e

−(1−ψ)R∗t

(
1− (1− ψ)

∫ t

0

R̂udu

)
dt

]
= e−µ∗T − e−µ∗T (1− ψ)E

[∫ T

0

R̂udu

]
so the MPC is 0 but we have

µ−1
t = e−µ∗(T−t)

(
1− (1− ψ)E

[∫ T

t

R̂udu

])
(C.15)

so again µt is related to the present value of future portfolio returns.
□
Proof of Lemma C.2. In semi-discrete notation the asset demand at time t

comes from
max
θ

Et [V (w (1 + rtdt+ θdr̃t) ,Xt + dXt)]

where, with πt = π∗ + f ′Xt,

Et [dVt] = Et [V (w (1 + rrdt+ θdr̃t) ,Xt + dXt)− V (w,Xt)]

= Vww
(
rt + θ′πt

)
dt+ VwXw

〈
θ′dr̃t, dXt

〉
+ Vwww

2θ′Σtθdt+
1

2
Tr
(
VXXΣX,X

)
dt

= Vww
[
θ′ (πt +Ht)−

γ

2
θ′Σtθdt

]
dt+

1

2
Tr
(
VXXΣX,X

)
dt

where

θ′Ht =
VwX
Vw

⟨θdr̃t, dXt⟩

is the hedging demand premium term. This implies

θ =
1

γ
Σ−1
t (πt +Ht)

To calculate Ht more fully, recall that Vw = µ (Xt)
−γ w−γ , so that lnVw =

−γµ (Xt)− γ lnw, and

VwX
Vw

= −γ µX
µ∗

= −γ (1− ψ)
RX
µ∗

= (1− γ)
RX
µ∗

=: B′
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with
RX
µ∗

= b′ (µ∗I +ΦR)
−1

Note that Rt = r + 1
2γπ

′
tΣ

−1πt with πt = π∗ + π̂t, so, with R∗ = r +
1
2γπ

′
∗Σ

−1π∗

Rt = R∗ +
1

γ
π′∗Σ

−1π̂t = R∗ + θ′∗π̂t

Rt = R∗ + θ′∗f
′Xt (C.16)

hence
b = fθ (C.17)

Hence,

θ′Ht =
VwX
Vw

⟨θdr̃t, dXt⟩ =
∑
i,j

θi ⟨dr̃it,BjdXj⟩ = θiΣ
r,X
ij Bj

so that

Ht := Σr,XB = (1− γ)Σr,X
R̄′
X

µ∗
= (1− γ) cov

(
dr̃, d

Rt
µ∗

)
= (1− γ)Σr,X

(
µ∗I +Φ′

R

)−1
b

Proof of Lemma C.3. Suppose

dr̃ = (r + π∗ + fXt)dt+ σdZt

and that agents have a constant MPC µ∗ :

dwt
wt

= (r − µ∗)dt+ θ′dr̃ =
(
r − µ∗ + θπ∗ + θ′f ′Xt

)
dt+ θσdZt

=
(
g∗ + θ′f ′Xt

)
dt+ θσdZt

dwt
wt

=
(
g∗ + b′Xt

)
dt+ θσdZt

with b = fθ and
g∗ := r + θπ∗ − µ∗

We want to calculate (assuming the policy ct = µ∗wt, which leads only to
second order losses)

U = E
[

1

1− γ

∫ ∞

0

e−ρsc1−γs ds

]
=
µ1−γ∗
1− γ

E
[∫ ∞

0

e−ρsw1−γ
s ds

]
Calling

ms = e−ρsw1−γ
s
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We calculate

dmt

mt
= −ρ+ (1− γ)

(
g∗ + b′Xt −

γ

2
∥θσ∥2

)
dt+ (1− γ) θ′σdZt

=
(
−a+ (1− γ) b′Xt

)
dt+ (1− γ) θ′σdZt

a := ρ− (1− γ)
(
g∗ −

γ

2
∥θσ∥2

)
= ρ− (1− γ)

(
r + θπ∗ − µ∗ −

γ

2
∥θσ∥2

)
= ρ− (1− γ) (R∗ − µ∗)

= µ∗

We calculate linearly generating (LG moments. We assume dXt = −ΦXtdt+

σXdZt +O
(
∥Xt∥2

)
:

E
[
dmt

mt

]
/dt = −µ∗ + (1− γ) b′Xt

E
[
d (mtXt)

mt

]
/dt =

(
−µ∗ + (1− γ) b′Xt

)
Xt −ΦXt + (1− γ)

〈
θ′dr̃t, dXt

〉
= (1− γ) θ′ ⟨dr̃t, dXt⟩+ (−µ∗ −Φ)Xt +O

(
∥Xt∥2

)
so the LG generator (Gabaix (2009)) is

ω =

(
µ∗ − (1− γ) b′

− (1− γ)ΣX,rθ µ∗ +Φ

)
Hence, the present value is V = (1, 0)ω−1 · (1,Xt)

We use the formula for the inversion of the block matrix:(
A B
C D

)−1

=

((
A−BD−1C

)−1 −
(
A−BD−1C

)−1
BD−1

∗ ∗

)

where ∗ are terms we will not use. We have

(1, 0)ω−1 =
(
f, f (1− γ) b′ (µ∗ +Φ)−1

)
f :=

(
µ∗ − (1− γ)2 b′ (µ∗ +Φ)−1ΣX,rθ

)−1

so
V = f

(
1 + (1− γ) b′ (µ∗ +Φ)−1Xt

)
(C.18)
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The value function has the Taylor expansion: V (wt,Xt) = v (Xt)µ
1−γ
∗

w1−γ
t

1−γ

v (Xt) =
1 + (1− γ) b′ (µ∗ +Φ)−1Xt

µ∗∗

µ∗∗ = µ∗ − (1− γ)2 b′ (µ∗I +Φ)−1ΣX,rθ

= µ∗ −
(1− γ)2(
1− 1

ψ

)H ′
tθ using (C.11), Ht =

(
1− 1

ψ

)
Σr,X

(
µ∗I +Φ′)−1

b

= µ∗ − (1− γ)H ′
tθ

Rewrite

V = v (Xt)µ
1−γ
∗ =

1+K

µ∗ + L
µ1−γ∗ with

K = (1− γ) b′ (µ∗ +Φ)−1Xt

L = − (1− γ)H ′
tθ

V = (µ∗ +C)−γ = µ−γ∗
(
1− γµ−1

∗ C
)

= µ−γ∗
(
1 +K − µ−1

∗ L
)

Hence,

µt − µ∗ = C = −µ∗
γ
K +

1

γ
L = (1− ψ) b′µ∗ (µ∗ +Φ)−1Xt +

−1

γ
(1− γ)H ′

tθ

= (1− ψ) b′µ∗ (µ∗ +Φ)−1Xt + (1− ψ)H ′
tθ

µI :=
1

γ
L =

−1

γ
(1− γ)H ′

tθ =

(
1− 1

ψ

)
H ′
tθ

Intuition: the extra present value of returns is

Rt −R∗
µ∗

=
C

(1− ψ)µ∗
= b′ (µ∗ +Φ)−1Xt − ψ (1− ψ)

1

µ∗
b′ (µ∗I +Φ)−1 θΣr,X

= b′ (µ∗ +Φ)−1

(
Xt + (1− γ)

1

µ∗
θΣr,X

)
C.2. Linear-Quadratic models

Many economic problems can be conveniently expressed as linear-quadratic
(LQ) models (Ljungqvist and Sargent (2012)). We show here how to
systematically derive a BR version of those models.

We again write z = (w,x), where w is the set of variables known under
the default model, and x is the set of variables that are not considered in the
default model. Utility is:

u (z, a) :=
1

2

(
z
a

)′(
Uzz Uza
Uaz Uaa

)(
z
a

)
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and the law of motion is:

z′ = F z (z, a) := Γzzz +Γzaa

where U and Γ are constant matrices. The rational value function is also LQ

V (z) = −1

2
z′Vzzz =

−1

2

(
w′Vwww + 2w′Vwxx+ x′Vxxx

)
Under the default model Vww is known, and

ad (w) = Aww

for Aw a constant. Our goal is to find Vwx, which affects the value function. To
do so, we apply from A.1 :

Lemma C.4. In the linear-quadratic problem, the cross-partial derivative of
the value function is

Vwx = Vxw =
[
1− β

(
Dww

′) · Γx′

x

]−1 [
Uxw + UxaAw + βΓwx Vww

(
Dww

′)] .
where Dww

′ = Γww +ΓwaAw. The impact on the action is a=Aww+Axx, where
Aw is the default value, and

Ax = −Ψ−1
a Ψx, (C.19)

where

Ψa = Uaa + βΓwa VwwΓ
w
a

Ψx = Uxa + βVwxΓ
w
a

This illustrates that the value function can be written:

V (z) = −1

2
z′Vzzz =

−1

2
w′Vwww +w′Vwxx+O

(
∥x∥2

)
with matrix Vwx as expressed in closed form above.

Hence, the BR value function is simply:

V s (z,m) = −1

2
z′Vzzz =

−1

2
w′Vwww +w′VwxM (m)x+O

(
∥x∥2

)
for the diagonal attention matrix M (m) = diag (mxi).

Proposition C.2. (Behavioral version of linear-quadratic problems) In a
linear-quadratic problem, the optimal attention is

mxi = A
(
AxiΨaAxiσ

2
i /κ
)

(C.20)

and the optimal sparse action is

a = Aww +AxMx

where M = diag (mxi). Here we use the notations of Lemma C.4.
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C.3. Precautionary saving

The consumer may save more when the future is uncertain, a phenomenon
known as “precautionary savings.” This is easy to obtain in this BR model.
Suppose that the income process is ŷt+1 = ρyŷt+ εt+1, for ε a mean-0 variable.
Then, the rational value function does not obtain in closed form, unless we
assume very specific functional forms (CARA utility, Gaussian noise). What to
do then?

Let us first derive the rational policy.79

Lemma C.5. (Rational policy with precautionary saving) With stochastic
income shocks, the rational value function is

V
(
wt, ŷt, σ

2
ε

)
=
R

r
Eu

(
r̄

R
w + ȳ +

r̄

R

∑
τ>t

ŷτ
Rτ−t

)
+ o

(
σ2ε
)

=
R

r
u

(
r̄

R
w + ȳ +

r̄

R
E

[∑
τ>t

ŷτ
Rτ−t

]

−Γ

2

( r̄
R

)2
vart

(∑
τ>t

ŷτ
Rτ−t

))
+ o

(
σ2ε
)

where Γ = −u′′(cd)
u′(cd)

(
cd = r̄

Rwt + ȳ
)
is the coefficient of absolute risk aversion.

For instance, with an AR(1) process:

ĉt =
r̄

R

ŷt
R− ρy

− Γ

2

( r̄
R

)2 var (εyt+1

)
(R− ρy)

2 (C.21)

Then, the agent may, or may not, take the noise into account.
Proof. First, observe that he two RHS are identical, up to o

(
σ2ε
)
terms.

To see the second statement, let us take more successively more complex
problems. First, for small noise, we have, as in Arrow-Prat:

E [u (X)] = u

(
E [X]− Γ

2
var (X)

)
+ o (var (X))

with Γ = −u′′(0)
u′(0) .

Second, suppose that ŷt+1 = ρŷt + εyt+1. We are looking for an expansion of

the type V
(
w, ŷ, σ2y

)
= V (w +A, ŷ, 0) = V d

(
w +A+ ŷ

R−ρy

)
, for some A. We

have

V d (w +A, ŷ) = max
c
u (c) + βE

[
V d
(
R (w − c) + y +A,E [ŷt+1] + εyt+1

)]
79. See Wang et al. (2016) and Achdou et al. (2022) for recent analytical progress on this
issue.
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so, taking the Taylor expansion of ŷt+1 around Etŷt+1

V dwA = βV dwA+
1

2
βV dyyvar

(
εyt+1

)
so, using β = 1

R

A =
1

2

β

1− β

V dyy
V dw

var
(
εyt+1

)
= −1

2

r̄

R
ΓV

d,0 1

(R− ρy)
2 var

(
εyt+1

)
and as ΓV

d,0

= r̄
RΓ

u,

A = −
( r̄
R

)2 Γu

2

1

(R− ρy)
2 var

(
εyt+1

)
.

Next, for a more general process with state vector z, we have, by the same
reasoning,

A =
1

2

r̄

R

E
[
εzV

d
zzεz

]
V dw

Now, it is not trivial to get Vzz. Indeed, we have V (w, z) = V d (w + b · z) +
O
(
z2
)
, but that expression gives only part of Vzz. The “certainty equivalent”

approach works well for income shocks, but not for uncertainty about interest
rates, say.□

A sparse agent will, in contrast, do

ĉt = my
r̄

R

ŷt
R− ρy

−mσ2
y

Γ

2

( r̄
R

)2 var (εyt+1

)
(R− ρy)

2

with some inattention to risk mσ2
y
. Hence, he will create a too small buffer of

savings, compared to a rational agent.

Proposition C.3. A sparse agent saves too little against idiosyncratic shocks,
compared to a rational agent.

C.4. Investment Problems

Suppose that the agent needs to solve:

V (K0) = max
It

∫
e−ρt (π (Kt)−G (It))dt s.t. K̇t = −δKt + It

where π (K) is the profit rate, G (I) = I + g (I) is the cost of investment,
inclusive of adjustment cost I. Capital depreciates at a rate δ.
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How will the agent proceed? We apply the generalized k/K procedure of
section F.8, using (X,a) := (K, I). As u (K, I) = π (K)− g (I) we have

ū (k,K, I) = π (K) + πK (K) (k −K)− g (I)

and F̄ (k,K, I) = −δk + I, so that

k̇t = −δkt + It

Hence, the agent simply solves a model with linear profitability of capital:

V (k0,K0) = max
It

∫
e−ρt (πK (Kt)kt −G (It))dt s.t. k̇t = −δkt + It

Hence, optimal investment satisfies

G′ (I0) = Vk (k0,K0) = Es
∫ ∞

0

e−(ρ+δ)tπK (Kt)dt

i.e. on the RHS with have the subjective expectation of marginal profits.
At the steady state, with Kt = K∗, the optimum is characterized by

G′ (I∗) = πK (K∗) /(ρ + δ) with I∗ = δK∗ – as in the traditional model. As
in the general procedure, I assume that the agent perceives a linear mean-
reversion of the state variable: K̇t = −ΦKt, for some perceived speed Φ.

Outside the steady state,

Î0 =

∫∞
0 e−(ρ+δ)tπKK (K∗) K̂tdt

G′′ (I∗)

= −
∫ ∞

0

e−(ρ+δ)tξe−ΦtK̂0dt

= − ξ

ρ+ δ +Φ
K̂0

=
1

G′′ (I∗)

π̂K |t=0

ρ+ δ +Φ

with ξ := −πKK(K∗)
G′′(I∗)

≥ 0 and π̂K = πKKK̂t. Here,

Î0 =
1

G′′ (I∗)

π̂K |t=0

ρ+ δ +Φ

means that the agent’s investment reacts to current (marginal) profitability
π̂K |t=0, with a dampening indexed by Φ, which needs not be the “rational”
amount of dampening. For instance, if Φ is low, the agent will overreact to
current profitability. This shows, I hope, that the procedure is reasonable
psychologically.

The investment policy Ît = ξ 1
r+δ+ΦK̂t implies that the true law of motion

of capital is

K̂t = −δK̂t + Ît = −
(
δ +

ξ

r + δ +Φ

)
Kt
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so that the true speed of mean-reversion is

Φr = δ +
ξ

r + δ +Φ
.

Under rational expectations, Φ = Φr, so that a fixed point needs to be
solved for. In the more general model here, the agent perceives a speed of
mean-reversion of profitability Φ, and reacts accordingly. De facto, he sets
G′′ · Î0 = Es

∫
e−ρtπ̂Kdt, with π̂K = πKKK̂t, i.e. sets investment according

to the perceived changes in future profitability of capital.

C.5. The Becker-Murphy model of Rational Addiction

The Becker and Murphy (1988) model of rational addiction is a peak of the
use of rationality in economics. We will give a behavioral version of it. We shall
see that the qualitative evidence in favor of the model (the fact that future
increase in prices lower consumption today) are also consistent with this BR
version - it shows that agent are at least partially rational (as in the present
model), not that they are fully rational (as assumed by Becker-Murphy). This
distinction is important: if people are BR enough, they’d be better off under a
high tax, or a ban, of the addictive substance – while the optimal tax is 0 in
the Becker-Murphy model. This analysis is in the spirit of Gruber and Kőszegi
(2001), who study a hyperbolic discounting addict, rather than a boundedly
rational one in the sense of this paper.

We call c the consumption and x the level of addition. Utility function is

u (c, x) = −1

2
(c− x−A)2 −Bx

Addition xt evolves as
xt+1 = ρxt + hct.

The BR agent has in mind the model

xt+1 = ρsxt + hsct.

We posit that in the default model the agent does not perceive any addiction
dynamics: he perceives addition as being constant.

ρd = 1, hd = 0.

When the agent has partial attention m to inattention dynamics, we have

xt+1 = (1−m)xt +m (ρxt + hct)

so
ρs = (1−m) +mρ, hs = mh

Let us now study the BR dynamics.
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Warm-up: 2 period model. As before, it is helpful to study a 2-period model,
with t = 1, 2.

Behavior at the last period, t = 2. The agent should and does consume his
optimal consumption

cd (x) = argmax
c

u (c, x) = x+A

We define the resulting utility as ū (x)

ū (x) := max
c
u (c, x) = u

(
cd (x) , x

)
= −Bx.

To, the time-1 value function is

V 1 (x) = ū (x) . (C.22)

Behavior at period 1, t = 1. Given perceived dynamics, the problem is

smax
c;m

v (c, x,m)

v (c, x,m) := u (c, x) + βV (ρs (m)x+ hs (m) c)

which gives:

0 = uc + βhsV ′ (ρsx+ hsc)

= −c+ x+A− βhsB

c = x+A− βhsB (C.23)

An interesting variant is to impose c ≥ 0. Then, first period consumption is
> 0 iff A− hsB > 0. So, if hsB < A ≤ hB, then the rational agent consumes
0, while the very behavioral agent consumes a positive amount and becomes
addicted.

The optimal attention is m = A
(
vccc

2
m/κ

)
= A

(
−uccB2h2/κ

)
.

Infinite horizon model. The value function satisfies

V (x) = smax
c;m

u (c, x) + βV (ρs (m)x+ hs (m) c)

The FOC is

uc (c, x) + βV ′ (ρs (m)x+ hs (m) c)hs (m) = 0

i.e. the agent takes into account only part of the addiction costs, as hs (m) ≤ h.
As a result, the agent is more addicted in the steady state. The greater the
myopia, the greater the optimal tax.
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Proposition C.4. In the Becker-Murphy model with boundedly rational
agents, the consumption c given the stock of addiction x is

c (x) = x+A+ βb (m)mhh

using m =
(
mh,mV

)
; the value function is

V (x,m) = a (m) + b (m)x

where b (m) = − B
1−β(1+mV (ρ+h−1))

and a (m) is in the proof. When using the

plain (as opposed to iterated) sparse max, mV = 0 and attention to addition is

mh = A
(

1
κ

(
βBh
1−β

)2)
.

Proof of Proposition C.4. We’re looking for a solution of the form:
V (x) = a + bx, for a, b to be determined. The FOC is: uc + βVxh

s = 0, i.e.
− (c− x−A) + βbhs = 0 and

c = x+A+ βbshs

u (c (x) , x) = −1

2
(βbshs)2 −Bx

The self-consistency condition is

V (x) = u (c (x) , x) + βV (ρx+ hc)

i.e.

a+ bx =
−1

2
(βbshs)2 −Bx+ β [a+ b (ρx+ h (x+A+ βbshs))]

This gives

b =
−B

1− βρ̄

a = β
hA+ βbshhs − 1

2β (b
shs)2

1− β

When the agent perceives ρ′ = 1−mV +mV ρ and h′ = mV h when forming
the value function, we have the same expressions,

bs (m) =
−B

1− β (ρ′ + h′)
=

−B
1− β (1 +mV (ρ+ h− 1))

a (m) = β
hA+ βbs (m)hhs − 1

2β (b
s (m)hs)2

1− β

To determine optimal attention m, observe that in the 1-step smax, at the
beginning, mV = 0, so the perceived value function is

V
(
x,mV = 0

)
= u (c (x) , x) + βV

(
x,mV = 0

)
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so

V
(
x,mV = 0

)
=
u (c (x) , x)

1− β
=

−1
2 (βb

shs)2 −Bx

1− β

This implies: bs = − B
1−β , and

c = x+A+ βbs
(
mV = 0

)
hm

= x+A− βB

1− β
hm

so that the impact of thinking more about h, while keeping the future value
function constant is

∂c

∂m
= βbs

(
mV = 0

)
h = − βBh

1− β

Hence, optimal attention is:

m = A
(
1

κ

(
∂c

∂m

)2

ucc

)
= A

(
1

κ

(
βBh

1− β

)2
)

C.6. Ricardian Equivalence: Reaction to taxes over time

For simplicity, I use continuous time. The interest rate is r = − lnβ. The
government needs to collect a present value of G/r. This could be done by
taxing the population (of size normalized to 1) by H = GerT , starting at a
period T .80 Hence, the path of taxes is 0 for t < T , and H for t ≥ T .

What is a consumer’s response at time t < T? If the consumer is perfectly
attentive, then he should start saving at time 0. However, a sparse agent
might not pay attention to those future taxes increases and start cutting on
consumption only later, perhaps, just when the tax cuts are enacted.

Let us analyze this more in detail. At T , the tax H is enacted, so that
for t ≥ T , the agent is aware of it. This yields consumption deviation from the
default value: ĉt = rŵt −H.

Before the enactment of taxes (t < T ), will the consumer think of the tax
H? That tax lowers the present value of his income by He−r(T−t), so the
consumer’s response is

ĉt = rŵt − τ
(
He−r(T−t), κ

)
Hence, the consumer will not think about the tax increaseH whenHe−r(T−t) ≤
κ. Call s ∈ [0, T ) the first moment when he thinks about them (if it exists, i.e.
if H > κ), otherwise we set s = T .

The next Proposition details the dynamics.

80. If taxes are collected later, then to guarantee the same present value, they need to be
larger by a factor erT .
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Figure C.1. Reaction of consumption and wealth to an increase of future taxes, for
different level of κ. Notes. At time 0, it is announced that taxes will be paid start at time
T = 10. This Figure plots the change in consumption and wealth. The solid line is the
prediction of the rational model (i.e.κ = 0), the other lines the reaction for different value
of κ (κ = 0.01 (blue, dotted), κ = 0.025 (red, dashed-dotted), κ = .1 (green, dashed)).
The very BR agents does not react at first, but starts reacting when he is closer to T .
He reacts even more when taxes are in effect. As he delayed his savings, he needs to cut
more on consumption when taxes start. Units are percentage points of previous steady
state consumption. The amount is G = 2% of permanent income.

Proposition C.5. (Myopic behavior and failure of Ricardian equivalence)
Suppose that taxes will go up at time T . While a rational agent would cut
consumption at time 0, a sparse agent cuts consumption later, at a time
s = max

(
0,min

(
T, 1r ln

κ
He−rT

))
. His consumption path is

ĉt =


0 for t < s

−He−r(T−s) + κ (1− r (t− s)) for s ≤ t < T
rŵT −H for t ≥ T

with ŵT = H
r

(
1− e−r(T−s))− κ (T − s) .

Let us take an example illustrated in Figure C.1, with r = 5%, G= 2%, T =
10 years. This figure plots the change in consumption and wealth for the rational
actor κ = 0 (black, solid) and progressively less rational agents: κ = 0.01
(blue, dotted), κ = 0.025 (red, dashed-dotted), κ = 0.1 (green, dashed). The
traditional Ricardian consumer (κ = 0) immediately decreases his consumption
by 2%, which leads to wealth accumulation until time T . In contrast, the
BR consumer (κ = 0.1) doesn’t react at all until T = 10 (hence he doesn’t
accumulated any wealth), and then cuts a lot of consumption. The value
κ = 0.01 and κ = 0.025 display an intermediary behavior. For κ = 0.025, the
consumer initially doesn’t pay attention to the future tax. However, at a time
s = 4.5 years (i.e., when there are 3.6 years remaining until the taxes are
effective), he starts paying attention and starts savings for the future taxes. As
the tax looms larger, the agent saves more. As the agent delayed his savings,
he ends up cutting down on consumption more drastically when taxes are in
effect.
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Smaller taxes generate a more delayed reaction. Controlling for the PV of
taxes, consumers are better off with early rather than delayed taxes (as this
allows them to smooth more).

Proof of Proposition C.5. Taxes lower the present value of his income by
He−r(T−t), so the consumer’s response is:

ĉt = rŵt − τ
(
He−r(T−t), κ

)
so wealth accumulation is: d

dt ŵt = rŵt − ĉt = τ
(
He−r(T−t), κ

)
. The consumer

starts thinking about it at a time s s.t. He−r(T−s) = κ (assuming that the
solution is in (0, T )), i.e.

s = max

(
0,min

(
T,

1

r
ln

κ

He−rT

))
(C.24)

First, consider the case s < T .
Then, for t ∈ [s, T ),

d

dt
ŵt = τ

(
He−r(T−t), κ

)
= He−r(T−t) − κ

ŵt =

∫ t

s

(
He−r(T−t′) − κ

)
dt′

=
H

r
e−rT

(
ert − ers

)
− κ (t− s)

ĉt = rŵt − τ
(
He−r(T−t), κ

)
= r

(
H

r
e−rT

(
ert − ers

)
− κ (t− s)

)
−
(
He−r(T−t) − κ

)
= −He−r(T−s) + κ (1− r (t− s))

So at t = T

ŵT =
H

r

(
1− e−r(T−s)

)
− κ (T − t)

At T , the tax H is enacted, so that for t ≥ T , the agent is aware of it. This
yields

ĉt = rŵt −H

d

dt
ŵt = rŵt −H − ĉt = investment income - taxes - consumption change

= 0

hence for t > T , ŵt = ŵT , and ĉt = rŵT −H.
We conclude that consumption is

ĉt =


0 for t < s

−He−r(T−s) + κ (1− r (t− s)) for s ≤ t < T
rŵT −H for t ≥ T
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and wealth is

ŵt =


0 for t < s
H
r e

−rT (ert − ers)− κ (t− s) for s ≤ t ≤ T
H
r

(
1− e−t(T−s))− κ (T − s) = ŵT for t ≥ T

C.7. Active decision: Consumption or Savings?

Here we assume that the active decision was one of consumption. One could
imagine that it would be in savings. Does this matter? First, for many variables,
it does not matter: the impact of interest rates, future taxes, future income
shocks etc. are the same whether a sparse agent uses the consumption frame or
saving frame. However, the frame does matter for one variable: current income.
Indeed, take the permanent-income setup. 81

Which frame does the agent use? One might posit that the agent takes
the frame that yields the higher expected utility. To analyze this, we note the
following result.

Proposition C.6. (Welfare under the consumption vs savings frame) The
consumption frame yields greater utility than the savings frame if and only if
φy > r, i.e. if income shocks mean-revert faster than the interest rate.

When φy > r (which is probably the relevant case), the “consumption”
frame is indeed better for the agent. The reason is that consumption should
be smooth, while savings could be bumpy as they absorb transitory income
shocks. When the agent chooses consumption in an inattentive manner,
it makes consumption automatically rather smooth. However, if the agent
chooses savings inattentively, he makes savings smooth, but consumption
needs to absorb the shocks, hence is quite volatile. Therefore, generally, to
keep consumption smooth, choosing consumption inattentively is better than
choosing savings inattentively. However, when income shocks are a random walk
(φy = 0), the savings frame is better. An inattentive agent will keep a constant
savings and let consumption react one for one to income shock, which is the
normatively correct behavior when income shocks are completely persistent.

81. Recall that ĉrt = r
r+φ

ŷt, so

ĉst =
r

r + φ
mŷt under the consumption frame

However, if the consumer choose savings, St, and then consumes ct = wyt − St, the
rational amount is Ŝr

t = ŷt − ĉrt , i.e. Ŝr
t = φ

r+φ
ŷt. Hence, the savings of a sparse agent

is Ŝs
t = φ

r+φ
mŷt, and the deviation of consumption is: ĉst = ŷt − Ŝs

t , i.e.

ĉst =

(
1−

mφ

r + φ

)
ŷt under the savings frame

which is generally not the same as ĉst under the consumption frame.
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Proof of Proposition C.6. We use the content82 and notations of Proposition
F.1. We set xt = ŷt. We have Fw (w,x, c) = rw+ xt − ct and F

x (w,x) = −φx.
Under the consumption frame, at = ct, and F

w
aa = 0, so by Proposition F.1,

noting
[
V δxx
]C

the value of V δxx (w, 0) under the consumption frame:[
V δxx
]C

=
u′′ (c)

r + 2φy

(
csy − cry

)2
(C.25)

and as csy = mcry with cry =
r

r+φ ,[
V δxx
]C

=
u′′ (c)

r + 2φ
(1−m)2

(
r

r + φ

)2

and the expected losses are (with σ2y = E
[
ŷ2t
]
)

LC =
−1

2

[
V δxx
]C
σ2y =

−1

2

u′′ (c)σ2y
r + 2φ

(1−m)2
(

r

r + φ

)2

= A (1−m)2 r2

Under the savings frame, at is savings, so F
w = at, and ct = rwt + xt − at.

Hence: [
V δxx
]S

=
u′′ (c)

r + 2φ

(
Ssy − Sry

)2
and as Ssy = mSry , with S

r
y = 1− cry =

φ
r+φ ,[

V δxx
]S

=
u′′ (c)

r + 2φ
(1−m)2

(
φ

r + φ

)2

and expected losses are

LS =
−1

2

[
V δxx
]S
σ2y = A (1−m)2 φ2

The consumption frame yields greater utility than the savings frame if and only
if φy > r.

Losses from a general variable x . Using the same reasoning, the losses from
not paying attention to a variable x is

Lx =
−u′′ (c)
r + 2φ

σ2x
(
csx − cratx

)2
=

−u′′ (c)
r + 2φ

σ2xc
2
x (1−mx)

2

We parametrize the losses by the “equivalent permanent tax” λx such that

Lx = E
∫ ∞

0

e−ρt [u (ct)− u (ct (1− λ))]dt

82. We could also draw on the results in Cochrane (1989), with a variety of adjustments.
Proposition F.1 extend Cochrane’s results (derived for consumption) to general dynamic
problems.
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Hence, using a Taylor expansions, λx = L
u′(c)c/r . This gives

λx =
1

2

− u′′(c)
u′(c)c/r

r + 2φ
σ2xc

2
x (1−mx)

2

i.e., using γ = −cu′′(c)
u′(c) ,

λx =
1

2

rγ

r + 2φ

[cxσx
c

(1−mx)
]2

(C.26)

Proposition C.7. The losses from paying only attention mx to variable x,
expressed in terms of an “equivalent proportional losses in consumption”, λx

are

λx =
1

2

rγ

r + 2φx

[cxσx
c

(1−mx)
]2

(C.27)

where σx is the standard deviation of x, and cx = ∂c
∂x .

The calibration gives

λr = (1−mr)
2 × 0.03%, λy = (1−my)

2 × 3.0% (C.28)

It may be useful to see the effect in a simpler context. Take a 3 period
model with β = R = 1, and an income shock with persistence ρ: ŷt = ρt−1ε
for t = 0, 1, 2, with ε a mean-0 shock. Normatively, that should induce the

change ĉ = (ĉt)t=0,1,2 = (1, 1, 1) 1+ρ+ρ2

3 ε (indeed, the total value of income has

increased by
(
1 + ρ+ ρ2

)
ε). Let us now consider a BR agent with m = 0.

However, under the consumption frame, ĉC =
(
0, 12 ,

1
2 + ρ+ ρ2

)
ε (as there

is no reaction of c0, so that time-1 wealth increases by ŵ1 = ε, of which
half is consumed at time 1, so ĉC1 = ε

2). Under the savings frame, we get
ĉS =

(
1, ρ, ρ2

)
ε (savings doesn’t change, consumption absorbs all the shocks).

It is easy to verify that for ρ small, the utility is higher under the consumption
frame, while the opposite for large ρ.83 Indeed, when ρ = 0, ĉC =

(
0, 12 ,

1
2

)
ε

and ĉS = (1, 0, 0) ε, so there is more smoothing under the consumption frame.
Other the other hand, with ρ= 1, ĉC =

(
0, 12 ,

5
2

)
ε and ĉS = (1, 1, 1) ε, and there

is more smoothing under the savings frame.

C.8. Intertemporal elasticity of substitution: controversies about its value

For many finance applications (e.g., Bansal and Yaron (2004), Barro (2009),
Gabaix (2012)), a high intertemporal elasticity of substitution (IES, denoted
ψ = 1/γ) is important (ψ > 1). However, micro studies point to an IES

83. To the leading order, û = 1
2
u′′ (cd)E∑

t ĉ
2
t , so ûC = 1

2
u′′ (cd)σ2

ε

(
1
4
+

(
1
2
+ ρ+ ρ2

)2)
and ûS = 1

2
u′′ (cd)σ2

ε

(
1 + ρ2 + ρ4

)
. This yields ûC ≥ ûS iff ρ < ρ∗ ≃ 0.32.
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of less than 1 (e.g., Hall (1988)). I show how this may be due to the way
econometricians proceed, by fitting the Euler equation, which yields

ln ct+1 − ln ct = ψe
rt
R

+ a+ εt+1 (C.29)

where ψe is the measured IES, a is a constant, and εt+1 is mean-zero noise
I apply the infinite-horizon framework of Section 4.2. If the consumer

“under-reacts to the interest rate,” the measured IES will be biased towards
0. Using the above model, we can more precisely calculate that if consumers
are boundedly rational (in the sense laid out above), then the estimated IES
will be: ψe =mrψ. This is a point prediction that goes beyond Chetty (2012)’s
prediction of an interval bound. The formal statement is cleanest to write in
the limit of no savings (wt − ȳ = 0). It is as follows.

Proposition C.8. An econometrician fitting an Euler equation as in (C.29)
will estimate a downwardly-biased IES (intertemporal elasticity of substitution)
if the agent is sparse:

ψe = mrψ (C.30)

where ψe is the estimated IES, ψ the true IES and mr is the attention to the
interest rate, endogenized in Proposition 8.

Proof : We use the results of Section 4.2. Given an interest rate deviation
r̂t, the behavioral consumer increases his consumption by ĉt = mrBr r̂t, which
decreases next period wealth by ŵt+1 = −RmrBr r̂t, and so that next period
consumption deviation is

ĉt+1 = mrBr r̂t+1 +
r

R
ŵt+1 = mrBr (r̂t+1 − rr̂t)

which implies, as E [r̂t+1] = ρtr̂t,

E [ĉt+1 − ĉt] = (mrBr (ρr − r − 1)) r̂t = −mrbr r̂t = −mr
ψ

R
cdr̂t

Hence, the regression coefficient in (C.29) is ψe = mrψ. □

The above calibration yields Figure C.2, which plots the measured IES
ψe if the consumer is sparse with sparsity cost κ. If κ = 0, the consumer is
the traditional, frictionless rational agent. We see that as κ increases, the IES
becomes more and more biased. Hence, inattention may explain why while
macro-finance studies require a high IES, microeconomic studies find a low
IES.84

84. This is in the spirit of Gabaix and Laibson (2002)’s analysis of the biases in the
estimation of the coefficient of risk aversion with inattentive agents, in a different context
and a more tractable model. See alsoFuster et al. (2010)for a model where agents’ use of
simplified models leads to departures from the standard aggregate model.
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Figure C.2. Measured intertemporal elasticity of substitution (IES), ψ̂, if the consumer
is sparse with cost κ, while the econometrician assumes he is fully rational. The true IES
is ψ = 1.

C.9. Source-dependent Marginal Propensity to Consume

The agent has initial wealth w and future income y, can consume c at time
1, and invest the savings at a rate R. Hence, the problem is as follows: given
an initial wealth w, solve maxc V = u (c) + E [v (y +R (w − c))], where income
is y = y∗ +

∑n
i=1 yi - there are n sources of income yi with mean 0. Let us

study the solution of this problem with the algorithm. The agent observes the
income sources sparsely: he uses the model y (m) = y∗ +

∑n
i=1miyi, with mi to

be determined. Applying this model, we obtain (assuming exponential utility
with absolute risk aversion γ for simplicity)

Proposition C.9. Time-1 consumption is c= 1
1+R (Rw+ δ/γ− γσ2ε/2+ y∗ +∑

imiyi), mi = τ(1,
κmσc2

σyi
). The marginal propensity to consume (MPC) at

time 1 out of income source i is

MPCsi =MPCri ·mi, (C.31)

where MPCsi = (∂c/∂yi)
s is the MPC under the sparse model, and MPCri =

(∂c/∂yi)
r is the MPC under the traditional rational-actor model. Hence, in

the sparse model, unlike in the traditional model, the marginal propensity to
consume is source-dependent.

Different income sources have different marginal propensities to consume –
reminiscent of Thaler (1985)’s mental accounts. Equation (C.31) makes another
prediction: consumers pay more attention to sources of income that usually
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have large consequences, i.e. have a high σyi . Slightly extending the model,
it is plausible that a shock to the stock market does not affect the agent’s
disposable income much – hence, there will be little sensitivity to it. The MPC
out of wage income will be higher than the MPC to consume out of portfolio
income.

This model shares similarities with models of inattention based on a fixed
cost of observing information. Those models are rich and relatively complex
(they necessitate many periods, or either many agents or complex, non-linear
boundaries for the multidimensional s, S rules, or signal extraction as in Sims
(2003)), whereas the present model is simpler and can be applied with one or
several periods. As a result, the present model, with an equation like (C.31),
lends itself more directly to empirical evaluation.

C.10. Cognitive Discounting of Future News

Suppose that the agent is told that he may receive $7 in 3 periods, but that
those $7 may disappear, with a survival probability of ρy per period. Then,
the $7 should count at ρ3y7. However, a sparse agent could replace ρy by

ρy (my′) = my′ρy + (1−my′)ρ
d
y. If ρy (my′) < ρy, he’s thinking “Let me not

bother with those potential future things” , or “I’ll believe it when I see it” ,
or something akin to “a bird in the hand is worth two in the bush” .

The framework easily accommodates that behavior of “cognitive
discounting” . Call fyt the vector of future flows, whose s−th component will
arrive in s periods.85 In the rational model, with no decay,

fyt+1 = Lft + εf
y

t+1

where L is the left-shift operator L (f1, f2, f3, ...) = (f2, f3, ...). An innovation

εft+1 codifies announcement. For instance, in the initial example εf
y

t =
(0, 0, 7, 0, 0, ...). When there is cognitive discounting, operator L is replaced
by ρy′ (m)L.

To come back to our consumption problem, the problem is, under the
subjective model (with Z = (w, rt, f

y
t , f

r
t )):

Fw (Z,m) = (R+mr r̂t) (wt − ct) + ȳ +myŷt

fxt+1 = mfxLfxt + εxt+1, x̂t = kx1 · fxt for x = r̂, ŷ

Here, the value of mfx “dampens” the appreciation of future movements in
variable x. Intuitively, because the future is harder to predict, its simulations
are dampened.

85. More generally, Et [yt+s] =
(
fy
t

)
s
= kys · fy

t , with kys = (0, ..., 0, 1, 0, 0, ...) the vector
selecting the s−th component.
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Proposition C.10. In the cognitive discounting specification, the behavioral
policy is:

ĉst = Et

∑
τ≥t

1

Rτ−t+1

(
mrm

τ−t
r′ br (wt) r̂τ +mym

τ−t
y′ byŷτ

) , (C.32)

All those expressions hold up to second order terms.

Formulation (C.32) encapsulates two different forms of inattention. First,
the agent may not think about interest rate at all if mr = 0. Second, he may
discount future news, if mr′ < 1. Indeed, he discounts future news arriving in T
periods by a factor mT

r′ . In addition, this discounting is source-specific: if news
about future interest rates are less important than news about future income
(something we will compute soon), they are (cognitively) discounted more.86

C.11. Extension of the basic 3-period example

Using the simplification function. The value (39) is a bit complicated. This
is where the simplification operator S (defined in Definition F.2) intervenes.
Applying it (with the same notations as in the motivating example before and
after Definition F.2), we obtain V 1,S := S

(
V 1
)
, i.e.

V 1,S (w,x) = 2u

(
w1 + x

2

)
(C.33)

The value is the same as V 1, up to O
(
x2
)
terms: V 1 (w1, x) = V 1,S (w,x) +

O
(
x2
)
. The attention-augmented value function at time 1 is

V 1
(
w,x,mV

)
= mV V 1 (w,x) +

(
1−mV

)
V 1,S (w,x)

At time 0, the agent does smaxc0;m v
0 (c0, x,m0), with m0 =

(
mx

0 ,m
V
)

and
v0 (c0, w0, x,m0) := u (c0) + V 1

(
w0 − c0,m

x
0x,m

V
)

(C.34)

The FOC is v0c0 = 0 with

v0c0 = u′ (c0)− V 1
w

(
w0 − c0,m

x
0x,m

V
)
.

We have V 1
w,mV = 0 at the default md

0 = (0, 0), so ∂c0
∂mV |md=0

= 0 and the

optimal attention is mV = 0: the agent uses the proxy value function, not the
exactly rational one (we will see soon that attention mV can be non-zero using
the 2-step smax, but it is still likely to be 0 if κ is not too small).

86. Psychologically, why the decay? This may be because often “promises are not kept” ,
or “something intervenes” (so that the agent anchors on a decay ρdy < 1), or simply because
things far in the future are generally less easy to perceive.
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We note that if mV > 0, the FOC is more complex. The FOC is

u′ (c0) =
(
1−mV

)
u′
(
w1 +m0x

2

)
+mV 1

2

[
u′
(
w1 +m1x

2

)
+ u′

(
w1 + (2−m1)x

2

)]
Still, to the first order, the decision is the same (as per Proposition 2). Making
the problem simpler at every period, via the mV = 0 device, makes the problem
more tractable for both the agent and the economist examining him. We next
study this, using the 2-step sparse max.

Using the 2-step sparse max. We have so far used the plain sparse max.
This led to mV = 0, the exclusive reliance on the simplified value function.
We now calculate what happens when using the twice-iterated sparse max of
Definition F.1.

To endogenizemV , we use the twice-iterated smax: smax2c;m v
0 (c0, w0, x,m)

with m =
(
mx

0 ,m
V
)
. At the first round, v0c0,mV

= 0, so mV
0 (1) = 0, and, as

before, mx
0 (1) = A

(
1
6κu

′′ (w0

3

)
σ2x
)
.

At the second round, now md = (mx
0 (1) , 0). The easy part is the attention

to x, which is slightly different than at step 1:

mx
0 (1) = A

(
1

6κ
u′′
(
w0 +mx

0 (0)x

3

)
σ2x

)
The more novel part is to calculate mV . We have, with w1 = w0 − c0 and

calling xs := mx
0x,

v0c,mV

(
c0, w0, x,m

x
0 ,m

V
)
= ∂c

[
V 1 (w0 − c0, x

s)− V 1
(
w0 − c0, x

s,mV = 0
)]

= −1

2
u′
(
w1 +m1x

s

2

)
− 1

2
u′
(
w1 + (2−m1)x

s

2

)
+ u′

(
w1 + xs

2

)
Doing a Taylor expansion of the consumptions w1+m1x

s

2 and w1+(2−m1)x
s

2

around their mean

cd =
w1 + xs

2
=
w1 +mx

0x

2
we obtain

v0c,mV
= −1

2
u′
(
cd + (m1 − 1)

xs

2

)
− 1

2
u′
(
cd − (m1 − 1)

xs

2

)
+ u′

(
cd
)

= −1

2
u′′′
(
cd
)
(m1 − 1)2

(
xs

2

)2

× 2 + o
(
x2
)

= −1

4
u′′′
(
cd
)
(m1 − 1)2 (mx

0x)
2 + o

(
x2
)

Likewise, v0
cc|m=md

0(1)
= 3

2u
′′ (cd). So, the impact of mV is

∂c0
∂mV

= −
v0c,mV

v0cc
= −1

6

u′′′
(
cd
)

u′′ (cd)
(m1 − 1)2 (mx

0x)
2 + o

(
x2
)
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Hence, for a small x, the attention mV to the difference between the
difference between the true and proxy value functions (i.e., V 1

(
w1, x,m

V
)
for

mV = 1 vs mv = 0) is:

mV
0 = A

(
1

κ
E

[(
∂c0
∂mV

)2

v0cc

])

= A

 1

κ
E

(1

6

u′′′
(
cd
)

u′′ (cd)
(m1 − 1)2 (mx

0)
2 x2

)2
 3

2
u′′
(
cd
)

= A

 1

24κ

(
u′′′
(
cd
)

u′′ (cd)

)2

(m1 − 1)4 (mx
0)

4 E
[
x4
]
u′′
(
cd
) (C.35)

It is instructive to take the limit of small κ using a sparsity-inducing cost

function (g′ (0) > 0). To have mx
0 > 0, we need

σ2
x

κ large enough, so σx ⪰ κ1/2.

To have mV
0 > 0, we need

σ4
x

κ large enough, i.e. σx ⪰ κ1/4, which is a much

higher hurdle (κ
1/4

κ1/2 → ∞) for small κ. We formalize this.

Proposition C.11. (Attention to a variable, vs attention to the fine
properties of how the value function depends on that variable) Suppose a
succession of problems (indexed by κ going to 0) such that there are positive
constants B, B′, ε such that for κ small enough: Bκ1/2−ε ≤ σx (κ) ≤ B′κ1/4+ε.
Then, the agent will have mx

0 > 0 and mV
0 = 0 when κ is small enough. This

is, the agent pays attention to the disturbance x, but not to the subtle difference
between the true and proxy value functions (i.e., V 1

(
w1, x,m

V
)
for mV = 1 vs

mV = 0).

In plain terms: because thinking about the nuances mV in V
(
x,mV

)
, one

needs to think about x at all. Hence, in many situations, we have mV = 0
and mx > 0. Indeed, we cannot have, with just one state, variable mx = 0 and
mV > 0.

In particular, for our 3-period problem for κ small enough but not too small,
mV = 0 and mx

0 > 0 - the agent uses the simplified value function, but still
pays attention to x, like in the basic smax case. This is one reason it is useful
to use the basic smax: it gets to the essence of the more complex patterns that
can later be refined using the iterated smax.

Appendix D: Complements to the life-cycle model

Here I record variants on the life-cycle models of Section 2. What happens with
various attention functions, in discrete and continuous time, etc. This is useful
to get a “feel” for the model in a concrete, substantial setting.
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D.1. Derivation in continuous time

It is instructive to do the proof in continuous time, using the notations of
Section 2. The budget constraint is ẇt :=

dwt

dt = yt − ct, where a dot denotes a
time-derivative.

If the agent is rational, his value function is

V r (wt, x, t) = (T − t)u

(
ȳ +

wt − x

T − t

)
Indeed, the optimal policy is to smooth consumption over the time [t, T ],
exhausting final resources, which are wt + (T − t) ȳ − x, so that ct =
wt+(T−t)ȳ−x

T−t , and the value function is V r = (T − t)u (ct). I take V p = V r

for the proxy value function.
Hence, at time t, the Bellman equation is

smax
c;m

v (ct,m, x, t) with v (ct,m, x, t) := u (ct)dt+ V r (wt − ctdt,mx, t) .

The FOC is:

vc = u′ (ct)dt− V rw (wt − ctdt,mx, t)dt

=
[
u′ (ct)− V rw (wt,mx, t)

]
dt+O

(
dt2
)

vcc = u′′ (ct)dt+ V rw (wt − ctdt,mx, t) (dt)
2

= u′′ (ct)dt+O
(
dt2
)

Hence, the optimal policy is given by vc = 0, i.e. u′ (ct) = V rw (wt,mx, t) =

u′
(
ȳ + wt−mx

T−t

)
, so

ct = ȳ +
wt −mx

T − t
= cdt −mbt,

where
bt :=

x

T − t
is the normative sensitivity response to x.

Next, for the allocation of attention, we form

max
m

−1

2
vcc|m=0

(
∂ct
∂m

)2

(mt − 1)2 − κtg (m)dt

i.e. the attention is

m∗
t = A

(∣∣u′′ (cdt )∣∣ b2t
κ

)
Using the definition of the truncation function τ (b, k) := bA

(
b2

k2

)
(equation

12) the response is

ct − cdt = m∗
t bt = τ

(
bt,

√
κt∣∣u′′ (cdt )∣∣

)
(D.1)
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D.2. Calculation of the consumption path

The basic result (Proposition 1) gives the consumption policy, which is enough
to simulate the consumption path, say with a computer. Here I explore
specifications to obtain an analytic representation. As always, continuous time
is much simpler to derive and cleaner than discrete time. Still, because it is
more elementary, I start with discrete time.

D.2.1. Consumption Path in Discrete Time. We will see that the path is as
follows. Consider

B (s) :=
x

T − s
− κ̄2

x
(T − s− 1) (D.2)

which is related to marginal net benefit of thinking.

Proposition D.1. (Basic life-cycle: consumption path in discrete time)
Call s the first time at which the agent thinks about retirement, s =
inf {s ∈ [0, L] : B (s) ≥ 0}. Hence, the agent can think of retirement at time
s = 0 (this is the case if B (0) ≥ 0), at time a later time before retirement (this
is the case if B (0) < 0 < B (L), and s is the solution of B (s) = 0 if that is an
integer). Or he may never think about it until actual retirement, s = L.

Before he thinks of retirement (t < s), consumption is ct = ȳ + w0

T and
wt =

(
1− t

T

)
w0. After the agent thinks of retirement (t ∈ [s,L)):

ct =
w0

T
+ ȳ − 2κ2

x
(t− s)−B (s)

and wealth is wt =
(
1− t

T

)
w0 + κ2

x (t− s) (t− s− 1) + B (s) (t− s) for t ∈
[s,L].

Consumption after retirement (for t ∈ [L,T )) is constant, at ct =
wL

T−K +
ȳ + ŷ.

We next derive this. We follow Section 2, which gives:

ct =
wt −mtx

T − t
+ y

We suppose the scaling: κ = κ̄2u′′
(
cdt
)
, given v′′ = u′′

(
1 + 1

T−t−1

)
,

mt = A
(
vccc

2
m

κ

)
= A

(
v′′

u′′
c2m
κ̄2

)
= A

((
1 +

1

T − t− 1

)(
x

T − t

)2
)

= A
(

1

(T − t− 1) (T − t)

x2

κ̄2

)
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Using A (y) = max
(
1− 1

|y| , 0
)
,

mt
x

T − t
=

x

T − t

(
1− κ̄2 (T − t− 1) (T − t)

x2

)
=

x

T − t
− κ̄2 (T − t− 1)

x

= B (s)

where B (s) was defined in (D.2).
To concentrate on the key difficulty, I take the case w0 = 0.
If the solution is interior (s ∈ (0, T )), the agent thinks about retirement for

s such that
B (s) = 0 (D.3)

Hence, when attention is positive, we have:

ct = y +
wt − x

T − t
+
κ2 (T − t− 1)

x
(D.4)

We need to calculate the case where the agent saves before retirement. We
look for a solution of the type, for t ∈ [s,L):

ct = y +A (t− s) + b

for some constants A, b. At t = s, (D.4) implies b = −B (s). For time t ∈ [s,L),
we have:

wt = −
t−1∑
t′=s

(ct′ − y) = −A
2
(t− s) (t− s− 1) +B (s) (t− s)

We want to verify (D.4), which we will express: g (t) = 0 with

g (t) := (T − t)

(
ct − y − wt − x

T − t
− κ2 (T − t− 1)

x

)
= (T − t) (ct − y)−wt + x− (T − t) (T − t− 1)

κ2

x

= (T − t) (A (t− s)−B (s)) +
A

2
(t− s) (t− s− 1)

+B (s) (t− s) + x− (T − t) (T − t− 1)
κ2

x

This is a polynomial in t. The coefficient of t2 must be 0, so −A
2 − κ2

x = 0,
and

A =
−2κ2

x

To make sure that g (t) = 0, we check first g (s) = 0. But

g (s) = − (T − s)B (s) + x− κ̄2 (T − s) (T − s− 1)

x
= 0
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because of (D.2). Finally,

g (T ) = −κ
2

x
(T − s) (T − s− 1)−B (s) (T − s) + x = 0

again. Given g is a polynomial of degree at most 1, with g (s) = g (T ) = 0, g is
identically 0.

D.2.2. Consumption Path in Continous Time.
Using the scaling κt = κ̄2

∣∣u′′ (cdt )∣∣ .. I set: κt = κ̄2
∣∣u′′ (cdt )∣∣. The

consumption policy before retirement is

ct =
wt
T − t

+ τ

( −x
T − t

, κ

)
+ y

The agent will not think about the change in income when x
T−t < κ. Call

s ∈ [0, L) the first moment when he thinks about it. If the solution is interior,
x

T−s = κ, i.e. s = T − x
κ . In general, we need to windsorize at 0 and L :

s := max
(
0,min

(
L,T − x

κ

))
(D.5)

Note that this is for ŷ ≤ 0. In general have s := max
(
0,min

(
L,T − |x|

κ

))
.

For t ≤ L, define the deviations from the policy that doesn’t pay attention
to retirement x:

ĉt = ct −
w0

T
− y

ŵt =

∫ t

0

−ĉt dt = wt −
T − t

T
w0

We plug ĉt and ŵt into the optimal consumption policy to get

ĉt =
ŵt
T − t

+ τ

( −x
T − t

, κ

)
First case, using truncation function τ1 (b, κ) = bmax

(
1− κ2

b2 , 0
)
. I first

assume that s < L. For t ∈ [s,L) the agent’s response is

ĉt =
ŵt
T − t

+ τ

( −x
T − t

, κ

)
=

ŵt
T − t

− x

T − t

1− κ2(
x
T−t

)2


=
ŵt − x

T − t
− κ2

x
(T − t)
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Take derivative with respect to t, this yields, using dŵt

dt = −ĉt,
dĉt
dt

=
−ĉt
T − t

+
ŵt − x

(T − t)2
+
κ2

x

=
−ĉt
T − t

+
ĉt +

κ2

x (T − t)

(T − t)
+
κ2

x

=
2κ2

x

with boundary condition that ŵs = 0. Solving for ĉt, for t ∈ [s,L]

ĉt =
2κ2

x
(t− s)

The wealth at time t is

ŵt =

∫ t

s

−ĉt′ dt′ = −κ
2

x
(t− s)2

Second case. Now use truncation function:

τL1 (b, κ) = sign (b)max (|b| − |κ| , 0) .
After time s, the agent’s response is

ĉt =
ŵt
T − t

+ τ

( −x
T − t

, κ

)
=

∫ t
s −ĉt dt
T − t

−
(

x

T − t
− κ

)
Taking derivative with respect to t yields

dĉt
dt

=
−ĉt
T − t

+
ŵt

(T − t)2
− x

(T − t)2

=
−ĉt
T − t

+
ĉt +

x
T−t − κ

(T − t)
− x

(T − t)2

=
−κ
T − t

with boundary condition that ĉs = 0. We can solve ĉt as,

ĉt = κ ln

(
T − t

T − s

)
The wealth at time t ≤ L will be

ŵt =

∫ t

s

−ĉt dt = κ (T − s)

(
T − t

T − s
ln
T − t

T − s
− T − t

T − s
+ 1

)
Case 1: With τ1 (b, κ) = b max

(
1− κ2

b2 , 0
)
, his consumption path is

ct =


w0

T + y for t < s
w0

T + y + 2κ
2

x
t−s
T−s for s ≤ t < L

wL

T−L + y + ŷ for t ≥ L

94



with wL = ŵL + B
T w0 = κ (L−s)2

T−s + B
T w0.

Case 2: With τL1 (b, κ) = sign (b)max (|b| − |κ| , 0), his consumption path is

ct =


w0

T + y for t < s

κ ln
(
T−t
T−s

)
+ w0

T + y for s ≤ t < L

wL

T−L + y + ŷ for t ≥ L

with wL = ŵL + B
T w0 = κ (T − s)

(
B
T−s ln

B
T−s − B

T−s + 1
)
+ B

T w0.

Using a different scaling, κt = κ̄2
∣∣∣(cdt )2 u′′ (cdt )∣∣∣. Here I explore a different

scaling κt = κ̄2
∣∣∣(cdt )2 u′′ (cdt )∣∣∣, with cdt = ȳ+ wt

T−t . This renders κ̄ dimensionless

and potentially portable from one situation to the next. Then (D.1) gives:

ct − cdt = τ

(
bt,

√
κt∣∣u′′ (cdt )∣∣

)
= τ

(
bt, κ̄c

d
t

)
The agent is all set – he just follows that policy. Now let’s turn to the
economist’s role, to trace out the implications of that policy.

I use the truncation function τL1 (b, κ) = sign (b)max (|b| − |κ| , 0), because
it yields simpler calculations. I assuming ŷ < 0, to focus on the retirement case.
We have, when bt :=

−x
T−t < −κ̄cdt , τ

(
bt, κ̄c

d
t

)
= bt + κ̄cdt , so

ĉt := ct − ȳ =
(
cdt − ȳ

)
+
(
ct − cdt

)
=

ŵt
T − t

+ bt + κ̄cdt =
ŵt
T − t

− x

T − t
+ κ̄

(
ȳ +

ŵt
T − t

)
i.e.

ĉt =
(1 + κ̄) ŵt − x

T − t
+ κ̄ȳ (D.6)

Let us examine the first time s at which the agent thinks about retirement.
It if it in (0, L), we have ŵs = 0, and − x

T−t + κ̄ȳ = 0, so s = T − x
κ̄ȳ . In general,

we windsorize by 0 and L, and obtain:

s := max

(
0,min

(
L,T − x

κ̄ȳ

))
(D.7)

To find cs, we again apply (D.6), observing that ŵs = 0:

cs = ȳ − x

T
+ κ̄ȳ if s = 0 (D.8)

= ȳ if s ∈ (0, L)

From then on, we assume s < L.
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After the agent has starting thinking about retirement, we have (D.6), so

taking the time derivative, using ̂̇wt = −ĉt, we have:

̂̇ct = (1 + κ̄) ŵt − x

(T − t)2
+

(1 + κ̄)

T − t
̂̇wt = ĉt − κ̄ȳ

T − t
− (1 + κ̄) ĉt

T − t

= −κ̄ ĉt + ȳ

T − t

As ct = ĉt + ȳ, we have ċt = −κ Xt

T−t , so
d ln ct
dt = −κ

T−t , ln ct = κ ln (T − t) + a,
and

ct = A (T − t)κ

for a constant A. Given the value at cs

ct =

(
T − t

T − s

)κ
cs. (D.9)

The wealth at time t ≤ L is

ŵt =

∫ t

s

− (ct − ȳ)dt = (t− s) ȳ − 1

1 + κ

(
(T − s)− (T − t)1+κ

(T − s)κ

)
cs. (D.10)

D.3. Lifecycle: Policy of the hyperbolic log agent

The log case is particularly clean (Barro (1999)). The agent at time t has

decision utility: ln ct + β
∑T−1
τ=t+1 ln cτ . Given full wealth (including discounted

future income yt) call Ωt, his policy will be some ct = µtΩt, for µt independent
of Ωt, so we shall have

T−1∑
τ=t

ln cτ = (T − t) lnΩt +Kt

for some constant Kt. The implies a consumption policy

ct = argmaxu (ct) + β (T − t− 1) ln (Ωt − ct) +Kt+1

The first order condition is

1

ct
=
β (T − t− 1)

Ωt − ct

i.e.

ct =
Ωt

1 + β (T − t− 1)

We see that there is no “cliff” at retirement. The agent makes no distinction
between pre and post retirement income.
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Appendix E: Proofs Omitted in the Paper

Proof of Lemma 7. Exact result. The problem is

max
(ct)t≥0

∑
t≥0

βt
c1−γt

1− γ
s.t.

∑
t≥0

qtct ≤ Ω0

where qt =
1

(1+r0)...(1+rt−1)
is the time-0 Arrow-Debreu price of a dollar received

at t, and βt is the discount factor (which is not necessarily of the form βt here),
and

Ω0 := w0 +
∑
t>0

qtyt

is the full wealth. Forming the Lagrangian,

L =
∑
t≥0

βt
c1−γt

1− γ
+ λ

Ω0 −
∑
t≥0

qtct


we have βtc

−γ
t = λqt, i.e. (with ψ = 1

γ ), ct = c0

(
βt

qt

)ψ
for some c0. The budget

constraint gives:

Ω0 =
∑
t≥0

qtct = c0
∑
t≥0

βψt q
1−ψ
t

i.e.

c0 = µΩ0, µ :=
1∑

t≥0 β
ψ
t q

1−ψ
t

(E.1)

Given V ′ (Ω0) = u′ (c0) = u′ (µΩ0), we have (as the function is also
homogeneous of degree 1− γ): V (Ω0) =

1
µu (µΩ0).

Suppose now that βt = βt and βR = 1. Then the interest rate is constant,
qt = R−t, and µ = 1∑

t≥0R
−t = 1

1

1− 1
R

= r̄
R and Ω0 = w0 +

ȳ
r . So, c0 = µΩ0 =

rw0+ȳ
R .
Taylor expansion, first in the deterministic case.
The impact of a change dyτ is very easy: dc0 = µdΩ0 = r̄

R
dyτ
Rτ+1 .

The impact of an interest rate is more delicate. Consider a change change
drτ , for just one date τ . It creates a bond price change dqt =

−1
Rt+1 drτ1t>τ , so

that ∑
t≥0

dqt =
∑
t≥0

−1

Rt+1
drτ1t>τ =

∑
t≥τ+1

−1

Rt+1
drτ =

−1

rRτ+1
drτ

This gives

dµ

µ
= −µ (1− ψ)

∑
t≥0

βψt q
−ψ
t dqt = − r̄

R
(1− ψ)

∑
t≥0

dqt

= (1− ψ)
r̄

R

1

rRτ+1
drτ = µ (1− ψ)

drτ
Rτ+2
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Also, dΩ0 = ȳ
∑
t≥1 dqt =

−ȳ
r

drτ
Rτ+1 . Recalling that c0 = µΩ0:

dc0 = µΩ0
dµ

µ
+ µdΩ0 = c0 (1− ψ)

drτ
Rτ+2

+
r̄

R

−ȳ
r

drτ
Rτ+1

=

(
−ψc0 +

rw0 + ȳ

R
− ȳ

)
drτ
Rτ+2

=

(
−ψc0 +

r (w0 − ȳ)

R

)
drτ
Rτ+2

This gives announced value.
Value function. Write ct = µt (wt − ȳ) + νt, for values µt, νt independent

of wt. Because one dollar now can be consumed today, we have V ′ (wt) =
u′ (ct), and indeed V (wt) = 1

µt
u (µt (wt − ȳ) + νt). Using (47), in particular

cdt =
r(wt−ȳ)

R + ȳ and br (wt) :=
r̄
R (wt−ȳ)−ψcd

R , we obtain:

µtwt + νt = ct = cdt + ĉt

= cdt + Et

∑
τ≥t

1

Rτ−t+1
(br (wt) r̂τ + byŷτ )


=
r̄ (wt − ȳ)

R
+ ȳ

+ Et

∑
τ≥t

1

Rτ−t+1

 r̄
R (wt − ȳ)− ψ

(
r(wt−ȳ)

R + ȳ
)

R
r̂τ + byŷτ


which gives the announced values.

Stochastic case. As we are reasoning up to O
(
∥x∥2

)
, we can take the

certainty equivalent, e.g. use E [f (x)] = f (E [x]) +O (var (x)) for a C2 function
f . Technically, we assume that f is C2 with |f ′′ (x)| bounded over the support of
the distribution of X.87 This, way, we can move from the deterministic version
of (47) to its expectation, capturing absorbing the uncertainty terms in the

O
(
∥x∥2

)
.

Proof of Lemma 8. In the AR(1) case,

Et

∑
τ≥t

1

Rτ−t+1
r̂τ

 =
∑
τ≥t

1

Rτ−t+1
ρτ−tr r̂t =

1

1− ρr
R

r̂t
R

=
1

R− ρr
r̂t

µt =
r̄

R
+ (1− ψ)

r̄

R
Et[
∑
τ≥t

r̂τ
Rτ−t+2

] =
r̄

R
+ (1− ψ)

r̄

R2

1

R− ρr
r̂t

87. The proof is standard. Normalizing EX = 0, and calling x here just a real number,
we use f (x) = f (0) + f ′ (0)x + R (x) with R (x) =

∫ x
0 f ′′ (y) (x− y)dy. So f (X) =

f (0) + f ′ (0)X +R (X), and

Ef (X) = f (EX) + ER (X)

Using |R (x)| ≤ Cx2 for C := 1
2
supx∈I |f ′′ (x)|, we have |Ef (X)− f (EX)| ≤ CE

[
X2

]
=

Cvar (X). So, Ef (X) = f (EX) +O (var (X)).
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νt = ȳ + Et[
∑
τ≥t

−ψȳ
R r̂τ + byŷτ

Rτ−t+1
] = ȳ +

−ψȳ
R

1

R− ρr
r̂t + by

1

R− ρy
ŷt

Proof of Lemma 3. This is a variant on the standard proof. We have

T (V,V p)(Z)− T (Ṽ , V p)(Z) = βE[V (Z ′)− Ṽ (Z ′)] (E.2)

with Z ′ := F (z, a(Z,V p), µ).

For (i), using |V (Z ′)− Ṽ (Z ′)| ≤ ∥V − Ṽ ∥∞,

|T (V,V p)(Z)− T (Ṽ , V p)(Z)| ≤ βE[|V (Z ′)− Ṽ (Z ′)|]
≤ βE[∥V − Ṽ ∥∞] = β∥V − Ṽ ∥∞

and taking the sup on the left-hand side,

∥T (V,V p)− T (Ṽ , V p)∥∞ ≤ β∥V − Ṽ ∥∞.

For (ii), if V (Z ′) − Ṽ (Z ′) ≤ 0 for all Z ′, then (E.2) implies that

T (V,V p)(Z)− T (Ṽ , V p)(Z) ≤ 0. The operator is monotone.
Proof of Lemma 4. This is the usual fixed point argument. Define V0 := V p,

and for n ≥ 0, Vn+1 = T (Vn, V
p). By Lemma 3,

∥Vn+1 − Vn∥∞ = ∥T (Vn, V
p)− T (Vn−1, V

p)∥∞ ≤ β ∥Vn − Vn−1∥∞
hence Vn is a Cauchy sequence and converges in a complete metric space.

Proof of Proposition 2. Proposition 4 implies that V (w,x) = V r (w,x) +

O
(
∥x∥2

)
.88 Next, Lemma 5 implies that the optimal policy satisfies a (w,x) =

ar (w,x) + O
(
∥x∥2

)
. Next, decompose ar (w,x) = ad (w) +

∑
i bi (w)xi +

O
(
∥x∥2

)
. Then, using the policy V without sparse max, we have

a (w,x) = ad (w) +
∑
i

bi (w)xi +O
(
∥x∥2

)
Finally, using Lemma 2, we have:

as (w,x) = ad (w) +
∑
i

τ

(
bi (w) ,

κa
σi

)
xi +O

(
∥x∥2

)
.

Proof of Proposition 4. It is in Section G.1.
Proof of Lemma 5. The reasoning is a direct transposition of the arguments

in the proof of Proposition 4.

88. Proposition 2 is stated in the text before some results this proof uses (this is useful to
make the flow of the paper more natural), but there is no logical circularity.
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Proof of Lemma 6. Given a value function V (w,x), Lemma A.A.2 shows

that, up to O
(
∥x∥2

)
terms, a (w,x) just depend on V (w, 0) , Vw (w, 0) (but

not on Vxx (w, 0)). The Lemma assumes that the two functions V p (w,x) =

V p
′
(w,x) have the same values of V (w, 0) , Vx (w, 0). Hence, their actions

a (w,x) are the same up to O
(
∥x∥2

)
.

Proof of Proposition 5. We will prove by induction on q ≥ 0 that the

following property holds Hq : V
(q) (z) = V r (z) +O

(
∥x∥2

)
.

This is true by assumption for q = 0. Suppose Hq holds, we will see that
Hq+1 holds. By Lemma 6,

a
(
z, V (q)

)
= a

(
z, V (0)

)
+O

(
∥x∥2

)
(E.3)

Because a(0) (z) is C1, we also have a
(
z, V (0)

)
= ar (z) + O (∥x∥), so

a
(
z, V (q)

)
= ar (z) + O (∥x∥). Lemma 5 in turns implies that V (q+1) (z) =

V r (z) +O
(
∥x∥2

)
.

Proof of Lemma 8. One proof is that it is just a straightforward corollary
of (53). Here I show another proof, via a Taylor expansion of the default value
function. For notational simplicity, in this proof I call r and r′ the deviation of
the interest rate from the average value, r.

The Bellman equation is

V (w, r) = max
c
u (c) + βV

(
(R+ r) (w − c) + y′, r′

)
(E.4a)

I suppress the expectation operator, as the shocks are assumed to be small. We
assume a law of motion:

r′ = ρr + ε′

Call next-period wealth w′:

w′ = (R+ r) (w − c) + y′

We assume that the agent knows the simple model where the interest rate is
always at its average, r ≡ 0. As is well-known, the optimal policy is c = rw+ y,
and, with R = 1+ r,

V (w) = A
(
w +wH

)1−γ
/ (1− γ) , wH = Y/r,A = (r/R)−γ

First, we differentiate the Bellman equation with respect to the new
variable:

Vr (w, r) = βV ′
w′
(
w′, r′

) ∂w′

∂r
+ βV ′

r′
(
w′, r′

) ∂r′
∂r

Vr (w, r) = βV ′
w′
(
w′, r′

)
(w − c) + βV ′

r′
(
w′, r′

)
ρ (E.5)

Evaluating at r = 0, this leads to

Vr (w, 0) = V dw (w)
β (w − c)

1− βρ
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We now take the total derivative with respect to w , DwV = ∂wV + da
dw∂aV ,

e.g. the full impact of a change in w, including the impact it has on a change
in the consumption c. The baseline policy is c (w) = rw/R+ y, so Dwc = r : R,
and Dww

′ = d (R (w − c)) /dw = R−Rr/R = 1.

Dwc = r/R

Dww
′ = 1

This means that one extra dollar of wealth received today translates into exactly
one dollar of wealth next period; its interest income, r, is entirely consumed.

So differentiate (using the total derivative) equation E.5. We obtain

β−1Vwr (w, r) = V ′
w′w′

(
w′, r′

)
(Dw′w) · (w − c) + V ′

w′
(
w′, r′

)
Dw (w − c)

+ V ′
w′r′

(
w′, r′

)
ρDww

′

= V ′
w′w′

(
w′, r′

)
(w − c) + V ′

w′
(
w′, r′

)
(1− r

R
) + V ′

w′r′
(
w′, r′

)
ρ

so, using

V ′
w′w′

(
w′, r′

)
= −γV ′

w · 1

w +wH
= −γV ′

w · r

Rc

Vw,r =
β
V ′
w′
R

(
1− γr

(
w−c
c

))
1− ρβ

Finally, let’s derive the impact of a change in r on c. We have

Vw = β (R+ r)V ′
w′ = u′ (c)

so

dc

dr
=

Vwr
u′′ (c)

=
−1

u′′ (c)

Vw
R

1− γr
(
w
c − 1

)
R− ρrβ

=
−1

γu′ (c) c

Vw
R

1− γr
(
w
c − 1

)
R− ρr

dc

c
=

1

R

r
(
w
c − 1

)
− 1/γ

R− ρr
dr = brdr

br =
r
(
wt − cd

)
− cd

γ

R (R− ρr)

=
r
(
wt − rwt+y

R

)
− cd

γ

R (R− ρr)
=

r
R (wt − y)− cd

γ

R (R− ρr)

We note that the result

by =
r

R (R− ρy)
, br =

r
(
wt − cd

)
− cd

γ

R (R− ρr)

becomes, in continuous time:

by =
r

r + φy
, br =

rwt − ψcdt
r + φr

(E.6)
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Proof of Proposition 11. When φ > 0, we saw that

φ =

(
ξ

r + φ
− κ

(
r +

ξ

r + φ

)2
r + φ

ξ

)

Let ψ :=
r + φ

ξ
̸= 0. Then

φ = ψ−1 − κ(r + ψ−1)2ψ,

which is equivalent to

ψ(ξψ − r) = ψφ = 1− κ[(r + ψ−1)ψ]2

= 1− κ(rψ + 1)2

= 1− κ(r2ψ2 + 2rψ + 1).

Rearranging yields

(ξ + κr2)ψ2 + (2κ− 1)rψ + (κ− 1) = 0.

The quadratic formula then gives

ψ =
(1− 2κ)r ±

√
∆

2(ξ + κr2)
,

where

∆ = [(2κ− 1)r]2 − 4(ξ + κr2)(κ− 1)

= r2
[
(2κ− 1)2 − 4κ(κ− 1)

]
+ 4ξ(1− κ)

= r2
[
(4κ2 − 4κ+ 1)− (4κ2 − 4κ)

]
+ 4ξ(1− κ)

= r2 + 4ξ(1− κ).

In the case κ= 0, the correct root is the higher one for ψ (i.e., it’s the higher

root of φ = ξ
r+φ , the one with the +

√
∆ sign). Hence, ψ =

(1− 2κ)r +
√
∆

2(ξ + κr2)
.

Finally,

φ = ξψ − r =
ξ
[
(1− 2κ)r +

√
∆
]
− 2(ξ + κr2)r

2(ξ + κr2)

=

[
ξ(1− 2κ)− 2(ξ + κr2)

]
r + ξ

√
∆

2(ξ + κr2)
=

−
[
2κr2 + 2ξκ+ ξ

]
r + ξ

√
∆

2(ξ + κr2)

=
−
[
2κr2 + 2ξκ+ ξ

]
r + ξ

√
r2 + 4ξ(1− κ)

2(ξ + κr2)
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Appendix F: Extensions of the Basic Model

F.1. Evaluating the benefits of thinking at the true model

In the basic sparse max, benefits of thinking are evaluated at the default model.
Here is a simple extension where they’re evaluated at the true model. This is
useful to avoid “starvation” in some extreme examples.

Call

ωi (m) := E
[
−a′mi

(
md, x

)
uaa

(
a
(
md, x

)
,m, x

)
ami

(
md, x

)]
the prospective benefits of thinking, evaluated at model m. The basic sparse
max sets attention to

m∗
i = A

(
1

κ
ωi
(
md
))

But one could enrich it e.g. as

m∗
i = A

(
1

κ
max

(
ωi
(
md
)
,
ωi (µ)

K

))
with K > 1. The max features two term: in the first one (ωi

(
md
)
), the benefits

are evaluated at the default model; in the second term (ωi (µ)) benefits are
evaluated at the true model. To capture the fact that this is a more complex
procedure, a penalty of K > 1 is applied, for some K, e.g. K = 10.

A benefit is that then the model “detects the danger of starvation”. In the
3-period model, we have

m∗
1 = A

(
σ2x
2κ

max

{∣∣∣u′′ (w1

2

)∣∣∣ , 1
K

∣∣∣u′′ (w1

2
+ x
)∣∣∣})

so that if w1

2 + x is too close to a starvation level, then the second part
is “active”, and attention becomes higher (if u′′′ > 0). For instance, if∣∣u′′ (w1

2 + x
)∣∣ = ∞, then m∗

1 = 1, and the consumer becomes fully attentive.
Likewise, we’ll have

m∗
0 = A

(
σ2x
6κ

max

{∣∣∣u′′ (w0

3

)∣∣∣ , 1
K

∣∣∣∣∣u′′
(

2w0

3 + x

2

)∣∣∣∣∣
})

as the value function is evaluated as a derivative of V 1,p (w1, x) = 2u
(
w1+x

2

)
.

F.2. Finite-difference in the sensitivity to m

When we calculate ami = ∂a
∂mi

in Definition 1, the following variant ∂mia is
sometimes useful. We first need to define the finite-difference operator:

∆mig (m) := g (m)mi=1, m−i=0 − g (0) = g (0, ..., 0, 1, 0, ..., 0)− g (0)
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where the 1 is at the i-th coordinate of m. This is the “finite difference”
analogue to ∂mig (m) = ∂g

∂mi |m=0
. Next, we define:

∂mia (m,x) := ∆mi (ax · x)

= ∆mi

(∑
k

(
∂

∂xk
a (m,x)|x=0

)
xk

)
= (∆mi∂x) (a) · x

Note that if a (x,m) =
∑
bimixi, then ∂mia (m,x) = bimi = ∂mia (m,x).

However, the definition using ∂mi generalizes better. For instance, if m is one-
dimensional (m = m1) and

a (m1, x) =
3∑
i=1

mi
1bixi

then ∂m1a (m,x) =
∑3
i=1 bixi, whereas ∂m1a (m,x) =

∂a(x)
∂m1 |m=0

= b1x1. The

higher-power termsm2,m3 are “invisible” when using ∂m1 , but “visible” when
using ∂m1 .

F.3. Taking into account the costs of thinking in the value function

One could take into account the costs of thinking in the value function. This
will complicate the issues a bit and change the optimal action only by second
order terms. Therefore, it’s best not to do that in the first model.

Should thinking costs be taken into account?
There are some reasons to do it. If attention is a resource, then its cost

should be taken into account.
There are also reasons not to do it. First, we’re modeling a BR agent and

imagining that the BR agent optimizing today will take into account future
thinking costs may assume too much rationality. Technically when optimizing,
the agent may take a default value of 0 for κV . Second, it could be that the
costs in his decision utility (the ones used when deciding) are not the actual
costs of thinking. This is the case if the agent misoptimizes on inattention, i.e.
does as if the cost was κ – but perhaps the true cost is κV = 10κ or κV = 0.1κ.

In the basic statement of the model, I opted for the simplest version of the
framework. Here is an expanded version that does take them into account.

The selection of the action is still (27). Calling m∗ (Z,V p) the attention
return by the smax in (27), and the value function iteration in (29) becomes

T (V,V p) (Z) := u (a (Z,V p) , Z, µ)− κVG (m∗ (Z,V p))

+ βE [V (F (z, a (Z,V p) , µ))]
(F.1)

where G (m) =
∑
i g (mi), and κ

V is the perceived cost as included in the value
function, and the state vector Z is expanded to include κV as a state variable.
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The basic sparse max corresponds to taking κV = 0 at the Bellman iteration
stage.

How do results change? First, the basic smax agent does not change his
action at all. What changes is for the q−iterated agent case with q ≥ 1. Second,
in accordance of Section 3.5, this change makes only a second order difference
in the action.

Formally, this can be interpreted by enriching the action space to ā= (a,m)
and having attention be part of the action vector and an expanded utility
function:

ū (a,m,Z,µ) = u (a,Z, µ)− κVG (m)

Then, the perceived decision utility may or may not capture the correct value
of κ. This is close to the perspective taken in Farhi and Gabaix (2020).

F.4. Iterated Static Sparse Max

In some cases, it is useful to have a generalization of the basic sparse max.

Definition F.1. (Iterated sparse max for static problems) The K−times
iterated sparse max, smaxK

a;m|md u (a, x), is defined by the following procedure.

Define md(k)k=1 to be the initial default attention, md.
Start at round k = 1. At each round k ≤ K, apply the regular smax, using

the default md (k): smaxa;m|md(k) u (a, x,m), and call m∗ (k) and a∗ (k) the

resulting attention. Define then md (k + 1) = m∗ (k).
Stop at the end of round k =K, and return m∗ (K) and a∗ (K), the optimal

attention and action at the last iteration.

Illustration. Suppose that u (a, x) = −1
2 (a− x1 (1 + x2))

2 so that the
rational policy is ar (x1, x2) = x1 (1 + x2). If the agent doesn’t think of x1
(replacing it with x1 = 0), then he should not think about x2.

We next apply the iterated smax outlined in Definition F.1, iterating twice
(K = 2). Initial default attention is md (1) = (0, 0). We start at step k = 1. We
observe that so arx1

= 1+ x2, a
r
x2

= x1, which gives

m∗
1 (1) = A

(
σ21
κ

)
, m∗

2 (1) = 0

So, at the beginning of the second step, the default is md (2) = m∗ (1). Again
applying the plain smax but with that default md (2), we have

m∗
1 (2) = A

(
σ21
κ

)
, m∗

2 (2) = A
(
m∗

1 (1)
2 σ22

κ

)
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Hence, the action is a= ar (m∗ (2)⊙ x) =m∗
1 (2)x1 (1 +m∗

2 (2)x2). We also see
that, as κ→ 0, the action converges to the rational action.89

F.5. Proportional Thinking

Here is a simple microfoundation for the scale-free κ of Section A.2.2,
equation (F.2). Thinking about mi implies some “mental costs” g (mi).
These costs translate into some trembling in the action, so that, with a∗∗ =
argmaxa v (a, x,m

∗), the actual action is:

a = a∗ + η̃

where η̃ is a mean 0 noise with standard deviation:

Stdev (η) =
√
2κ̄a♮

(∑
i

g (mi)

)1/2

The size of the noise proportional to the typical scale a♮ of the action (this
proportional is encountered in much of psychophysics, e.g. in the Weber-
Fechner law)90, and increasing in mental activity m. . We call

√
2κ̄ the factor

of proportionality.
Hence, the utility losses from this noise L = −E [v (a∗ + η, x)− v (a∗, x)]

are, to the leading order:

L = −1

2
E
[
η2
]
vaa = −vaaκ̄2

(
a♮
)2∑

i

g (mi)

Hence, as in Gabaix (2014), (Lemma 2), the utility losses from imperfect
attention are, to the leading order:

1

2

∑
i,j=1...n

(1−mi)Λij (1−mj) + κ
∑
i

g (mi)

with Λij := −E
[
amiVaaamj

]
and

κ =
(
κ̄a♮
)2 ∣∣vaa (ad (x,md

))∣∣ . (F.2)

89. This iterated smax suffices for the problems considered in this paper. For other
purposes, one could imagine a variant where the default is at say md = (ε, ..., ε), for some
ε > 0, so as to better “probe” the importance of all variables.

90. The microfoundation of that is probably that noisy computations are made in the
brain in a scale-free space, and then at the end multiplied by a♮ to get an action to scale.
This generates the proportionality to a♮. This type of thinking, however, it still speculative
at this stage Glimcher (2011).
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F.6. Simplification of Functions

F.6.1. Taylor expansion inside a value function. We develop here a bit of
simple machinery to reflect how the agent can “simplify” a function (in practice
a value function), by forcing them to have a given functional form.

A motivating example. Suppose that the agent consumes c1 = w
2 + y1 and

c2 = w
2 + y2, where y = (y1, y2) can be viewed as small. His rational value

function, assuming no discounting, is

v (y) = u
(w
2
+ y1

)
+ u

(w
2
+ y2

)
The agent may wish to use a simplified representation of this function. We

observe that v (y) = vS (y) +O
(
∥y∥2

)
with

vS (y) := 2u

(
w + y1 + y2

2

)
We shall take this function V S as a “simplified” representation of v. We can
then form a more general function: v

(
y,mV

)
:=
(
1−mV

)
vS (y) +mV v (y). If

mV = 1, then the agent uses the rational value function. If mV = 0, then the
agent uses the proxy value function vS , which is in some sense simpler.

The following definition generalizes that thought and codifies the creation
of a “simplified” value function.

Definition F.2. (Simplifying function) Let f : Rn → R be a function
such that fxi (x)|x=0 ̸= 0 for all i, and φ : {1, ...p} → {1, ...n}. Call Ef :={
v ∈ C1 (Rp,R) such that v (0) = f (0)

}
. We define the simplification function

Sf,φ : Ef → Ef by
(Sf,φ (v)) (y) := f (b · y) (F.3)

where b is the uniquely determined matrix b ∈ Rn×p such bij = 0 unless i= φ (j)
and

v (y) = f (b · y) + o (∥y∥) (F.4)

Furthermore, bij =
vyj (y)|y=0

fxi
(x)|x=0

if i = φ (j) , bij (x) = 0 otherwise.

We prove the b is indeed unique.
Proof. We want v (y) = f (b · y) + o (∥y∥). This is equivalent to

vyj (y)|y=0 =
∑
i

fibij = fφ(j)bφ(i)j .

Inspecting the Taylor expansions gives the result. □
This defines an attention-augmented function

v
(
y,mV

)
:=
(
1−mV

)
vS (y) +mV v (y)
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where parameter mV captures the attention to the true value v.
Basically f (b · y) is like a non-linear Taylor expansion of v (y). For instance,

in our introductory example, f (x) = 2u
(
w+x
2

)
, y = (y1, y2), n = 1, p = 2,

φ (j) = 1, and b = (1, 1).
Here are two other variants of the same idea. Suppose that we have a

stochastic variable and a variant of the Black-Scholes model, with stochastic
volatility. Then, we may approximate the value function in by tweaking the
implied volatility: V (xt, S,K, r, t) = V BS (σ̄ + axt + o (xt) , S,K, r, t), where
V BS is the regular Black-Scholes formula, so that the simplified function is

V S (xt, S,K, r, t) = V BS (σ̄ + axt, S,K, r, t)

Suppose that the agent estimates a distribution, h (y), where y are
parameters of the distribution. The agent may wish to replace this distribution
by a distribution with a simpler functional form, say a Gaussian: then f is a
Gaussian distribution approximating the distribution h, perhaps by matching
h’s mean and variance.

F.6.2. Just paying attention to first order terms. Suppose that the problem
is:

max
a

u (a, x)

which gives a = ad + b · x + O
(
∥x∥2

)
, with b = −u−1

aa uax. Define ud (a) :=

u (a, 0), and ad = argmaxa u (a, 0). Suppose we have an agent that actually
does:

ã = ad + b · x
i.e. exactly discards the second order terms. How to we represent that agent?

First, we could define a “Taylor sparse max” , that given a problem u (a, x),
returns the linearized optimum ã, or a sparse version of it, ã = ad +

∑
i bimixi

Second, we can say that the agent uses a proxy utility function. We observe
that for (a, x) close to

(
ad, 0

)
, we have:

u (a, x) = ui (a, x) +O
(
x2
)

u1 (a, x) = ud (a− bx) + ux
(
ad, 0

)
x

u2 (a, x) = ud
(
ad, x

)
+

1

2
udaa

(
a− ad

)2
+
(
a− ad

)
uaxx

u3 (a, x) = ud (a− bx) + u
(
ad, x

)
− ud

(
ad
)

The above representations ui all “work” , i.e. deliver the linear expansion.

F.6.3. Linearizing a relation. Suppose that there’s a non-linearity, say it’s
r̂t = fr (x), e.g. fr (x) = 1

2x+ bx3, then the agent may use a linearized policy,
i.e.,

f (x,m) = f (0) +m1f
′ (0)x+m2

(
f (x)− f (0)− f ′ (0)x

)
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This is, the function is approximated by its constant, first order term (with
weight m1), and higher order terms (with weights m2). This way, one has a
“simpler” representation by linearization.

F.7. Notes on the design of the model

Here I record some notes about modeling choices of the model. This section
should only interest people thinking about the foundations of the approach
(hence, potential ways to change it), not its direct practical use.

F.7.1. Breaking the explosion of Thinking about thinking about thinking...
Why not model iterated expectations, such as the agent’s perception at time 0
of his perception at time 2 of his perception at time 5? The short answer is that
this leads to a combinatorial explosion of the complexity of the model. This
motivates the particular formulation of sparse dynamic programming, which
eschews such a combinatorial explosion.

I record this phenomenon in this subsection, using the simple 3−period
model of Section 4.1, extended here to T + 1 periods. There we obtain about
2T state variables for a T−period model.

Utility is
∑T
t=0 u (ct) and R = 1. The agent receives w0 at time 0, and x at

time t. So, wt = wt−1 − ct−1 + x1t=T for t ≥ 1. The rational problem is

max
T∑
t=0

u (ct) s.t.
T∑
t=0

ct = w0 + x

and the optimal consumption policy at time t is ct =
wt+x
T−t+1

V T (wT , x) = u (wT + x)

Next, at time T − 1, the rational value function is (RE stands for rational
expectations):

V T−1,RE
(
wT−1, x,M

RE
T−1

)
= u

(
wT−1 +m∗

T−1x

2

)
+ u

(
wT−1 +

(
2−m∗

T−1

)
x

2

)

for the valuemT−1 chosen at time T − 1,. However, the perceived value function
could be

V T−1,RE (wT−1, x,MT−1)

for some other perceived MT−1.
At time T − 2, the problem is

V T−2
(
wT−2, x,M

RE
)
= u (cT−2) + V T−1

(
wT−2 − c, x,MRE

T−1

)
,
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with

cT−2 = argmax
c

u (c) + V T−1
(
wT−2 − c,mx

T−2x,ET−2 [MT−1]
)

so that at each stage, the agent gets either “MRE” or “MS”. So, the relevant
perception vector is MT−2 =

(
mT−2,MT−1, E

s
T−2 [MT−1]

)
∈ R3 – the datum

of the perception of x, Mt−1 and the actual MT−1.
More generally, at time t, the value function is

Vt (wt, x,Mt) = u (c∗t ) + Vt+1 (wt − c∗t , x,Mt+1)

with
c∗t = argmax

ct

u (ct) + Vt+1 (wt − ct,m
x
t x,E

s
t [Mt+1])

So, the perception vector at time t is

Mt = (mx
t ,Mt+1, E

s
t [Mt+1])

i.e. it’s formed of the attention mx
t to x, tomorrow’s perception vector Mt+1,

and today’s perception about tomorrow’s vector, Est [Mt+1]. Ideally, the agent
should keep track of all those. Call Dt = dimMt. We have DT = 0,DT−1 = 1,
Dt = 1+ 2Dt+1. This yields that the dimension of the attention vector at time
t is

Dt = 2T−t − 1.

which is overwhelming.
Simplified value function. This is why the main sparse max cuts through

the difficulty to allow for just two value functions: V t,RE (wt, x), the rational
expectation value function, and V t,S (wt, x), the “simplified value function”.
Then, we form

V t
(
wt, x,m

V
t

)
= mV

t V
t,RE (wt, x) +

(
1−mV

t

)
V t,S (wt, x)

Lemma F.1. The value function V t (w,x,M) is independent of M , up to
O
(
x2
)
terms.

Hence, we define the germ V t
(
w,x,MS

)
to be a “simplified” version

of V t (w,x,M). In many cases, it’s the V t
(
w,x,MS

)
= V t (w,x,Mr),

assuming that the agent will be rational. Typical case, uc = Vw (w,x,M),
with c = w (A+Bx) + C + Dx + o (x). (This applies with time-varying
interest rate, income and equity premium). Then, we set V

(
w,x,MS

)
:=

u (w (A+Bx) +C +Dx) / (A+Bx). If chosen representation is c= weA+Bx+
o (x), then we set: V

(
w,x,MS

)
:= u

(
weA+Bx

)
/eA+Bx.

More abstractly, if it’s c = φ (A (w) +B (w)x) + o (x), for some function φ,
then we set Vw

(
w,x,MS

)
= uc (φ (A (w) +B (w)x)).
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F.8. Generalization: The k,K Procedure

Here I discuss how to do an expansion when Vxx is required but not known by
the agent. This greatly generalizes the Cass-Koopmans of Section 5.

Suppose that we want to solve

V (X0) = max
(at)t≥0

∑
t≥0

βtu (Xt, at) s.t. Xt+1 = F (Xt, at) (F.5)

but do not know VXX (X0), which is required to find aX0 (recall that the first
order condition is ua + βVXFa, so calculating aX0 involves VXX). What to do?

I posit the following description of the agent’s world view and behavior.
He considers xt “his” variable, and Xt the value created by the environment,
which is perceived to be exogenous to him: this is the same way that in much
of macro, kt is his wealth, and Kt is the aggregate capital stock. He has a
mental model of the law of motion of Xt on the equilibrium path, e.g. as in
Xt+1 −Xt = B (Xt −X∗) for some matrix B, and X∗ is the steady state value
of Xt. He solves in his mind the “micro” problem:

V (x0,X0) = max
(at)t≥0

∑
t

βtū (xt,Xt, at) s.t. xt = F̄ x (xt,Xt, at) (F.6)

with Xt exogenous to his actions and I define the modified utility and
production function, in a manner that separates the micro variable x and the
macro variable X :

ū (x,X, a) := u (X,a) + uX (X,a) (x−X) ,

F
x
(x,X, a) := F (X,a) + FX (X,a) (x−X)

This way, they capture the marginal contribution of x.91,92.
Next, I assume that the agent knows V,Vx, Vxx evaluated at (x,X) =

(X∗,X∗) – i.e., the agent has solved the “microeconomic” problem of
optimizing when the macroeconomic environment is at the steady state, i.e.
Xt = X∗ at all dates, but his microeconomic variable xt is off equilibrium.93

91. One could also imagine using A, the other agent’s action, and setting F (x,X, a,A) :=
F (X,A) + FX (X,A) (x−X) + Fa (X,A) (a−A), or similar variants. What’s important is
that values and first order derivatives are preserved around (x, a) = (X,A): more precisely,
function F (x,X, a,A) must satisfy: F (x+ ε, x, a+ η, a) = F (x+ ε, a+ η) + O

(
ε2 + η2

)
,

and similarly u (x,X, a,A) must satisfy: u (x+ ε, x, a+ η, a) = u (x+ ε, a+ η)+O
(
ε2 + η2

)
.

92. For instance, in the Cass-Koopmans problem, (x,X, a) := (k,K, c) , F (K, c) = f (K)−
c, and

F
k
(k,K, c) = f (K)− c+ f ′ (K) (k −K) = f ′ (K)k +

[
f (K)−Kf ′ (K)

]
− c

so that f ′ (K)k is the return on capital, and [f (K)−Kf ′ (K)] is labor income.

93. This is actually easy to derive in a number of canonical problems: For instance, in
RCK this is saying that the agent knows the “micro” problem of the life-cycle with constant
interest rates. This is also true in a canonical real investment problem derived below.
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This gives the value ax (x,X∗). This way, we can calculate Vx,X using the
procedure in Section A.1 (using the change in notations (w,x) := (x,X)).

Hence the action is â = axx̂t + aXX̂t and on the equilibrium path x̂t = X̂t.
To calculate aX we proceed as in section A.1.94 Section C.4 applies this to an
optimal real investment problem.

F.9. Tools to expand a simple model: Continuous time

Calculations are typically cleaner in continuous time, so we develop the
continuous-time version of the machinery. We take for now problems without
stochastic terms (those should be added later). The following gives a
continuous-time version of Section A.1.

The laws of motion are

ẇt = Fw (w,x, a)

ẋt = F x (w,x)

and the Bellman equation is

ρV (w,x) = u (w,x, a) + Vw (w,x)Fw (w,x, a) + Vx (w,x)F
x (w,x, a)

In the more complex case ẋt = Fx (w,x, a), we need to solve a matrix Ricatti
equation – but not here.

Call, for some function f , Dwf = ∂wf + aw∂af the “total impact” of a
change in w. Then differentiate the Bellman equation with respect to x,

ρVx = ux + VwF
w
x + VxF

x
x + VxxF

x (F.7)

Now, we differentiate with respect to w and evaluate at x = 0:

ρVwx = Dw (ux + VwF
w
x ) + VwxF

x
x + VxF

x
wx

so
Vx = (ρ− F xx )

−1 [ux + VwF
w
x ] (F.8)

Vwx = (ρ− F xx )
−1 [Dw (ux + VwF

w
x ) + VxF

x
wx] (F.9)

94. The FOC is Ψ (x,X, a) = 0 with

Ψ(x,X, a) := ūa (x,X, a) + βVx (x,X)F
x
a (x,X, a)

This gives the marginal impact of X on the action aX = −Ψ−1
a ΨX , with

Ψa = ūaa + βVxF
x
aa = uaa + Faa

ΨX = ūaX + βVxXF
x
a + βVxF

x
aX = ūaX + ρVxXF

x
a.

where in the last two equations, the last part of the right-hand side is evaluated at x = X.
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As a satisfies Ψ = 0 with

Ψ(a,w, x) = ua + VwF
w
a

where we have used here F xa = 0. Hence, the impact of x on the optimal action
is

ax = −Ψ−1
a Ψx

Ψa = uaa + VwF
w
aa

Ψx = uax + VwF
w
ax + VwxF

w
a

The terms uax + VwF
w
ax are the “instantaneous impact” of a change x. The

term VwxF
w
a depends on the present value of future x, given that Vwx depends

on its present value (as shown by the term (ρ− Fxx )
−1).

F.9.1. Losses from suboptimal policies. Calculation of Vxx. We now turn to
the more difficult case of Vxx. Using Dxf = ∂xf + ax∂af the “total impact”
of a change in x, we have:

ρVx = Dxu+ VwDxF
w + VxF

x
x + VxxF

x

= ax (ua + VwF
w
a ) + ux + VwF

w
x + VxF

x
x + VxxF

x

Next, differentiating at x = 0,

ρVxx = axDx (ua + VwF
w
a ) +Dx [ux + VwF

w
x + VxF

x
x ] + VxxF

x
x

= ax [uax + uaaax + VwxF
w
a + VwF

w
ax + VwF

w
aaax]

+ uxx + uxaax + VxwF
w
x + VwF

w
xx + 2VxxF

x
x + VxF

x
xx

hence

(ρ− 2Fxx )Vxx = ax [uax + uaaax + VwxF
w
a + VwF

w
ax + VwF

w
aaax]

+ uxx + uxaax + VxwF
w
x + VwDxF

w
x + VxF

x
xx

This is a bit of a complicated expression. Let us note it can be written

(ρ− 2F xx ) (V
s
xx − V rxx) = axA+ axBax +C

with B = uaa + VwF
w
aa.

We use the following elementary Lemma:

Lemma F.2. Let f (a) = Aa+ a′Ba+ C, for B symmetric negative definite.
Let a∗ = argmaxa f (a), so a

∗ = −1
2B

−1A. Then, for any a,

f (a)− f (a∗) = (a− a∗)B (a− a∗) .
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Let’s compare Vxx under the sparse vs rational model: the difference is just
in the Dr

x vs Ds
x term. Indeed,

Ds
x −Dr

x = (asx − arx)∂a

so, using the previous Lemma,

V sxx − V rxx = (ρ− 2F xx )
−1 (asx − arx) (uaa + VwF

w
aa) (a

s
x − arx) (F.10)

We gather the results.

Proposition F.1. (What are the losses from a suboptimal policy?) Consider
the value function V r under the optimal policy and V s under a potentially
suboptimal policy, and V δ (w,x) = V s (w,x) − V r (w,x). Then, evaluating at
x = 0, we have

V δ = 0, V δw = 0, V δww = 0, V δx = 0, V δwx = 0 (F.11)

and
V δxx = (ρ− 2F xx )

−1 (asx − arx) (uaa + VwF
w
aa) (a

s
x − arx) (F.12)

Equation (F.12) has an intuitive interpretation. At a point in time, as
a function of a, present and continuation utility is v (a) = u (a,wt)dt +
(1− ρdt)V (wt + Fw (wt, at)dt). Hence (omitting the dt to remove the
notational clutter), v′ (a) = ua + VwF

w
a and v′′(a) = uaa + VwF

w
aa. Hence,

reacting imperfectly to a small xt (with a
δ
t = ast − art ) creates an instantaneous

utility loss of Λt =−1
2xta

δ
xvaaa

δ
xxt. The full utility loss is the present discounted

value of that, i.e.

2Λ =

∫ ∞

0

e−ρt2Λtdt = −
∫ ∞

0

e−ρtxta
δ
xvaaa

δ
xxt with xt = e−φtx0

= −
∫ ∞

0

e−ρte−2φtx0a
δ
xvaaa

δ
xx0 =

1

ρ+ 2φ
x0a

δ
xvaaa

δ
xx0

= −x0 (ρ− 2F xx )
−1 aδx (uaa + VwF

w
aa)a

δ
xx0 as F xx = −φ

= −x0V δxxx0.

It is enough to study the “static” utility losses to derive the dynamic utility
losses. This proposition F.1 is a dynamic application of the Proposition 26 in
Gabaix (2014) (online appendix) regarding losses from a suboptimal policy. For
convenience, we restate this proposition here. With static problem maxu (a, x)
s.t. b (a, x) ≥ 0 and a Lagrangian L (a, x) = u (a, x) + λb (a, x), the losses from
a suboptimal policy aδ = a − ar (where ar is the optimal policy) are to the
leading order: 1

2a
δ′Laaa

δ.
Here the Lagrangian is L =

∫
e−ρt [u (at, zt) + λt (−żt + F z (at, zt))]dt,

where zt = (wt, xt) is the state vector. Hence, the loss Λ is expressed by (to the
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leading order)

2Λ = a′Laaa =

∫
aδtLatata

δ
t =

∫
e−ρtaδt [uatat + λtFatat ]a

δ
tdt

Suppose that we can linearize, aδt = Axt, we have

2Λ =

∫
e−ρtx′tA

′ [uatat + λtFatat ]Axtdt

Consider the ergodic limit, where xt has a distribution independent of t. Recall
that

Ex
′

tBxt = E
∑
i,j

xiBijxj =
∑
i,j

BijE [xixj ] = Trace
(
BE

[
xx′
])

Hence,

2Λ =
1

ρ
Trace

(
BE

[
xx′
])

B = A′ [uatat + λtFatat ]A = A′LatatA

F.10. Some ancillary results

Call G (Z,m) = Z (m) a transformation function for the state vector Z. E.g. in
the basic life-cycle example, G (w, ŷ, r̂,m) = (w,myŷ,mr r̂). [Note: below, the
notation bar isn’t ideal, as bar refers to means; perhaps tilde would be better]
When can we express the perceived model as a rational model, with different
utility and transition functions? The following Lemma gives the answer.

Lemma F.3. Let G (Z,m) be a function and define Z̄t = G (Zt,m). Suppose
that we can write

u (a,Z,m) = ū (z,G (Z,m))

G (F (a,Z,m) ,m) = F̄ (a,G (Z,m))

for two functions ū, F̄ . Then the model evaluated at m is the same as a rational
model with state variables Z̄t, utility ū, transition function F̄ . We also have
V (Z) = V̄ (G (Z,m))

Proof. We have

Z̄t+1 = G (Zt+1,m) = G (F (a,Zt,m) ,m) = F̄ (a,G (Zt,m)) = F̄
(
a, Z̄t

)
The value function V̄ satisfies, with Z s.t. Z̄ = G (Z,m)

V̄
(
Z̄
)
= max

a
ū
(
a, Z̄

)
+ βV̄

(
F̄
(
a, Z̄

))
= maxu (a,Z,m) + βV̄ (G (F (a,Z,m) ,m))
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Define V (Z) := V̄ (G (Z,m)). Then,

V (Z) = V̄
(
Z̄
)
= max

a
u (a,Z,m) + βV (F (a,Z,m) ,m)

So indeed V satisfies the Bellman equation. □
Also, we have Fw (Z,m) = ((R+ r̄) (w − ȳ) , ρ)

ŷt+1 = mF ρyŷt + εyt+1

gives
myŷt+1 = my′ρy

(
myŷt +myε

y
t+1

)
i.e.

F̄ ȳ
(
a, Z̄

)
= my′ρy

(
ȳt +myε

y
t+1

)
I conclude with a remark which will be useful later, drawing again on Gabaix

(2014). As κ has the units of utils, one can make it more endogenous with the
primitive, unitless parameter κ, by setting:

κ = κ2var
(
u
(
ad (x) , x,md

))1/2
(F.13)

Appendix G: Other Results

G.1. Second Order Losses From Inattention

G.1.1. Statement. The intuition is that as x is small, and the action is close to

the optimum, we get only second order losses O
(
∥x∥2

)
from misoptimization.

The idea is simple, but it turns out that it requires some extra care, in particular
to ensure that differentiability, and to define formally the objects of interest. I
present that here. This subsection does not contain surprising results, so should
be skipped at the first reading.

Recall that w is a set of variables thought about in the default model
(m = 0), and x is a set of variable not thought about in the default model. We
also set z = (w,x). Formally, we assume that ut (a,w, x,m) and F t (a,w, x,m)
are independent of m if x = 0. We also assume that Fx,t (a,w, x,m) = 0 if
x = 0, i.e. so that small x’s at t map in small x’s at t+ 1.

We suppose that the attention functionA is C∞ (this can easily be ensured).
Recapitulations of the notations. With 1 period problems, the action is

a (z,m) := argmax
a

u (a, z,m) (G.1)

With exogenous attention m, the value function is the utility evaluated at the
true model of the world:

V (z,m,µ) := u (a (z,m) , z, µ) (G.2)
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where µ denotes the true state of the world (typically µ = (1, ..., 1)). With
endogenous attention, we have

m∗
i

(
w,σ2x, µ

)
:= argmax

mi∈[0,µi]

E

[
1

2
Vmimi (w,x,m)|m=0 (mi − µi)

2 +G (mi)

]
(G.3)

and the value function with endogenous attention is

V (z, µ) := V
(
z,m∗ (w,σ2x, µ) , µ) (G.4)

We sometimes drop the explicit dependence on µ.
With T period problems, the notions are the same, but recursive. We use

m = (mt)t=0...T . The action at time t is:

at (z,m) := argmax
a

ut (a, z,mt) + βV t+1
(
F t (a, z,mt) ,mt+1

)
(G.5)

which defines the value function, evaluated at the true model of the world.
With exogenous attention:

V t (z,m,µ) := ut
(
at (z,m) , z, µt

)
+ βV t+1

(
F t (a, z,mt) , µt+1

)
(G.6)

When attention is endogenous, we have

mt,∗
i

(
w,σ2x, µ

)
:=

argmax
mt,i∈[0,µt,i]

E

[
1

2
V tmimi

(w,x,m)|mt=0 (mt,i − µt,i)
2 +G (mt,i)

]
and

V t (z, µ) := V t
(
z,mt,∗ (w,σ2x, µ) , µ) . (G.7)

We call V r (w,x) := V t (w,x, (µt, µt)t=0...T ) the rational value function.
We prove two propositions: the first one is elementary to state, the other

one a bit more cumbersome.

Proposition G.1. (Second order losses form inattention) Suppose that ut

and F t are C∞. Recall the decomposition z = (w,x). Then, with exogenous m,
at (z, (mτ , µτ )τ=t...T ) and V

t (z, (mτ , µτ )τ=t...T ) are C
∞ and,

V t (w,x, (mτ , µτ )τ=t...T )− V t,r (w,x)

= O
(
∥x∥2

)
O

(
T∑
τ=t

∥mτ − µτ∥2
)

(G.8)

With endogenous m, at (z) and V t (z) are C∞, and

V t (w,x)− V t,r (w,x) = O
(
∥x∥2

)
(G.9)
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Proposition G.2. (Second order losses form inattention, with finite
differentiability) With exogenous m, assume that there is an ℓ ≥ 3 such
that ut is Ct+ℓ, F t (the transition function from t to t + 1) is Ct+ℓ. Then
at (z, (mτ , µτ )τ=t...T ) and V

t (z, (mτ , µτ )τ=t...T ) are C
t+ℓ−1 for all t = 0, ..., T ,

and (G.8) holds.
With endogenous m, assume that there is an ℓ ≥ 5 such that ut (t ≤ T ), F t

(the transition from t and t+ 1) are C3t+ℓ for some ℓ. Then at (z) and V t (z)
are C3t+ℓ−3 and (G.9) holds.

G.1.2. Proof of Propositions G.1 and G.2. The proof starts with the most
elementary cases (1 period), then amplifies it to 2 and more periods.

1 period, with exogenous m. We suppose that u (a,w, x,m) is Ck, with
k ≥ 4, and that the rational problem is

max
a

u (a,w, x,m)

We shall see that V (w,x,m) is Ck−1 and V (w,x) is Ck−3.
First, let us suppress the dependence on w, and consider maxa u (a, x,m).
By the implicit function theorem, a (x,m) := argmaxa u (a, x,m) is Ck−1 (it

is the solution of ua (a, x,m) = 0). This makes V (x,m,µ) := u (a (x,m) , x, µ)
be Ck−1.

As u (a, 0,m) is independent of m, a (0,m) is independent of m, so we can
write: a (x,m) = a (0, 0)+ b (m)x+O

(
x2
)
. As ax (x,m) is Ck−2 with k− 2≥ 1

there is a constant L such for that all m,µ in the compact [0, 1]n, we have
∥b (m)− b (µ)∥ ≤ L ∥m− µ∥. We consider the loss from imperfect perception:

R (x,m,µ) := V (x,m,µ)− V (x,µ, µ)

= u (a (x,m) , x, µ)− u (a (x,µ) , x, µ)

= (a (x,m)− a (x,µ))′ uaa (a (x,m)− a (x,µ))

+ o (a (x,m)− a (x,µ))2

= (b (m)− b (µ))′ xuaax (b (m)− b (µ))′ + o
(
∥x∥2

)
So we have

V (x,m,µ)− V (x,µ, µ) = R (x,m,µ) = O
(
∥x∥2

)
O
(
∥m− µ∥2

)
(G.10)

Reinserting the dependence in w, the same reasoning show that with

R (w,x,m,µ) := V (w,x,m,µ)− V (w,x, µ, µ) (G.11)

we have
R (w,x,m,µ) = O

(
∥x∥2

)
O
(
∥m− µ∥2

)
. (G.12)
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1 period, with endogenous m. We supposed that u (a,w, x,m) was Ck,
which led V (w,x,m) to be Ck−1. Now, we endogenize m. We have

m∗
i

(
w,σ2x

)
= argmax

m
E

[
−1

2
Vmimi (w,x,m)|m=0 (mi − µi)

2 −G (mi)

]
So, m∗ (w) is a Ck−3 function of w. So V (w,x) := V (w,x,m∗ (w)) is a Ck−3

function.
Hence, starting from a Ck function u (a,w, x,m), we obtain a Ck−3 value

function V (w,x). We “lost” 3 orders of differentiability.95

2 period problems. There are 2 periods, 0 and 1. We call

V 1 (w,x,m,µ) := u1 (a (w,x,m) , w, x, µ)

V 1 (w,x, µ) := u1
(
a
(
w,x,m∗ (w,σ2x)) , w, x, µ)

the value function at the beginning of period 1, with respectively exogenous
and endogenous attention.

We assume that u1 is Ck.
2 periods, with exogenous m1. The problem is now

max
a

v0 (a,w, x,m0,m1, µ1)

with

v0 (a, x,m0,m1, µ1) := u0 (a, x,m0) + V 1 (F (a,w, x,m0) ,m1, µ1)

where the last function V 1 (w,x,m1), which is Ck−1, and F = (Fw, Fx) gives
the transition functions for both w and x. We assume that F,V 1, u0 are Ck−1.
So, function v0 is Ck−1.

The reasoning in the 1 period case applies, and a0 (w,x,m0,m1, µ1) is C
k−2,

so
V 0 (x,m0, µ0,m1, µ1) := v0

(
a0 (x,m0,m1, µ1) , x, µ0,m1, µ1

)
is Ck−2. If k ≥ 3, we have

V 0 (x,m0, µ0,m1, µ1)− V 0 (x,µ0, µ0,m1, µ1) = O
(
∥x∥2

)
O
(
∥m0 − µ0∥2

)
by the time-0 result.

Also, we have

V 0 (x,µ0, µ0,m1, µ1)− V 0 (x,µ0, µ0, µ1, µ1) = O
(
∥x∥2

)
O
(
∥m1 − µ1∥2

)
so summing the two differences:

V 0 (x,m0, µ0,m1, µ1)− V 0 (x,µ0, µ0, µ1, µ1)

= O
(
∥x∥2

)
O
(
∥m0 − µ0∥2 + ∥m1 − µ1∥2

) (G.13)

95. If there was no w, then we’d just have m∗ a value independent of x, and function
V (w,x) would be Ck−1.
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2 periods, with endogenous m0. The problem is now

max
a

v0 (a,w, x,m0)

with
v0 (a,w, x,m0) := u0 (a,w, x,m0) + V 1 (F (a,w, x,m0))

where the last function is V 1 (w,x), which is Ck−3, and F = (Fw, Fx) gives
the transition functions for both w and x. We assume that F,V 1, u0 are Ck−3.
So, function v0 (a, x,m0) is C

k−3.
By the reasoning before with 1 period, a (w,x,m0) is C

k−4 and

V 0 (a,w, x,m0) = v0 (a (w,x,m0) , w, x,m0)

is Ck−4. Next, to endogenize m0, again by the reasoning done with 1 period,
m0

(
w,σ2x

)
is Ck−6, so that

V 0 (a,w, x) = V 0
(
a,w, x,m∗

0

(
w,σ2x

))
(G.14)

is Ck−6.
We next move to more than 2 periods. The reasoning is very similar to the

2 period case.
T + 1 periods, exogenous m. We assumed that ut is Ct+ℓ, F t (from t to

t+ 1) is Ct+ℓ for some ℓ ≥ 3. That implies that aT is CT+ℓ−1, V T is CT+ℓ−1,
and by backward induction on t = T...0, that at and V t are Ct+ℓ−1 for all
t = 0, ..., T . So, if ℓ ≥ 3, then V 0 is C2, and

V 0 (w,x, (mt, µt)t=0...T )− V 0 (w,x, (µt,mt)t=0...T )

= O
(
∥x∥2

)
O

(
T∑
t=0

∥mt − µt∥2
)

(G.15)

holds as well.
T + 1 periods, endogenous m. We assumed that ut (t ≤ T ), F t (the

transition from t and t+ 1) is C3t+ℓ for some ℓ. Then, by backwards induction
on t = T...0, V t is C3t+ℓ−3. Indeed, by the reasoning done in the 2 period case,
given that ut is Ck, we have that V t is Ck−3. As F t−1, ut−1 are assumed to be
Ck−3, we have that V t−1 is Ck−6.

This ends the proof of Propositions G.1 and G.2. □

G.1.3. Extensions.
Noise. In the problems above, there is no noise. Adding noise is

straightforward, but adds yet another layer of notations. Formally, we assume
bounded noise: ∥∥εxt+1

∥∥ ≤ Kσx almost surely
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for some K, and where σx = E
[
∥x∥2

]1/2
. Then, the statements in Propositions

G.1 and G.2 are replaced by

V t (w,x, (mτ , µτ )τ=t...T )− V t,r (w,x)

= O
(
∥x∥2 + σ2x

)
O

(
T∑
τ=t

∥mτ − µτ∥2
)

(G.16)

and
V t (w,x)− V t,r (w,x) = O

(
∥x∥2 + σ2x

)
(G.17)

This is, both the actual value and the variance of x matter.
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