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Abstract

This paper proposes a tractable way to model boundedly rational dynamic
programming. The agent uses an endogenously simplified, or “sparse,” model
of the world and the consequences of his actions and acts according to a
behavioral Bellman equation. The framework yields a behavioral version of some
of the canonical models in macroeconomics and finance. In the life-cycle model,
the agent initially does not pay much attention to retirement and undersaves;
late in life, he progressively saves more, generating realistic dynamics. In the
consumption-savings model, the consumer decides to pay little or no attention to
the interest rate and more attention to his income. Ricardian equivalence and the
Lucas critique partially fail because the consumer may not pay full attention to
taxes and policy changes. In a Merton-style dynamic portfolio choice problem, the
agent endogenously pays limited or no attention to the varying equity premium
and hedging demand terms. Finally, in the neoclassical growth model, agents
act on a simplified model of the macroeconomy; in equilibrium, fluctuations are
larger and more persistent.
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1. Introduction

In economics, we build a simplified model of the world — we select “important”
dimensions of the world, and know that the model is not literally the true
world. However, we assume that agents in our model are not like us: that they
comprehend the full complexity of their world. This asymmetry is of course a
bit odd. In contrast, in the present paper, agents behave like us economists:
they build a simplified model of the (model) world they live in, and use it to
act.

This paper shows a tractable way to model such behavioral agents, in
a fairly general class of dynamic problems. Those agents tend to be more
realistic than rational agents, and their bounded rationality has important
policy consequences.

I show how the framework applies to some of the canonical models in macro-
finance, in partial and general equilibrium: consumption-saving problems,
the baseline neoclassical growth model (the Cass-Koopmans model), general
linear-quadratic problems, and dynamic investment in risky assets (Merton’s
problem). The upshot is that we have a portable, fairly general structure that
applies to some core machines of macroeconomics and allows to see where
bounded rationality (BR) is important in those situations.

One of the persistent criticisms of traditional economics is the unrealism
of the infinitely forward-looking agent who computes the whole equilibrium
in her own head. This lack of realism has long been suspected to be the
cause of some counterfactual predictions that we will review below. Behavioral
economics aims to provide an alternative. The greatest successes of behavioral
economics in the literature so far change the agents’ tastes (e.g. prospect theory
or hyperbolic discounting) or their beliefs (e.g. overconfidence), while keeping
the assumption of rationality. When tackling the rationality assumption, there
is much less agreement, and the modeling of bounded rationally is much more
piecemeal, different from one situation to the next.

This paper proposes a compromise that keeps much of the generality
of the rational approach and injects some of the wisdom of the behavioral
approach, mostly inattention and simplification. It does so by proposing a way
to insert some bounded rationality into a large class of problems, the “recursive”
contexts, i.e. with dynamic programming around a dynamic steady state.

To illustrate these ideas, let us consider a canonical consumption-savings
problem. The agent maximizes utility from consumption, subject to a budget
constraint, with a stochastic interest rate and stochastic income. In the rational
model, the agent solves a complex DP problem with three state variables
(wealth, income and the interest rate). This is a complex problem that requires
a computer to solve.

How will a boundedly rational agent behave? I assume that the agent starts
with a much simpler model, where the interest rate and income are constant
— this is the agent’s “default” model. Only one state variable remains, his



wealth. He knows what to do then (consume a certain fraction of his wealth,
and permanent income), but what will he do in a more complex environment,
with stochastic interest rate and stochastic income? In the sparse version,
he considers parsimonious enrichments to the value function, as in a Taylor
expansion. He asks, for each component, whether it will matter enough for his
decision. If a given feature (say, the interest rate) is small enough compared to
some threshold (taken to be a fraction of standard deviation of consumption),
then he drops the feature or partially attenuates it. The result is a consumption
policy that pays partial attention to income and possibly no attention at all to
the interest rate. This seems realistic.!

The result is a sparse version of the traditional permanent-income model.
We see that it is often simpler than the traditional model. Indeed, the agent
typically ends up using a rule which is simpler (e.g., not paying attention to
the interest rate).

I also present a behavioral version of a large class of models and work out,
in detail, a BR version of most canonical of them, the neoclassical growth
model of Cass-Koopmans. In this version, agents pay of lot of attention to
their own variables, less to aggregate variables. One upshot is that with BR,
macroeconomic fluctuations are larger and more persistent. I illustrate this
proposition, and qualify it, as it appears to hold for most reasonable values of
the parameters, but can be overturned for extreme values. To understand the
simple idea, imagine first an economy with only one state variable, capital. It
starts with a steady state amount of capital. Then, there is a positive shock
to the endowment of capital. In a rational economy, agents would consume
a certain fraction of it, say 6%, every period. That will lead the capital
stock to revert quickly to its mean. However, in a an economy with sparse
agents, investors will not pay full attention to the additional capital. They will
consume less of it than a rational agent would. Hence, capital will be depleted
more slowly and will mean-revert more slowly. The shock has more persistent
effects. Given that shocks are more persistent, past shocks accumulate more.
Mechanically, this leads to larger average deviations of capital from its trend. As
a consequence, the interest rate and GDP also have larger, and more persistent,
deviations from trend.

The model allows us to express those ideas in simple, quantitative ways. It
also allows us to explore them in rich environments.

Here are some conclusions for individual decision-making in macroeconomic
contexts:?

1. In the language of Kahneman (2011)(chapter 8), the agent “substitutes” a complex
problem by a simpler one — decision-making in a simplified world.

2. The rest of the paper will give references about those stylized facts.



10.

11.

. Agents react more to near, rather than future, shocks. For instance, the

(finitely lived) consumer has a higher marginal propensity to consume for
current and near payments, rather than distant payments.

The Euler equation fails (under the objective model of the world). However,
it holds under the agent’s subjective, sparse model.

Agents start saving “too late” for retirement, and expenditure falls in the
years before retirement (as the agent scrambles to save more for retirement).
Agents accumulate a too small buffer of savings, as they are (partially)
inattentive to the risk of income fluctuations.

Agents do not react much or at all to the interest rate, at least when small
purchases are concerned. However, they tolerate a non-smooth consumption
profiles. Note that in the rational model, the first fact would require a low
IES (intertemporal elasticity of substitution), while the second fact would
require a high IES.

The agent doesn’t need to the whole actual macro equilibrium in his head
before acting; he just uses a simplified model of the world, leading to simple
policies, e.g. partially forward-looking consumption functions.

When choosing their portfolio, agents pay less attention to the hedging
demand motive.

Here are some conclusions for aggregate macroeconomics:
Fiscal policy is more powerful because Ricardian equivalence partly fails. If
the government gives a dollar today and takes it back later (plus interest),
consumption today increases — though it should not react in the simplest
rational model.?
The Lucas critique has less, or zero, bite. When policy changes are small
and temporary, sparse agents’ policy functions do not change, or change
little.
GDP fluctuations are amplified and more persistent in the most basic
DSGE model (compared to the rational benchmark).
This perspective revives the “old Keynesian” agent. The agent here looks
like a hybrid between a neoclassical agent and an old Keynesian agent?, in
the sense that he’s myopic and adopts simple decision rules. However, unlike
the truly old Keynesian agent, those decision rules are microfounded—as
policies that are optimal under a simplified model of the world. Unlike the
neoclassical and New Keynesian agent, this sparse agent is partially myopic
and does not react to all things.

3.

In Gabaix (2020), I also find that monetary policy, especially forward guidance, is less

powerful. I do so in writing a behavioral version of the New Keynesian model, applying the
techniques of the present paper.

4.

The canonical New Keynesian agent is basically the neoclassical agent, in a world of

sticky prices. He’s fully rational.



Those substantive conclusions are, I hope, of some interest. Still, the main
contribution of this paper is its methodology. It develops a procedure that
allows an economist to continuously transform a rational agent into a boundedly
rational one. This leads to further substantive conclusions about the impact of
bounded rationality on economic life, such as the ones above.

This paper is indebted to a series of ideas in behavioral modeling in micro
and macro contexts. This literature will be discussed in Section 8, after the
model is clear to the reader. The rest of the paper is as follows. Section 2
gives an elementary, but substantive, example — a behavioral version the life
cycle model. Section 3 presents the general procedure. Then, we apply it to
a variety of canonical examples. Section 4 presents basic partial-equilibrium
building blocks with behavioral agents: the basic consumption-savings problem,
including variants such as the failure of Ricardian equivalence. Section 5 works
out the baseline neoclassical growth model. Section 6 develops other models.
Section 7 proposes discusses variants, and frequently asked questions. Section
8 contains the literature review. Section 9 concludes. The appendix and online
appendix contain further proofs and extensions.

Notations. 1 will use superscript r for the traditional or rational model,
d for the default model, s for the sparse or behavioral model. I will call

a®b:=(ab;),_; , the component-wise product.

2. Behavioral Life-Cycle Model: A Gentle Introduction

As a simple introduction, I give a behavioral version of the most basic life-
cycle model (Modigliani and Brumberg, 1954).> The agent works for the first
L periods of his life, then retires, and dies at period T'. His utility is

T—1
Z u(ce).
t=0

The interest rate and the subjective discount rate are both 0. He receives income
y¢+ =y when working (¢ € [0, L)), and y; = § + y when retired (¢t € [L,T")). Here
Y < 0 captures the income loss during retirement. Income corresponds to the
dotted line in Figure 1. Financial wealth w; evolves as w41 = wy + y¢ — ¢4,
and the terminal condition is wp = 0.

Let us first analyze a rational agent. At time 0, his resources are )y =
wo + Zf:_ol yr = wo + Ty — x, where z := — (T — L)y > 0 is the total income
loss due to retirement. His consumption problem is Max(c,), Z;f;ol u(cy)

s.t. Z;T:_Ol ¢t = Qo, with v/ > 0,4” < 0. So he consumes a constant amount at

5. It is a bit unusual to start a framework with an example, but this example will useful
to illustrate modeling choices.



all periods: ¢; = % = “0=% + 7. In particular:

wog — T _
Co = T + Y.
The same reasoning holds starting at a date t < L. Then, there are only

T —t periods remaining, so the policy becomes:

wes — &
=TTy

+9 (1)

That policy guarantees a constant consumption ¢; = cg over his lifetime.

There is a dynamic programming formulation that will be useful in the
behavioral model. At time ¢, the remaining lifetime utility is (7' —t) u (¢;). So,
the value function is (for ¢t < L)

wy — &

VI (wiyat) = (T = t)u | +7 (2)
Tt

where superscript r denotes the rational agent. This rational agent (1) satisfies

the Bellman equation:® ¢; = argmax, v (¢, wy, z,t), where we define:

v(c,wg,z,t) =u(c) + V' (wy + 3§ —c,x, t+ 1) (3)

Let us now consider the behavioral agent. I want to capture the idea that he
does not fully perceive income loss associated with retirement. The systematic
procedure will be justified and explained in the body of this paper, but here I
just show how it applies in this case. The behavioral agent will consumes:

¢ = argmax v (¢, wy, myx, t) (4)

Cc
where m; € [0,1] denotes an (endogenous) attention to future retirement. If
m; = 1, the agent is fully rational. However, if m; = 0, the agent doesn’t see
retirement at all: he behaves as if there was no income loss from retirement in
the future. The general model allows for partial attention m;. Given my, the

solution of (4) is:”
Wt — Nk T _
- _ e 5
Ct T 1 +y (5)
In the full model developed soon, attention m; will come from the costs
and benefits of attention, and will be expressed as follows. Calling ¢; (m;) =

6. Here I use the basic sparse max of Definition 2, where the agent uses a simplified model
of his own future actions. If the agent has a “sophisticated” understanding of this future
actions (as in the iterated procedure developed in Definition 4, the decision would be the

same to the first order, i.e. up to O (m2) terms (see Section 3.5).
7. Proof: the first order condition of (4) is: w/ (ct) = V) = (M%%W +§), ie.

_ wity—cr—mux o3 _ WMy 7
ct = — +y,le ¢t = 7~ +U.
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FicURE 1. Consumption and wealth of behavioral life-cycle agents. Notes. Income is
plotted in the dotted line — it is also the very behavioral agent’s consumption. The agent
starts life at time 0, receives income § = 100 while working (until period 40), and receives
¥+ ¢ = 80 in retirement (period 40 to 60). The solid line represents a fully rational
agent (i.e. K = 0), the dashed line a moderately behavioral agent (0 < & < K, for a finite
E* =|9|), and the dotted line a very behavioral agent (& > £*), who just consumes current
income. The moderately behavioral agent does not save for retirement at first, but starts
saving before retirement. The right panel plots the wealth accumulated by the agent.

T+ g, we define ¢t = ¢ (0) = 725 + 7, the “default” policy that

corresponds to no attention to retirement; ¢ (0) = 77 the marginal impact

of attention; and v}, = ve. (¢f,wy,0,t) = (1 + ﬁ) u” (¢f) the curvature of
the objective function. The general procedure will give the attention at time ¢
to the income loss during retirement:

ot 2
me :A Vet (0) (6)

Rt

for an attention function 4 with values in [0,1] and a cost of cognition ry
discussed soon.® A little more calculation gives the value of attention as follows.

ProprosITION 1. (Lifecycle model, behavioral version) In the behavioral life-
cycle model, the optimal consumption policy is, before retirement (t < L),

Wt — M
R

+y

—u”(ctd)IQ

with an attention my = ./4 m

, and after retirement (t > L),

¢t = g5 +y+ 9. Hence, when k¢ > 0, consumption weakly falls over time, and
discretely falls at retirement. After retirement, consumption is constant.

8. As we will see below, the numerator inside (6) represents the utility gains from
optimizing (up to a factor of two), which are related to the curvature of the value function,
vt,, and how much the agent’s consumption changes when she is more attentive, c} (0).



I next present a numerical illustration. I use the attention function
A(v) =max (11— \%I’ 0) from (15). I assume the following scaling of the cost:

Ky = R? !u” (cf)’ with ¢f = 7t + §. This is largely for convenience, and it

corresponds to a constant cost when utility is linear-quadratic. This simplifies
the expressions without changing the economics much. Then (using continuous
time to make expressions neat), the agent thinks about retirement as soon as
T = K, l.e. at a time s = max (O,min (L,T— %)) Solving for wealth, the
value of consumption is (when s € (0, L); Section E in the appendix describes
the whole solution, including in discrete time):”

Aty fort < s
= %—f—g—%(t—s) fors <t <L
M g fort > L

where wr, = (1 — &) wo + %2 (L—s)%

Figure 1 plots the resulting consumption and wealth (wy = 0, § = 100)
for different levels of the cost of rationality x. The solid line represents a
fully rational agent (i.e. & = 0): he fully smooths consumption. The dotted
line shows a very behavioral agent, who simply consumes current income
(k> F* == %% = [9]). The dashed line shows a moderately boundedly rational
agent (0 < kK < R*).

At first, he does not save for retirement. He’s thinking “let me not think
about that future loss of income at retirement, it’s so remote than it’s not

worth it” . However, he does start saving at some point before retirement —

grf;t = 7%, so that
thinking more about retirement is more important as time goes by. So, at
period 21 he thinks “OK, I should start thinking a bit about that retirement,
and saves a bit” : Over time he thinks more about retirement, and saves more.
At retirement, his consumption drops as he fully realizes that his income has
fallen. This illustrates the smooth, partial myopia of this agent.

This paper is mostly theoretical, but it is worth asking the following
question.

Is it indeed the case that people tend to save “too late” for retirement? The
issue is still controversial, but let us consider three salient facts.

at period 20 in this calibration. This is because in (5),

1. Expenditure declines after the age of 45 (Aguiar and Hurst (2013), Figure
1, for expenditures without housing services) — much like the behavioral
agent of Figure 1.

2. There is a fall in expenditure when income predictably falls, again like in
Figure 1:

9. With this scaling for k¢, the expression for consumption is independent of the concave
utility function w.



(a) at retirement (Bernheim et al. (2001)).1°
(b) at the (predictable) expiration of unemployment benefits (Ganong and
Noel (2019)).

3. People say that they plan for retirement late in their working life, or not
at all. For instance, 23% of the 18-29 year old say that have “figured out
how much they need to save for retirement” , while 51% of the 45-59 year
old say they have done so (Lusardi and Mitchell (2011)).1

Facts 1-3 arise naturally from the behavior as described in Figure 1. For
Fact 3, if agents indeed have a k too large, they don’t plan for retirement at
all, even right before it.

Facts 1-3 are each inconsistent with the plainest rational model.

Facts 1-2a can be made consistent with an enriched rational model. Fact 1
can be explained by introducing credit constraints and income risk (Gourinchas
and Parker (2002)). Facts 1 and 2a can be explained by observing that retired
consumers buy more efficiently or buy fewer non-work goods (Aguiar and Hurst
(2013)). Fact 2b is harder to reconcile with fully forward-looking models, though
qualitatively consistent with Figure 1. Fact 3 is not consistent with a rational
model, but one could dismiss it by stating that agents’ reports of what they
think about are meaningless — a point of view I do not share.?

Though these facts are not dispositive, they form, I submit, reasonable
presumptive evidence for the idea that people are not fully far-sighted, even for
retirement savings. The present framework could help write enriched empirical
models allowing for both traditional factors and myopia, where the above-
mentioned evidence could be systematically assessed.

This example illustrates the behavior and mechanics of the sparse agent. I
now move on to a systematic formulation of that agent, which applies to much
more general problems.

10. In addition, Bernheim et al. (2001) (Fig. 4) find that the drop is more pronounced
for individuals with low wealth. This is what the present model predicts: controlling for
lifetime incomes, agents with higher bounded rationality (higher k) accumulate fewer assets
and have a bigger drop in consumption at retirement. See also Kueng (2018).

11. More indirectly, a whole literature on retirement plans supports the notion of inert
decision-making for retirement. For instance,Beshears et al. (2015) find that the potency of
framing and defaults is reduced as people approach retirement, consistent with the notion
they think more carefully about retirement as they are near it.

12. Note that a simple hyperbolic agent (Laibson (1997), O’Donoghue and Rabin (2001))
would not behave this way. That agent has full foresight of future income flows, and sees

equally perfectly pre- and post-retirement income. For instance, the policy of the log agent
wita+(T—t—1)y
1+8(T—t—1)
agent can look closer to the one with the above behavior (Harris and Laibson (2001)),
though with much complexity and not because of limited foresight about future income.

is ¢t = . However, with uncertainty and credit constraints, the hyperbolic



3. General Framework
3.1. The Sparse Max for Static Problems: Quick Review

To think about bounded rationality, the tractable dynamic framework laid out
here is possible because it rests on a tractable static framework I laid out in
previous work (Gabaix (2014, 2019)). I review it in this subsection. There, the
core is a sparse max or smax operator, which is a generalized, behavioral version
of the traditional max operator of maximization under constraints.

Let us review the sparse max when there is no budget constraint. The agent
faces a maximization problem which is, in its rational version, max, v (a,z),
where a is an action and z a state variable.!® There is an attention vector, m,
and an attention-dependent extension of the utility function, v (a,z,m). For
instance, we will typically take

U(a,x,m) ::U(a7mlml)”'7mn$n) (7)

to be the perceived utility function when the consumer is partially inattentive
to z;. When m; = 1, the agent fully perceives dimension ; when m; = 0,
the agent is fully inattentive to it. Attention generates an action, a (z,m) =
argmax, v (a,z,m). There is a default attention vector m?, taken to be 0

in most applications, and a default action a? = argmax, v (a,m,md). I call
A, = a‘?ﬁ_, evaluated at (a,m) = (ad,md), the normative impact on the
action of a change in attention. Hence, a,,, = —v; . vqm,. When (7) holds,

Am; = Qg; (I’m)|m:(1,...,1),m:() Li-

There is a nonnegative parameter x, which is a cognition cost — formally, a
taste for sparsity. When s = 0, the agent is the traditional agent.'* The z; are
viewed by the agent as being drawn from a distribution with standard deviation
;.

DEFINITION 1. (Sparse maz operator, without a budget constraint) The sparse
max, SMaX,,,|md v (@, ,m), is defined by the following procedure.
Step 1: Choose the attention vector m*:

=g i, 2 LA (1 mi) + g (m; —m)] (8)
with the cost-of-inattention factors A;; = —E [am,Vaa@m,], ¢’ > 0.
Step 2: Choose the action
a® = argmaxv (a,x,m") 9)
a

13. This utility may be a value function, as in (3).

14. This is true unless the matrix A of Definition 1 is singular — in that case, the iterated
sparse max of Definition F.1 helps.

10



and set the resulting utility to be v® = v(a®,x). In the expressions above,
derivatives are evaluated at m = m? and a? = argmax, v (a, x, md).

In other terms, the agent solves for the optimal m* that trades off a proxy
for the utility losses (the first term in the right-hand side of equation (8)) and
a psychological penalty for deviations from a sparse model (the second term
on the right-hand side of equation (8)).1> Then, the agent maximizes over the
action a, as if m* were the true model. The problem is solved by backward
induction.

This leads to define the attention function:!®

) 1
A(v) =arg min {= [v](1—m)*+g(m)}.
mel0,1] 2
This represents the optimal attention to a variable with variance |v],
normalizing other factors to 1. Figure 2 plots typical shapes.
Then, the value of attention to dimension i is given by the key relation:

m; = A(=E [am,;Veam,] /K) - (10)

This formula gives a simple “plug and play” solution for the (potentially very
complex) attention problem: to allocate attention to dimension 4, just use (10).
There is no need to come back (except for generalizations) to the background
problem (8). The following Lemma derives a typical case.

LeEmMMA 1. (Basic simple case for static smax) In the case v(a,x,m) =
v(a,mizy,...,mpxy), the smax operator yields:

my = A(—07ay,Vaa0a, /K) (11)

and
a® = argmax v (a, miT1,...,m, Ty)
a

with az, = g;i = —v V4, In the expressions above, derivatives are

evaluated at x =0 and a? = argmax, v (a,0).

The intuition is that the x;’s are truncated. If |a,,| is small enough, so that
x; shouldn’t matter much anyway, then m; = 0, and the agent doesn’t pay
attention to x; (if m¢ = 0).

15. In Gabaix (2014), I sum over all terms Zi,j (I —my) Ay (lfmj), with Ag; =
—-E [amiuaaamj]. Here, I streamline the procedure, and let the agent consider only the
diagonal terms. This is inessential, but is simpler.

16. Also, if there are more than one optimum m’s, we take the largest one.

11



This leads to the defining the truncation function, with b the coefficient on
the state variable x in a linear policy function:

7 (b, k) == bA (ZZ) (12)

It is the coefficient b, times the attention to the coefficient, divided by the
scaled cognition cost k.
The following lemma gives a more explicit version of the action.

LEMMA 2. If the rational action is:
a” (z) = a + Z biz; + O (H:L‘||2)
then the sparse action is
s d Ka 2
= bi, o ) @i+ O (|l 13
o @) =a'+ 37 (152 )0 (1ol (13)
with ke == (K/ |vaa\)1/2.

When attention is chosen after seeing x (“ex post” ), we use the same
expressions, with o; := |z;|. For instance, the ex-post action becomes:

a* (@) ="+ 37 (biwisra) + O ([ (14)

In the “ex ante” procedure, the slope is chosen before seeing x;. Hence,
the policy is still linear in z;, which makes that procedure useful in macro. In
the “ex post” procedure, the truncation is chosen after seeing the xz;, and the
policy is non-linear in x;.

Attention and Truncation Functions. Here are some good truncation
functions. In Gabaix (2014), I study attention functions A, (02) corresponding
to g (m) = m®1,,~0. For instance, for the values aw = 0, 1,2, we have:

A (0%) = 1,259, A (0°) = max <1 - 012,0> . As(0?) = (15)

The truncation functions 7, (b, k) is then (using (12)):17

k2
T0 (b,k):b'1b222k2, T1 (b,k)meaX (1_b2,0> , T2 (b,k): m

17.  Another useful cost function is gr, (m) = —In (1 — m), which generates A, (02) =
max (1 - L O), and 77, (b, k) = sign (b) max (|b| — |k|,0). The subscript L1 denotes that

o]’
it often arises when doing an L; regularization, as in the sparsity literature in statistics

(Tibshirani (1996),Candes and Tao (2006)).

12
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FIGURE 2. Three attention functions .Ag,.A1, .42, corresponding to fixed cost, linear cost
and quadratic cost respectively. We see that Ag and .A; induce sparsity — i.e. a range
where attention is exactly 0. A; and As induce a continuous reaction function. A; alone
induces sparsity and continuity.
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F1GURE 3. Three truncation functions. Because it gives sparsity and continuity, the 71
function is recommended.

Figure 2 plots the attention functions, and Figure 3 the corresponding
truncation functions.

3.2. Dynamic Programming: A Motivating Example
To motivate the general structure, let us start with a basic example, the

consumption-savings problem. The agent has utility EY"5° 8¢, 7/ (1 — 7).
Wealth w;, and the state variables evolve as:

W41 = (1+F+?t) (U}t—Ct)—i‘?‘f"y\t. (16)
Tiy1 = prit + €141 (17)
Y1 = Pyt + €144 (18)

That is, wealth at ¢ + 1 is savings at ¢, w; — ¢, invested at rate r, = 7 + 7%,
plus current income, y; = ¥ + ;. Here, 73 and ; are deviations of the interest
rate and income from their means, respectively, and follow AR(1) processes,
where e7,; and €}, are disturbances with mean zero and no correlation across
periods. For simplicity, assume here that SR = 1, where R :=1+4T.
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This is a complex problem, with 3 state variables
z¢ = (Wi, Tt, i)

This is also a metaphor for a more complex model, which could have 30 or 300
state variables. What will the agent do at time 0?'®

One thing I wish to capture is “the agent may not want to think about
the interest rate” . The reader can introspect: when most people plan their
vacation, do they think “now interest rates are high, so it’s a makes good sense
to spend little this summer, and more next summer; this way we’ll respect our
Fuler equation, and will make sure that our consumption growth is high, in
congruence with the current high interest rate?” Most people, and the reader,
I imagine, do not do that (by the way, econometric evidence confirms that they
don’t, see e.g. Hall (1988)). Non-economists would find that depiction of them
ludicrous. Accordingly, the sparse agent will be allowed not to think about the
interest rate — though he will think about it, say when buying a house, or
when interest rates are very volatile.

Second, “the agent may wish to imagine simplified dynamics for the process”
, e.g. he may replace the dynamics of this income, for instance, by a simpler
process, e.g. imagine it will be roughly constant — without paying attention to
the detailed stochasticity of the income process.

Before showing the equations, I propose an intuitive picture of what the
agent’s world view is. I posit that the agent knows what to do in a simpler,
default model. That is, he assumes that future interest rate and income will be
constant. Then, the optimal consumption is

Twg + Y

¢! (wy) = R

(19)

and the value function is V¢ (w;) = ?(17}37) (Fw]t;?) ' " Then, the agent decides
whether to enrich his very model where everything is constant. He asks “is it
worth thinking about the interest rate?”” To do so, he contemplates a one-
variable enrichment, with the interest rate, and sees whether it’s worth it. If
it isn’t, he settles for a model where the interest rate is constant. If it is, he
enriches his model, with a non-constant interest rates.

Here is how I propose to capture those ideas. I posit that the agent

contemplates a “simplifiable meta-model” . In our example, this is a transition

¢

18. This paper could for instance help model simplied decision-marking in economies with
a large but finite number of firms linked in networks, where the state space has very high
dimension (Acemoglu et al. (2012), Bigio and La’o (2020),Carvalho and Grassi (2019),
Caballero and Simsek (2013), Gabaix (2011)).
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function F (ct, 2¢,m), whose components are (with F = (F, F" FY)):19

wipr = F (e, ze,m) = (14T 4+ mpty) (wp — ¢) + 7+ myiy (20)
Tip1 = F" (ce, 2, m) = pr (M) Ty + maﬁ?ﬂ (21)
Yrr1 = FY (ct, 2, m) = Py (m)ye + may5?+1 (22)

where p, (m) :=my, pr + (1 —my,) pt and p, (m) :=m,, py + (1 —m,,) pi.

For instance, when m, = 0, the agent doesn’t pay attention to the interest
rate, while if m, = 1, he will pay attention to 1. Likewise, m, represents
the agent’s attention to future income shocks: if m, < 1 the agent pays little
attention to future income streams — he is myopic towards them. Parameter
mg,, in (22) represents the attention to noise: when m, = 0, the agent doesn’t
pay attention to the stochasticity of the income—which will lead the agent
to accumulate a too small buffer of savings and be vulnerable to shocks.?’
Parameter m, represents the attention to the fine structure of the income
process: when m,,, = 0, agent replaces the true autocorrelation p, by another
one, pZ, e.g. if pg > py and m, <1, the agent will think that income shocks
are more persistent than they are.

Here

m = (my,mpy,mgy,mr,mpr,mw)

is the subjective parametrization of the world, and p = (1,1,1,1,1,1) is the
objective parametrization. Instead of thinking that the transition function
is zp41 = F(cy, 2, ), the agent will decide to imagine that it is z441 =
F (¢, ze,m).

So far, we have described a structure. The next section defines the sparse
max. In particular, what does it mean to “use a simplified model” , what’s the
agent’s anticipation of his future actions, so we have a well-defined notion of
dynamic programming? Next, how will attention be allocated? Then, we will
study consequences of this behavior for classic macro questions.

3.3. Sparse Dynamic Programming: Basic Definition

The state z;, the action a; and the i.i.d. innovation ;11 are vectors. There are
T periods, where T could be infinite.

19. This is related to the “perceived law of motion” of the literature on learning (Evans
and Honkapohja (2001) Evans and Honkapohja (2013)). There are important differences: the
concept of a simplified model also holds in static contexts, without learning; the procedure
is not about learning, but rather about the simplification of a known (but complex) already-
learned model; and in dynamic programming the sparse agent needs to have a model of his
own future actions.

20. Section C.3 of the online appendix develops this. See Lusardi et al. (2011) for evidence
of an insufficient buffer stock of saving. If agents underperceive the risks to income, that
motivates policy of extra assistance, e.g. extra unemployment benefits.
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The rational problem. The agent’s rational problem is:

T-1
max Z Blu(ag, 2¢) s.t. 201 = F* (ag, z¢,€041) (23)

(at)o<tar =0

and a terminal condition 27 € F7 for a given set F1.2!
The rational version of the dynamic programming (DP) problem is a series
of value functions V™! satisfying the Bellman equation:

yt (2) = mg,xx{u (a,z) + PE [V’”Hl (F~? (a, z, 5t+1))]} (24)

for t =0,..,7 — 1, and with V™7 (2) = 0. A policy is then a function a(z).
Actually, one can drop the index ¢ in the explicit formulation of (24), if state
vector includes the calendar date ¢, e.g. if we can write z; = (w,z,t) and V
depends on that calendar date component. This way, the traditional Bellman
equation can be simply written without explicit ¢ superscript:

V' (2) = mgx{u (a,2) + BEV" (F~? (a,z,e141))]} (25)

The sparse maz version. In the smax version, we are given attention-
augmented utility and transition functions in a way that will be illustrated
later, e.g. in Proposition 2:22

u(a,z,m), F?(a,z,e¢41,m) (26)

We are also given a “default proxy value function” , VP (z). Typically, it is
just the rational value function (VP = V"), i.e. the function assuming that the
agent will behave rationally afterwards — in the simplified model contemplated
by the agent (this will be very clear in the 3-period example of Proposition 6).23
We could also have VP to be the objective value function (where the agent has
rational expectations about his own boundedly rational behavior — something
I derive in Section 3.4). But, the two differ only by second order terms (see
Proposition 4), so this assumption makes materially little difference. Since it is
simpler, and (I will argue) more realistic, I recommend taking V? = V.

21. With infinite horizon, the transversality condition is typically limsupy_, . Zr € FT.

22.  One can take u(a,z;m) = u(a,m ® z,t) and for the k-th component of vector F*
F?* (a,z,e,m) = F?* (a,mk @z,s)

where m* € R4™ 2 denotes the attention to factors; generally (mg)d = 1: when predicting
the future values of variables zp, full attention is paid to its initial value.

23. It could also be some approximation of the objective value function—much like in
chess, people and computers use something akin to proxy value functions, that encode
distant behavior. See Gabaix et al. (2006) for an algorithm using an early version of this
idea of proxy value function.

16



The agent’s action is as follows.2*

DEFINITION 2. (Action in sparse dynamic programming) The action of the
basic sparse max behavioral agent is:

a(z,VP) = argsmax{u (a,z,m) + SE [VP (F? (a, z,et+1,m))]}. (27)

a;m|ma

Hence, the agent maximizes his perceived flow utility function, and his
perceived continuity value function. The degree of sophistication in those
perceptions is controlled by vector m. When the cost of rationality  is 0 (and
m = (1,...1)), and VP = V7" the agent is just the rational agent.

3.4. More Advanced Notion: Iterated Dynamic Sparse Max

The rest of this section examines advanced notions, so the reader is encouraged
to skip it in the first reading.

Given the decision function a (z) == a(z,V?) from Definition 2, the agent
obtains an objective value function V° (z), which satisfies:

Ve (z) = u(a(z),2) + BE[V® (F* (a(2),2€141))] (28)

Does this equation admit a well-defined solution V°7 This is not problematic
with a finite-horizon (it is calculated by backwards induction). With an infinite
horizon, we adapt the machinery of Bellman operators. It uses some technical
assumptions, made throughout this section. Formally, we assume that in this
section, and in particular in Definition 3, u, V and VP are bounded functions, so
that the operator 7 maps pairs of bounded functions into bounded functions.
We also make the very mild assumption that the expectation in (29) is well-
defined—which is true under weak technical conditions.?®

DEFINITION 3.  (Bellman operator with sparse action) Given a policy a (z, VP)
from Definition 2, the Bellman operator 7 (V, V?) is defined by:

TV, VP)(2) =u(a(z,VP),2)+ BE[V (F(a(z,V?),2))] (29)
Given this, (28) can be written as:

Ve =T (V,VP) (30)

24. 1If there are domain conditions for a(Z,VP), we just add them to the definition of
a(Z,VP), as in the static smax with budget constraints Gabaix (2014).

25. The simplest would be to assume a finite number of potential values for the noise z,
for instance.
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This operator 7 (V, VP) has the usual good properties, recorded in the following
lemma.2°

LEMMA 3. (Monotone contraction) The operator T(V,VP) is a monotone
B—contraction as a function of V. More explicitly: for any bounded functions
V.V (i) [T(V,VP) =TV, VP < BIV = Vllo; (ii) if V(2) < V(2) for all z,
then T(V,VP)(z) < T(V,VP)(z) for all z.

This implies that a solution to (30) exists.

LEMMA 4. (Existence of a value function) Given Lemma 3, there is a unique
bounded solution V° of the fized point relation:

Ve=T(V°VP).

The objective value function is the a unique fixed point V° of the equation V° =

T (Ve,VP).

Hence so far, given an original proxy value VP, we defined a policy a (z, V?),
which generates a new value function V°. We can iterate the process. This
generates the “g—iterated” smax action.

DEFINITION 4. (Action in sparse dynamic programming, q—iterated) The
basic (0—iterated) dynamic smax action is the action a (z, V?) from Definition
2. The g—iterated dynamic smax action is a (z,V(Q)), where V(© = VP and
for ¢ > 1, V(@ is characterized by V(@ = T (V@) y(a=1),

In some sense, the basic sparse max agent is naive about his future actions,
while the g—iterated agent is more sophisticated. In practice, we will just take
the basic action of Definition 2 in most problems of interest: this captures
the essence of the economics, while keeping the model quite easy to use.
Working through examples below will suggest that the higher-iterations are
quite demanding in rationality.

With a finite horizon when ¢ > T — 1, the g—iterated value V(@) satisfies:

V (2) = smax {u(a,z,m)+ BEV (F*? (a,z,e¢41,m))}. (31)

aym|ma
That is, we obtain the agent’s full value function. This is the same formulation
as in the rational version, but with a smax rather than a max operator. In that
formulation, the BR agent is very sophisticated (perhaps too much so) about

26. It is tempting to define V =T (V, V), but the operator V +— T (V, V) does not (prima
facie at least) satisfy the good properties of Lemma 3. Only V — T (V,VP) does.
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his own future behavior: he sees how much he will see how much he will see
(etc. — iterated ¢ times) future inattention.

With finite horizon, the definition gives a construction of the value function
by backward induction: starting from V7 = 0, we successively calculate
VT=1.., VO (note that the time ¢ is inside vector z).2”

3.5. Some General Features of Sparse Dynamic Programming

This subsection presents some general features of sparse dynamic programming,
including tools to compute it easily, and derives quite systematically the
difference between the actions of a sparse agent and of a rational agent. It
derives the general form of predictions (e.g. in Proposition 2) that appear in
the rest of the paper. Still, as this section is a bit dry, the reader may wish to
skim it, read the main examples shown later, and then come back to it with
those examples in mind.

The results are proven for finite-horizon problems. I conjecture that they
hold for infinite-horizon problems under some reasonable assumptions.??

Taylor expansion of policy and value functions. We decompose the vector
of state variables into: z = (w,x), where w is a vector of variables that are
fully taken into account in the default model (including possibly calendar
time), while x is a vector of variables not taken into account in the default
model. To capture this, T assume throughout the paper that u (a,w,x, m) and
F (a,w,z,m) are independent of m when x = 0. I also assume throughout the
paper that F'* (a,w,z,m) = 0 when x = 0, so small z’s at t generate small z’s
at t + 1.

I will frequently assume the following “local autonomy of the disturbance”
condition:

F? (a,w,z) =0 at (a,z) = (ad (w),0) (32)

where F¥ is derivative with respect to a of the law of motion of z. This says
that when x = 0, a small change in action a doesn’t affect it directly, i.e. x
is locally independent of the agent’s actions. This is for instance the case for
macroeconomic disturbances, e.g. if x411 = p2¢ + €7, as we postulated for
some variables above (e.g. (17)). This decoupling of the change in the variable
x; from action a; brings a lot of tractability to the system—otherwise things

27. 1 contemplated taking (31) as a starting point for dynamic programming, but it proved
psychologically too complicated, and mathematically hard to handle, due to the unusual
fixed point in V.

28. See Harris and Laibson (2001, 2013) for a related analysis showing the ty of the
mathematics of infinite horizon dynamic programming when the agents misoptimize.
Fortunately, those difficulties dissolve with a finite horizon. Still, extending the analysis
here to an infinite horizon seems like an interesting, difficult problem. Zhaonan Qu and I
have results along those lines, but they is quite involved, and too technical for the present
paper.

19



would much more complicated (a matrix Ricatti equation would need to be
solved for, see Section A.1).

For simplicity, I assume that the functions are infinitely differentiable, and
so is the attention function (the online appendix weakens those conditions in
Section G.1; the exposition is then heavier).

The main tools are the following.

PROPOSITION 2. (Obtaining the sparse policy from the rational policy, to the
first order). Assume the local autonomy condition (32), and that u (a,w,z, m) =
u(a,w,mo®z) and F (a,w,z,m) = F (a,w,m ®x). Consider the first order
expansion of the optimal rational policy for small x,

a" (w,x) = a (w) + Y b; (w) z; + O (||x|\2)
i
Then, the sparse policy is, with ex-ante attention allocation:

a® (w,z) +Z ( >x,+o(||:c|2) (33)

and with ex-post attention allocation:

a’® (w,x) +Z xi,na)+0<||:v||2) (34)

This proposition will be quite useful. To derive policies, first we can simply
do a Taylor expansion of the rational policy around the default model, and
then truncate term by term.

The following proposition indicates that to calculate the leading terms of
the sparse policy, one can do a simple Taylor expansion around the default
model, V¢ (w). One does not need to calculate explicitly the full rational policy
VT (w,z).

PROPOSITION 3. (Simple procedure to calculate the rational or sparse policy,
to the first order) Assume the local autonomy condition (32). To calculate
the policies a® (w,x) and a” (w,z) up to second order terms, one can simply
do a Taylor expansion around the default model with value function V¢ (w)
(which gives Vy and Vi), following the procedure outlined in Section A.1. In
particular, one does not need to fully solve the rational model.

I now present some basic facts that are helpful in thinking about those policy

functions. The first three (Proposition 4 and Lemmas 5-6) are very simple—
basically they rely on the envelope theorem —and would apply any other
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“reasonable” models of misoptimization where the behavioral action differs
from the rational action by some small term (order O (||x]])).?

PROPOSITION 4. For small z, we have: V (w,x) = V" (w,z) + R (w,x), where
the residual R (w,z) = O (||x||2> for x close to 0. In other words, the sparse

value function and the rational value functions differ only by second order terms
m x.

This implies that, at x =0 :

Vi = VJ;, Viow = quwv
Typically V,, # V..., however.
We have the following Lemma.3°
LEMMA 5. (Close policies give very close value functions) Suppose a
policy a(w, ) such that a(w,z) = a®(w) + O (||z||). Then, V° (w,zla(-)) =
V" (w,z) + O (||xy|2).

This means that if the policy is approximately correct, up to first order
terms, then the value function is approximated by the correct optimal policy,
up to second order terms. This is again the envelope theorem.

LEMMA 6. (Close proxy value functions give close policies) Consider two
proxy value functions VP, VP such that, VP (w,x) = 1% (w,z)+ 0O (||x||2), and

assume (32). Then, a(w,z,VP)=a (w,x,Vp,) +0 (||13||2)

This lemma means that to know the optimal policy up to second order
terms, we just need to have a proxy value function that is accurate up to
second order terms. This is intuitive, but the proof reveals that condition (32)
is required.

The above two lemmas imply that sophistication vs naiveté lead to the same
policies, up to second order terms. Given also the naive / basic action (¢ = 0)
is simpler, this is another reason for modeling agents with the basic policy.3!

29. The intuition is that as x is small, and the action is close to the optimum, we get only
second order losses O <||a:||2> from misoptimization.

30. Here V° (w,z|a(-)) is the policy induced by a, closely along the lines of Lemma 4.

31. Hyperbolic discounting naive and sophisticated agents often act quite differently
(Laibson (1997),0’Donoghue and Rabin (2001)). However, in simple consumption-savings

problems, the discrepancy between the two types’ consumption is still O ((1 — 6)2), where
B is the hyperbolicity parameter, so quite modest if 3 is close to 1.
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PROPOSITION 5. (Sophistication vs Naiveté makes only a second order
difference in actions) Consider the q—iterated agent of Definition 4. Suppose
that the level 0 agent used a proxy value function VP such that VP (w,z) =

VT (w,z) + O (||:v||2) Then, the actions at higher levels of sophistication
q > 0 differ only by second order terms from the naive action: a (Z,V(q)) =

a(2,V©)+0 <||x||2>.

For instance, in the life-cycle model of Section 2, I assumed basic (¢ = 0)
agents, who project them selves are rational. If I had assumed partially (low
q > 0) or fully sophisticated agents (¢ > T — 1), who keenly understand their
future bounded rationality, Proposition 5 says that the consumption would
have been the same, up to O (xQ) terms.

4. Intertemporal Consumption: Behavioral Version

I now work out a few explicit examples, starting from very simple ones to build
the intuition.

4.1. The life-cycle problem revisited

4.1.1. Detailed analysis with three periods. Here I revisit the life-cycle model
of Section 2, in more detail. I take a 3-period version (L = 2, T = 3).32 Utility
is Zfzou (c¢), and there is no discounting (R = 8 = 1). The agent starts with
an endowment wg, has no regular income (§ = 0) and receives x at time 2; x
is known at time 0, but the agent “may not think about it” . For instance, x
could represent a negative income shock, such as a tax to pay, or a decrease
in income as retirement. Calling w; the wealth at the beginning of period ¢,
the budget constraints at times ¢t = 0,1,2 are: wy = wg — ¢g, W = Wy — €1,
0=ws +x— cCo.

How much attention will the agent pay to time-2 payment x? First, let
us observe that a rational agent smooths consumption: lifetime resources are
wp + x (initial wealth wy and time-2 payment x), and they should be consumed
equally in the three periods:

r WotT
Ct:

fort=0,1,2

The corresponding dynamic policy (expressed with w; rather than wyg) is:

wo +T w1+
—3 c] = 5 cy = wg + .

cy =

32. Section A.3 gives more complements for the T period model.

22



e.g. at time 1, the life-time remaining resources (w; + x) should be divided
equally among the two remaining periods.

I first state the behavioral policy, then derive it. The derivation is
instructive.??

PROPOSITION 6. Take the 3-period life-cycle problem. The BR policy is

wo + Mo wy + M1z
o= —F", c=—"", co =wy + .
3 2
. _ 1 ../ (wgo 2 —
where the attention wvalues are my = A (6?“ (T) ox) and m; =

A(Eu” (%) o2). If |z| is not too large, they satisfy mo < my < 1, i.e. the
agent reacts more to near variables than distant variables.

Derivation of Proposition 6. We apply the smax procedure of Definition 2,
using backward induction.
At time 2, the agent consumes all his disposable wealth:

V2 (we, ) = u (wy + )
At time 1, the agent’s problem is:

smaxv? (c1,x,my) with o' (¢r,z,m1) == u(c1) + VZ(wy — ¢, miz).
c1im
The FOC v}, = 0 reads: v/ (¢c1) = V2 (w1 — ¢1,mix) = ' (w1 — ¢1 +myx), so

c1 = w1 — ¢ +mix, and
wy + 1M
¢ = % (36)
The agent pays partial attention m; to the time-2 income =x.
To calculate attention mq, we apply (11). Noting that v2, (¢, x,m1)

2u’ (c‘li), where ¢ = L is the optimal consumption with m; = 0, we have

my = A (220" (cf) var (£)), so

my = A (;fiu" (%) gg) . (37)

At time 0, the agent does smax,,.,, v° (co, z,m0), with

\m1=0 =

v° (o, wo, z,mo) = u(co) + VP (wo — co, mox) (38)

where I use Definition 2, with V? = V" the value function where the agent
projects that he will be rational in the future:34

VP (w,2) = 2u (w;x> (40)

33. I use the notation Ug =E [xﬂ to indicate the prospective magnitude of x; with ex post
attention, we simplify have a% =2
34. In terms of the iterated sparse max of Definition 4, this is the value function under

procedure with ¢ = 0 iteration, t. If we used the procedure with ¢ = 1—iteration, the agent
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The FOC is 02 = 0 with, ie. u'(co) = VP (wo—co,moz) =

C
u’ (71”0_00;”101’), ie. cop= 7“’0_‘30;7”0"” and

o = w (41)

To determine attention mg, we again use (11); we calculate:

vO — u// (cd) + Vl,p

cc ww|m=0 =

o (cd) R (cd> — 2 (cd)
so that mg = A (200var (Omyco)) = A(L3u” (¢?) var (%)), ie.

mo = A (61/-@“ (%) ag) . (42)

The consumptions are:

w m
co(wg, z) = ?O + ?Ox, (43)
w4 (2 2) w
co(wg, ) = % + (1 — mo_;ml) (45)

Comparing (37) and (42), we see that mo < myq iff & [u” (%2)] < & [u” (%]
When z = 0, this is automatically verified, as % = “5-. Hence, we have mq < m;
iff = is not too large.?®

O

4.1.2. A few features of a sparse agent. This example and the life-cycle model
of Section 2 illustrates a few general features.

Sparse agents are globally patient like rational agents, but still myopic to a
variety of small future shocks. Indeed, agents here invest their wealth w; very
patiently, exactly like rational agents: they fully smooth it over the horizon.
At the same time, they tend to be myopic about future small shocks (the
time-2 shock z). In other terms, in the present model, agents are only partially
myopic (e.g. don’t react to a scheduled increase in taxes). This behavior cannot
be captured with a model simply assuming a low discount factor 5.

uses the objective value function, which is:

V1 (wi,2) = u (Wmfl(wl)x) . (w1 + (2 S (w1)>z>

(39)
As per the envelope theorem, the two value functions differ only by second order terms:
V1(wi,z) = VEP (w,z) 4+ O (2?).

35. If z was very large and positive, we could have the following effect: the agent realizes

at time 1 that he’s actually quite wealthy, so pays less attention. This effect needs a very
large x, so is not operative in most situations.
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The Euler equation fails. The Euler equation holds under the BR-perceived
consumption, but not under the actual consumption. For instance, at time 1,
if my = 0, then the agent expects to consume (c1,c2) = (%%, %), but actually
consumes (c1,c3) = (%, 5+ x) The traditional Euler equation basically only
holds if agents are exactly rational (Hall (1988)), so it is a fragile way to model
agents. In contrast, sparse consumption functions are a more robust way of
modeling them.

The first and second welfare theorems fail. This 3-period example features
a simple economy, “production” being the linear storage technology allowing
to transfer the good 1-for-1 across periods. Here, we do not have a Pareto-
optimum, as the agent fails to maximize.3® Likewise, if the first welfare theorem
fails, typically the second welfare theorem fails. However, some optimum tax
policy can generally restore efficiency.

Agents react more to “near” shocks than to “distant” shocks (in math,
mo < my). The main reason is that, normatively, the shock z should impact

coas 3 (w = 1), while it should impact c; as % (w = 1). Hence,
attention to the last period shock x is lower at earlier dates (¢ = 0) than at late

dates (t =1).
This example suggests a few interesting variants. I discuss some of them in
Section 7.1.

4.2. Consumption-savings with infinite horizon

Here I propose a version of the permanent income consumption problem of
Section 3.2.

Formalism. We have x; the state vector of disturbances, which follows a
process: Ty = F* (xt,sf Jrl). The interest rate and income deviations from
their means are a linear function of that state vector: 7y = k" - xy, 4 = kY - x4 for
some vectors k", kY. The perceived law of motion for wealth is kept throughout
as (20). However, the perceived law of motion for x; can be very general,
e.g. Try1 = A(m)xy + 0 (m) ey for some parametrizations of the matrix and
stochasticity.

As a concrete example, let us review the basic example with the full
formalism (which the reader is encouraged to skip at first). The state vector
is:37

2t = (wtaftagtaprao'mpyagy> (46)

36. In Gabaix (2014) (Proposition 8) the first welfare theorem (in a static economy) does
hold if agents have the same misperceptions: the reason is that in that setup, the agent
is assumed to fully perceive consumptions (a defensible assumption in a static context)
— whereas in the present model he doesn’t. For instance, at time 1 the fully naive agent

projects that c1 = ca = 3+, whereas in fact co = - + =.

37. If pr,or, py, 0y are correctly perceived, then we can just take z; = (we, P, Yt )-
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Here 0¥ parametrizes the stochasticity of income, which may be set to zero in
a simplified model. The simplifiable meta-model is: Zy41 = F* (¢4, 24, €441, M),
where the components are: for wealth, (20):

w1 = FY (ct, 2, €001, m) = (L+7 +mpiy) (wi — ¢) + 7 + my i,
for the interest rate and income, using the notation X a shorthand for r or y,
)?t—H =F¥ (ct 2t, €41, m) = (mePX +(1— mpx)/)L)i() )?t + (mUxUX)EfSA
for parameters z; = pr,0r, py, Oy,
Zip41 = F* (et 2z, €0401,m) = my, 2 + (1 —my,) 23,

For instance, if m,v = 0, the agent projects income to have 0 stochasticity
in the future.

Results. 1 start with a simple lemma describing the rational policy, using
Taylor expansions.?® To signify “up to second order term” , I use the notation
@) (Hx||2), where ||z|* .= E [§2] /3% + E [#2] /7> (the constants 7, 7 are just here
to keep valid units). Recall that R =1+ 7.

LEMMA 7. (Traditional rational consumption function) In the rational policy,
the optimal consumption is: c; = ¢ + ¢, with ¢ = % and

~ br w 727' +0b y‘r
—E [y R)+ Wl o (l2)?), (47)
T>t
% (wy — ) — et T
by (wy) = L& Vi : by = & (48)

The associated value function is

1
V" () = —u (e +ve) + O (|lall) (49)
Mt
where
T T Tr
Kt ::§+(1_w>§Et gm
and

Ui+ b,y
ve =g+ E Z RRTT t+1y s
T>t

38. In independent work, Auclert (2019) contains a similar Taylor expansion for the
rational case, with more general assets.
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Consumption reacts to future interest rates and income changes, according
to the usual income and substitutions effects (multiplied by ).3%
The behavioral policy is then as follows.

PROPOSITION 7. (Spalise consumption function) In the behavioral model, c; =
cd + ¢, with ¢f = ™ and

R s by (wy) M7y 4 bymy s
— | Y e T B | (a?) (50)
T>t

where Ef is the expectation taken with respect to the agent’s beliefs under the
subjective model.

The policy of the behavioral agent is the policy of a rational agent, under
a subjective model, and with partial inattention to income and interest rate.
Now, I record the important case of AR(1) processes.

LEMMA 8. In the AR(1) model (17)-(18), the rational policy is:

" (w, Ye, 7)) = c? (we) + By (wy) 7 + Byyr + O <||:L’H2) (51)
by (wy) by

B, = , B, = . 52

() R—p, V" R—p, (52)

and the value function as in (49) with

-y Ty s Ut
R R-—pr R —py

T
.Ut:E‘F(l ¢) vn=y+

RQR pr’

PROPOSITION 8. Under the AR(1) model, the behavioral policy is:

¢* (we, i 72) = ¢ (we) + B (we) 7o + By + O (|l=]*) (53)
with BE (wy) = % and By %

2 2
Endogenizing attention, we have mx = A (M), for X =r and

X =y as in (11).4° This shows a “feature-by-feature” truncation. It is useful

39. The term p¢ is the MPC, and contains substitutions and income effects from wealth
before receiving the innovation in income, w¢ — 4. The term v contains the baseline income
y, expected value of future income ¢,, and and substitution effects interest rates associated
with the income stream of § per period. There is no income effect for 4, as no interest rate
was going to accrue to ¥.

40. Callv(c) =u(ec)+ V" (1 +7+7¢) (we —c) + G+ 9t). I use the well-known fact that
in the limit of small time intervals, vee = uce. See e.g. Section D.1.

27



Attention
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06l Attention to the interest rate: m,
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FIGURE 4. This figure shows the attention to the interest rate (m.) and to income (my)
as a function of the cost of thinking, .

because it embodies in a compact way the policy of a sparse agent in quite a
complicated world. Note that the agent can solve this problem without solving
the 3-dimensional (and potentially 21-dimensional, say, if there are 20 state
variables besides wealth) problem. Only local expansions and truncations are
necessary.*! Attention to the interest will become higher if the interest rate is
very volatile (o, high, e.g. as in hyperinflations).2

Numerical illustration. To get a feel for the effects, consider a calibration
with (using annual units): v = 1, ¥ = 5%, w; = 2¢¢, ¢ = 1, 0, = 0.8%, 0, = 0.2,
py = 0.95, p, = 0.7: as income shocks (roughly corresponding to “carrier risk”
) are persistent, they are important to the consumer’s welfare.*> I use the 7;
truncation function. I parametrize x = &> ’u” (cf) ’, as in Section 2 (see also
Section A.2.2).

Figure 4 shows the attention to the interest rate and income. At k = 0, the
agent is fully rational, attention is 1. For higher %, attention drops, more so for
the interest rate. For & above 0.02, the agent stops thinking about the interest
rate. Because the interest rate makes him change his consumption by less than
2% on average, it’s optimal for him not to think about the interest rate. Still, he
thinks a lot about his income. Attention to current income falls when & ~ 0.1,

41. Note here that the active decision is that of consumption, not savings. For most
variables (except current income), it does not matter: the impact of interest rates, future
taxes, future income shocks etc. are the same whether a sparse agent uses the consumption
frame or saving frame. See Section C.7 for a discussion: the consumption frame is arguably
better, as it yields great utility when ¢, > r, income shocks are less than extremely
persistent.

42. Likewise, in the model, a wealthy rentier, with much financial wealth but little labor
or state income, will endogenously pay more attention to the interest rate, as it is more
important for her consumption (and will bemoan at low interest rates, which lead her to
cut on consumption).

43. This numerical example is a rough AR(1) rendition of the “permanent-transitory
models” in the literature.
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i.e. then the agent truncates features that make him change his consumption
by less than 10%. Note that this “source-specific” selective attention could not
be rationalized by just a fixed adjustment cost to consumption, which affect all
causes of consumption change equally.

The same reasoning holds in every period. The above describes a practical
way to do sparse dynamic programming. In some cases, this is simpler than the
rational way (as the agent does not need to solve for the equilibrium), and it
may also be more sensible.

This section has developed the sparsely behavioral version of a basic
machine of macroeconomics: the consumption function of an agent in a world
of dynamic interest rates and income shocks. This is useful, because from this
machine can be used in a host of situations. I turn to two such situations before
turning its use in general equilibrium (Section 5).

4.3. Application: Ricardian Equivalence

Intuitively, a sparse agent will violate Ricardian equivalence as he is partially
myopic. To see more precisely, I keep interest rates constant, and call §; the
transfers from the government to the agent at time ¢. To see this, call w;- the
financial wealth at the beginning of the period (before government transfers)
and specialize Proposition 7, setting ¢, := §,+1. We obtain the consumption:

~S A~ g'r

¢f = by (we- +ge) + Zbymgﬁ
T>t

(54)

Suppose that the government gives § to the agent at ¢, and —gRT
in T periods. A rational consumer would not change consumption, as the
present value is unchanged (Barro (1974)). However, a BR consumer increases
consumption by % (1 —my) g: the positive shock increases it by %Q, and the
negative shock decreases is by zmy, g.

PROPOSITION 9. (Failure of Ricardian equivalence) A behavioral consumer
increases consumption at t by % (1 —=my)g. This way, Ricardian equivalence
does not hold, unless attention is full. The further away the increase in taxes
(keeping their present value constant), the lower the reaction.

Section C.6 develops in details the dynamics of attention to future taxes:
in particular, how attention becomes higher close to the tax hike.

4.4. Application: Lucas Critique
With sparse agents, the Lucas Jr (1976) critique stops applying — or at least

applies less. Lucas’ critique is that if the parameters of the world (e.g. tax)
change, people’s reactions functions will change. However, with sparse agents,
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this is it not true: when changes are small, agents choose keep their default
“policy functions” . For instance, suppose that there is a small, temporary
consumption tax 7¢, in the permanent income model above, so that the
perceived law of motion for wealth becomes:

wir1 = FY (ct, 2e,m) = (L+ 7 +myy) (we — (L+m7Te) c) + 7+ my G

If the tax is small, agent will pay 0 attention to it (ms = 0), and their policy
function will not change. The aggregate outcome will change, because agents
will be poorer — but the policy function will not change.

5. Neoclassical Growth Model: A Behavioral Version

I now move on to general equilibrium, and study a behavioral version of the
baseline neoclassical growth model, the Cass-Koopmans model.*4

5.1. Setup

1—
The utility function is still EY /° ﬁt%, and we again call ¢ = % The
aggregate capital stock follows:

Kt+1 :f(Kt,L)+(1—5>Kt—Ct+€t+1 (55)

where ;41 are mean-zero shocks. This way, there is just one state variable
in the economy, the capital stock. In the most basic neoclassical model,
giy1 is always 0, and L is fixed.*> I define f(K) = f(K,L) — 6K, which
is output net of the capital depreciation at the fixed labor supply, so that
Kt+1 Zf(K) +Kt — Ct + Et41-

This is a textbook example, which introduces generations of students to
macroeconomics (Blanchard and Fisher (1989) (chapter 2), Acemoglu (2008)
(Chapter 8), Romer (2018)). In that tradition, we have infinitely-rational
forward looking agents that calculate the whole macroeconomic equilibrium
in their heads. They are supposed to use the dynamics:

ﬁZE(JCI(Kt)—P)a K= f(K) —c
Ct (G

and given K, find the unique ¢ that leads to a non-explosive path (the saddle
path, see Figure 5). The psychology of that is arguably quite alien to any
human’s intuition. Still, it’s on that strange core model that much of dynamic
macroeconomics rests. Hence, it is useful to develop an alternative to that
model, something I now do.

44. For simplicity, I remove here the “growth” part, but it is straightforward to add.

45. I keep the noise €41 because it makes the model a true DSGE model, and because it
yields a scale for typical business-cycle fluctuations that it useful to determine attention.
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c(t)=0
c(t)

o*

c'(0)

c(0)

¢"'(0)

k(t)

FIGURE 8.1 Transitional dynamics in the baseline neoclassical growth model.

FI1GURE 5. This Figure shows the traditional approach to the neoclassical growth model.
The agent is supposed to find the unique saddle path leading to non-explosive dynamics.
Arguably, this is psychologically quite absurd. The present paper proposes a more
behavioral approach. Source: Acemoglu (2008).

Let us first review the mechanics of convergence. If there were no shocks,
the economy would be at the steady state, with capital stock K*. I use the hat
notation for deviations from the mean, e.g. K; = K; — K*. The law of motion
for capital (55) is, in linearized form:

K1 = (1+7r) Ki—Ci4ea (56)

where 7 is the steady state interest rate, 1 +r = f/ (K,).
As there is one state variable, the linear policy function of the agent (rational
or not) is:
C, = bK, (57)
for some constant b to be determined. R
Plugging this into (56) we obtain: K;11 = (1+7 —b) K¢ + €441, i.e.

Kipn=(1-9)Ki+ep (58)
where ¢ is the speed of mean-reversion:
p=b—r. (59)

When agents are more reactive to shocks (when b is higher), the economy
mean-reverts faster to the steady state (¢ is higher).
Squaring equation (58) we obtain: vathH = (1—¢)varK; + o2. As in
2

the steady state, vathH = vath, vath = 7 i.e., in the limit of

0-8
1—(1—¢
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small time intervals: o
£

oK =

V2p
When shocks mean-revert more slowly (lower ¢), the average deviation of the
stock price from trend is higher (shocks “pile up” more).

The steady state. Rational agent. The rational agent has a value function
V (K}), which satisfies:

(60)

V(K):mgx{u(c)—kﬁ]E[V(K—Ff(K)—c—i—g)]} (61)
The steady state is at K = K, C; = C,, with:46
Bl+7)=1 (62)

which determines K, the gross interest rate 1 + 7 = f’ (K.) and consumption
is Cy = F (K,).

Behavioral agent. 1 consider here the decentralized approach. In a
population with mass 1 and aggregate capital stock Ky, I consider an individual
represent agent, who has his own wealth k;, under control. In equilibrium k; =
K;. But when deciding on his own consumption, and agent is an infinitesimal
price taker, and takes the macro variables (K;) as unaffected by his own actions.

Suppose that the agent has a consumption rule that’s consistent with a
steady state growth, i.e. ¢; = § + ks, where the MPC is y = 1 — 3. By the
analytics above (equation (19)), this is the optimal policy in the steady state.*”
Then, wealth evolves as ki1 = (1+7) (ke +9 — ) = (1 +7) (1 — p) k. So, at
a steady state, 7 adjusts so that 1 = (1 +7) (1 — p) = (14 7) 8. This gives the
same condition (62), hence the same steady state as in the rational case.

The behavioral agent here inherits the same steady state as the neoclassical
agent, with 8 (1+7) = 1 at the steady state. Only the dynamics around the
steady state are different. I now turn to them. For simplicity, I use the notation
r for the steady state interest rate 7.

5.2. Convergence: Boundedly Rational Version

The agent’s wealth evolves as:
kir1 = (1+7e) (ke +ye — ct)

where y; = f (K;) — K¢ f' (K¢) is labor income, and r; = f/ (K}) is the interest
rate. Taylor expansions around the steady state yield:

7= (KK, Gi= K " (K*) K, (63)

46. The traditional proof is by taking the derivative w.r.t. K in (61), so V' (K4) =
B(1+F' (K«)) V' (Ky).

47. Here wealth is taken at the beginning of the period, before receiving labor income.
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Rather than positing that the agent correctly sees a whole saddle path,
I posit that in the agent’s model, capital evolves with a subjective speed of

mean-reversion °: [E, [I?Hl] = (1—¢%) I?t. I again parametrize it as:

©° = (1 *m@) ‘Pd+mga%0

where ¢ is the true speed of mean-reversion (which will be determined as an
endogenous outcome) and % is a default value — perhaps coming from some
empirical experience, saying for instance that “business cycles” have a half-life
of a few years.

For simplicity, I posit that the agent pays the same attention mpg to all
macro variables.?® Lemma 8 reads here (using the continuous time notation):
rk* — c*

MEYy + ——————MKT

—~ 7{:\—1— T
Ct =T
t t "+ o8 "+ o8

and using (63) and (65) we obtain:
. 77’K*f// (K*)+(7'k* 7C*w) fl/ (K*) Y

¢ =rk K
Ct = TRt + R Mg K¢
ie., as k* = K*,
G =rk K, 64
Ct rt+r+@smK t (64)
with
§=—yC.f"(K.) >0 (65)
Hence, in the aggregate C, = bEK, with b=r+ —5_my, and using (59) we

r+e*
obtain the actual speed of mean-reversion of the economy:

= ) 66
o= (66)

Rational agent. The rational agent has a correct model (¢° = ¢, mg = 1).
So the speed of mean-reversion is ¢ = ¢"; (66) gives

r_ &
T+ "

@ (67)

—r4/r244€

whose solution is ¢" = 5 .

48. It is easy to generalize to the case where people’s attention to income and the interest
rate differ.
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Behavioral agent. Let us now endogenize m, and mpg. Given (64),

9¢ = 0: at the default model, he doesn’t react to ¢, the speed of mean

Whn;(zo
reversion of aggregate variables, given he’s not even thinking about aggregate

variables (here, just capital). This means (using equation (11)) that m, = 0:
the optimal refinement in thinking about the speed of mean reversion is 0.
Hence, ¢* = ¢?, the projected speed of mean-reversion (¢*®) is the default one
(¢?).49 Given (66), this implies that the actual speed of mean-reversion is:

3
T+<,0d.

© = Mmgpo, o = (68)
Note that in the rational expectations case ¢® = ¢, which remains a useful
benchmark. The next Proposition studies the more general case, in which

¢ > min (¢, ¢").

ProPOSITION 10. (Fluctuations are larger and more persistent with sparse
agents) Suppose that ¢ > min (p, ") and k > 0. Then ¢ < @": in the sparse
economy, GDP fluctuations have slower mean-reversion and higher variance
than in the rational economy.

Consumption is less volatile in the sparse than in the rational economy, if
@ > r, which seems empirically valid.

To get a quantitative expression for ¢, I use the attention function A; (v) =
max (1 — 1,0) from (15).

PROPOSITION 11. The speed of mean-reversion of the economy is: ¢ = 1f0£
©0
with g = wad, B := |u2702 . It is lower (and aggregate fluctuations are larger)

when agents’ bounded rationality k is stronger.

There are two conclusions from this analysis.

First, bounded rationality generates more volatile and persistent
fluctuations.

Second, and more importantly, we have a structure that gives an alternative
to the rational general equilibrium model. In addition, the worldview of the
agent is arguably more sensible. In the behavioral model, the agent pays only
partial attention to aggregate state variables and has a simplified understanding
of their dynamics: this is, arguably, how most people orient themselves, without
a full, structural of model of the causes of aggregate dynamics (which no one
knows anyway, including economists). For instance, they say “healthy business
cycles typical mean-revert in about 4 years” (which corresponds here to taking

49. With the iterated sparse max of Definition F.1 of the online appendix, we can have
my > 0.
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0% = i), and they forecast based on that benchmark. People can act with that
simplified understanding.

Of course, this does not say that the model does make better predictions
— though the generation of higher volatility of GDP is intriguing. It does
mean that we have a modeling structure that could be promising in future
quantitative work. Acemoglu and Jensen (2023) propose a further analysis of
the neoclassical growth model with behavioral features.

5.3. Generalization: Recursive Competitive Equilibrium with Behavioral
Agents

Here 1 define the behavioral extension of the Prescott and Mehra (1980)
recursive competitive equilibrium — which is a formalization of the intuitive
concept of dynamic equilibrium. It formalizes what we did in Section 5.2.
It is more of methodological interest. It shows the “template” of dynamic
equilibrium with behavioral in other contexts. The key issue is that the
agents’ behavior affect aggregate future outcomes, but agents may have only a
simplified understanding of that.

We are given a steady state capital K, a default law of motion K’ =
G4 (K), with GY(K) = K + ¢? (K — K). A given m gives perceived laws
of motions for private wealth k' = F¥(c,k,K,m) and for the aggregate
variables K’ = G (K,m).%° In turn they generate a default value function
V" (k,K | F*(-,m),G (-,m)), which is the rational value function under those
laws of motion. The proxy value function chosen is then: VP = V" or, depending
on the context, a second-order approximation of it.5!

In the context of the Cass-Koopmans above the definition is as follows. This
template can be generalized quite easily to more state variables, several types,
flexible labor supply etc. This mostly just takes more space (see Ljungqvist and
Sargent (2012), Chapter 12).

DEFINITION 5. (Behavioral recursive competitive equilibrium) A behavioral
recursive competitive equilibrium is

1. A set of prices r (K),w (K), and perceived prices r (K, m),w (K, m) with
m = (mK,m%(,mK/,mE), with:

r(K,m)=7+mgr' (K) (K - K)+mg2 [r(K)—7—1" (K) (K—K()])
69
and the same for w (K, m).

50. The present paper offers a systematic way in which agents simplify the moments they
use to think about general equilibrium. This could be useful to systematize procedures such
as the one in Krusell and Smith (1998). See also Barberis et al. (1998) and Hong et al.
(2007) for an early analyses of financial equilibrium when agents use a simplified model.

51. Le., VP (k,K|F(-,m),G(m)) = V" (k, K|F (-,m),G(-,m)) + O (\K - fq?).
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2. A set of policies: consumption c¢(k,K) and firms’s factor demand:
kP (K),LP (K)
3. A perceived law of motion for private capital: k' = F* (¢, k, K, m)

FF(c,k, K,m) = (1+7r(K,m)) (k—c+w(K,m)L) +meeip1

4. An actual law of motion for the aggregate capital: K’ = G (K)
5. A perceived law of motion for aggregate capital: K' = G(K,m) =
mg' G (K) + (1 — mK/) G4 (K)
such that
6. The agent chooses consumption ¢ (k, K, m) sparsely and optimally as:

cm

= argsmax{u(c) + V" (Fk (c,k,K,m),G(K,m) | F* (-,m),G (-,m)) }

where V" (k,K | F¥(-,m),G(-,m)) is the rational value function
associated with the perceived law of motions F* and G.

7. Firms maximize profit: £, LP € argmax;p ;o {f (kP, L") —r (K) kP —
w(K)LP}

8. Markets clear: kP (K) =K, LP (K) =L

9. The actual law of motion is consistent with individual choice: G (K) =
f(K,L)—c(K,K) +ek.

To interpret (69), consider the case where the agent doesn’t pay attention
to nonlinear terms (mg2> = 0),%2 doesn’t pay attention to stochastic noise in
the future (m. = 0) and uses a simplified, AR(1) view of aggregate dynamics
(mgs = 0). Then, his model of the world is exactly as in Section 5.2. His proxy
value function V" (kz, K| F*(,m),G(, m)) is the proxy value function under
that simplified model, where everything is an AR(1). The value function was
already calculated in Lemma 8, using p, = py =1 — ¢.

6. Behavioral Version of a Few Other Models

To make sure that the model is widely applicable, I developed a behavioral
version of a few other important machines of dynamic economics. I summarize
them here, while the online appendix has the specifics. I start with the Merton
problem, which illustrates a case where risk matters for the agent’s decision.

52. Here mp-= is the attention to non-linear terms. If m g2 = 0, the agent simply linearizes
the impact of the state variable on the interest rate. When using the plain sparse max (as
opposed to the iterated sparse max of Definition F.1), the algorithm will select my2 = 0,
i.e. remove the nonlinear terms.
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6.1. Merton Portfolio Choice Model

A core model is dynamic finance is the Merton (1971) portfolio choice
problem.?® The agent’s utility is: E [ﬁ I e*P5c§*7ds}, and his wealth wy

evolves according to:
dwy = (—c¢ + rwy) dt + wi by (medt + 0dZy)

where 6; is the allocation to equities. The equity premium 7; = T + 7; has a
variable part 7y, which follows

d7ty = —O7dt — xi0dZ} + ol dZ?

where the return is diy = (r; + 7;) dt + odZ}. The parameter y; > 0 indicates
that equity returns mean-revert: good returns today lead to lower returns
tomorrow. That will create a hedging demand term. I again call ¢ = % the
intertemporal elasticity of substitution.

So, in theory, the agent should take into account both the variable equity
premium 7; and also the “hedging demand,” the demand due to the fact that
equity returns mean-revert.

PROPOSITION 12. (Behavioral dynamic portfolio choice) The fraction of

wealth allocated to equities is, with 0, = 77;7 :

7 H
03 =0, +7( Lk )+ L, ke
vo? vo?

while consumption is: ¢ = piwe with

P = s+ T ((1 — ) N*Mj 30 Hc/w) +7((1 =) 0.Hy, Fiejoy)

where Hy is the hedging demand term

1 2

Hy=—(1-7~)0,
t ( ) N*+‘I)0Xt

Proposition 12 describes the action of a sparse agent. When x = 0 we recover
the fully rational agent, as in Barberis (2000), Campbell and Viceira (2002) and
Wachter and Yogo (2010), with the notoriously sophisticated hedging demand
term H;. When k > 0 increases, portfolio choice becomes insensitive to the
change in the equity premium, 7, and the agent thinks less about the mean-
reversion of asset, the H; terms. The fact that people are relatively insensitive

53. Section C.1 of the online appendix studies a more general Merton’s problem with many
assets and factors.
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to the changes in the risk premium is a empirical central finding in Giglio
et al. (2021). It also means that people’s demand for stocks is inelastic, so
that flows in the stock markets have a large impact on prices (see Gabaix and
Koijen (2022) and the references therein). Hence a simple model of inattention
is useful to model basic facts of economic life.

In addition, the agent is here allowed to be “schizophrenic:” he pays
attention to different things as a consumer than as an investor.®* For instance,
suppose that the price-earnings ratio of equities is very high and expected
equity returns are very low; then, the agent will decrease her exposure to
equities (f < 6.), but not reduce her consumption (u; = p.). The online
appendix (Section C.1) develops the Merton portfolio choice model in much
greater generality, with many assets and factors.

6.2. Other models

Linear quadratic models. Many economic problems can be conveniently
expressed as linear-quadratic (LQ) models (Ljungqvist and Sargent (2012)).
Section C.2 derives how to systematically derive a BR version of those models.
The models are very tractable (there is no matrix Ricatti equation to solve).
Hence, the model offers a way to quite generally have behavioral version of
linear-quadratic problems.

Precautionary savings. The consumer may save more when the future is
uncertain, a phenomenon known as “precautionary savings” (e.g. Carroll and
Samwick (1997)). However, a BR consumer may not think much or at all about
the stochasticity of his income and under-accumulate a buffer of savings. This
is developed in Section C.3.

Real Investment Model. In macro-style investment models, the firm
optimizes on investment, with adjustment costs. A behavioral version of this
problem is in Section C.4. The firm uses a simplified model of future profits,
which can lead it astray (see Greenwood and Hanson (2015)).

The Becker-Murphy model of rational addiction. The Becker and Murphy
(1988) model of rational addiction is a peak of the use of rationality in
economics. Section C.5 gives a behavioral version of it. Qualitative evidence
in favor of the model (the fact that future increase in prices lower consumption
today) are also consistent with this BR version - it shows that agent are at least
partially rational (as in the present model), not that they are fully rational
(as assumed by Becker-Murphy). This distinction is important: if people are

54. To do that, formally, I use the variant of sparse max specified in Gabaix (2014) (Section
XV.D of the online appendix), which specifies a different attention for each type of action
(formally, for each coordinate of the action vector).
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BR enough, they’d be better off under a high tax, or a ban, of the addictive
substance — while the optimal tax is 0 in the Becker-Murphy model.>®

7. Discussion
7.1. Model Enrichments

Here I discuss different potential enrichments of the model; the online appendix
(Section F) discusses more. I discuss them at first in the context of the 3-period
model of Section 4.1.

What happens if the agent takes into account the future costs of thinking?
One could imagine that the agent will take into consideration the future costs
of thinking in this decision, and in the value function. Of course, this becomes a
very sophisticated agent then — far from a BR agent. However, for completeness,
I explore this direction in the online appendix, Section F.3. The consequences
are very minor.’® This is why I don’t incorporate this feature in the basic
model.

More sophisticated behavioral agents. We can illustrate the degrees of
sophistication of Definition 4 in the 3-period model of Section 4.1. In the basic
smax (g = 0), the time-1 value function is V*=1(0=0) (w;, z) = 2u (“LF2). With
one iteration, the time-1 value function is:

2 2
= yt=1.0=0) (w1, 2) + O(a:Q).

VL= () =y <w1 + m’{(wl,ai)x> tu wi + (2 - mj(wy,03)) 2

(70)

which gives the agent a more sophisticated understanding of his future actions.
The value functions using ¢ = 1 or ¢ = 0 are the same, up to second order
terms, and so are all consumptions. In addition, mg is the same under both
models. Hence, as in Proposition 5, the naive / sophisticated difference changes
only second order terms. This is why I have selected the naive case (¢ = 0
iterations) as the baseline case. It is simpler, more plausible cognitively, and
yields the same result as the sophisticated case, up to second order terms.>”

55. This analysis is in the spirit of Gruber and Ké&szegi (2001), who study a hyperbolic
discounting addict, rather than a boundedly rational one in the sense of this paper.

56. First, the basic smax agent does not change his action at all. What changes is on the
the g—iterated agent with ¢ > 1. Second, in accordance with Section 3.5, this change makes
only a second order change in the action.

57. Why not model iterated expectations, such as the agent’s perception at time 0 of his
perception at time 2 of his perception at time 57 The short answer is that this leads to a
combinatorial explosion of the complexity of the model. See Section F.7.1.
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Enriched models of attention. Suppose that x is very negative, and the
agent doesn’t see it at first (still wg + 2 > 0, so the agent can avoid starvation).
Will the agent detect the starvation that menaces him? Section F.1 of the online
appendix gives a simple fix, in which the attention at time 1 becomes:

2
m’{zA(;Zmax{u” (%) ”(u;+x)’})
for some K > 1. In the second term of the max, the agent takes into account the

extra income x. One could imagine other variants as well, which are discussed
in Section F of the online appendix.

1

'K

7.2. Frequently Asked Questions

How do markets clear? They clear as usual: prices adjust so that supply
equals demand.’® We need at least one agent, in each market, to pay some
attention to the price. For instance, in the Cass-Koopmans model of Section
5, firms pay attention to the interest rate (in their loan demand), even though
consumers might potentially not pay attention to the interest rate (in their
loan supply). So, s = f’ (K}) survives, but the Euler equation doesn’t.

Does the model only generate underreaction? The model most directly gives
underreaction, but can indirectly generate overreaction.’® Suppose that an
analyst sees a company C' with a surge in profits. She’ll increase her estimate of
its value. However, suppose that she forgets that the competitors of company
C will try to imitate it, this way eroding C’s future profit (see Greenwood
and Hanson (2015)). The analyst overreacts to the surge in profits because
she neglected the competition’s response. More generally neglecting mitigating
factors (i.e., negatively correlated additional effects) leads to overreaction.
Likewise, a consumer overreacts to an income shock if she underpays attention
to the fact than that shock is very transitory.

What about other types of dynamic problems, with discrete actions? To
have a viable path to bounded rationality, or artificial intelligence, we need
environments with enough structure.’9 Here, I rely a particular structure:
“smooth” environments, where actions and variables are continuous, functions
are smooth, and the world lives close to a well-understood steady state. This
means that this theory — in its present form — does not have much to say about
discrete environments with essentially no structure, like the traveling-salesman

58. See Gabaix (2014) (Section IV) for a systematic analysis in static contexts.
59. See also Hirshleifer et al. (2009), and Section 2.3.5 of Gabaix (2019).

60. There is no known good general-purpose algorithm for worlds with no structure and
high dimensionality. There may not be any, if P # NP. Also, one will never be able to
calculate the cognitive cost of the “rational limit” while problem P 767 NP is open; most
experts think it is likely to remain open for decades.
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problem.%! Fortunately, worlds with smooth structure are very relevant in
economics, especially macro-finance, and the present framework allows us to
make progress on those.

What happens with developed financial markets? For instance, in the life-
cycle problem of Section 2, what would happen if the & was securitized (so
that not just bonds, but also claims on z can be traded)? Here are some short
remarks — I plan to offer a serious treatment of sparse finance in a future paper.
First, all basic arbitrages are excluded: as z is deterministic, if x is not priced
at its fair value, there’s an infinite payoff from trading it: so, agent will pay
attention to that arbitrage, and = will be traded at its fair value, x. Second, even
though the agent as an investor may fully take x into account, as a consumer
he might not fully take it into account.%?

Can’t one explain anything with bounded rationality? Let us observe that
traditional economics models, when free, can “explain almost anything”. For
instance, the Arrow-Debreu model has a great many degrees of freedom.
However, there are two disciplines (besides intuition, a soft form of empirical
knowledge): hard empirical constraints on the parameters (e.g. on the
production functions) and constraints on the number of free parameters that
can be tuned around an agreed-upon baseline model.

I adopt the same attitude here. Take the life-cycle model of Figure 1. There
is one free parameter (k) to fit a whole lifetime: the model is parsimonious.
Next, the model is tightly constrained in its prediction: it can only gives shapes
similar to the ones in the Figure 1: first consumption is flat, then declines before
retirement, drops at retirement, and is flat thereafter.

This said, there are many extensions that one can think about to enrich the
sparse agent (e.g. varying defaults, persistence in attention, heterogeneity in
rationality etc.). It means that it’s a framework with intriguing features worth
exploring. But to keep the parsimony, I think it is useful to coalesce around a
very simple default structure. Here I reported a minimalist one with I found
useful across a range of problems.

Isn’t there much arbitrariness in terms of the “default” , and what can non-
attended to? The Bayesian counterpart of the “default” is the “prior.”%3 There
is no good theory of the “prior,” but researchers still move on with “reasonable”
priors. Likewise, in information economics researchers posit what is known to
the agent and what information requires a mental cost.

The situation with sparsity and its default is very similar. I use “reasonable”
default and try to make “reasonable” assumptions about what is perfectly
perceived (e.g. time ¢) and is not (income after retirement).

61. One could imagine that some variant could be helpful, e.g. by smoothing or doing a
convex relation of discrete problems.

62. See Proposition 12 and its discussion.

63. The default is a deterministic point estimate (which is useful to model bounded
rationality), the prior is a probabilistic distribution.

41



An open question for much of economics is a way to systematize such
“intuitively reasonable” choices. In the meantime, despite the fact that the
model needs inputs, the model produces a good amount of value added, e.g. in
Figure 1.

As there is one way to be rational, and many ways to be boundedly in
rational theory, how do we know how to proceed? 1t is true that there are many
ways to deviate from pure rationality, but some are much more important than
others (perhaps they are on a power law, like so many things). Here, I focus of
one feature: people use a simplify their picture of the world. There are others
(e.g. loss aversion, hyperbolic discounting) and together they constitute a useful
account of major deviations from pure rationality.

This agent is quite sophisticated — almost Bayesian. How do we account for
big mistakes then? We can try to account for big mistakes and miscalibrations
in at least two ways. First, agents don’t have good priors (“hyperparameters”
in hierarchical Bayes models) on which information is useful. For instance, they
(ex post faultily) don’t think that thinking about future retirement will help
them much, that “it’s just too hard” . 64 Second, they could have a high cost
of cognition in some domains: in the “proportional thinking” specification of
Section A.2.2, agent eliminate considerations that matter for less than 5% of
the decision (kK = 5% then). A medium-run research goal is to measure more
systematically attention and costs of cognition, informed by models such as the
present one.5>

Furthermore, sparse agents display only intermediate sophistication. This
paper differs from models that demand Bayesian updating, with optimal
use of information (and agents pay optimal costs to acquire it, e.g. as in
Van Nieuwerburgh and Veldkamp (2010)). Behavioral agents like my sparse
agents do not do Bayesian updating.%¢ For instance, if they see their income
go up, Bayesian agents should infer “probably, the interest rate is high” (as
income and interest rates tend to have positive correlation), but sparse agents
don’t do that inference.

Are those agents easier or more complexr to use than rational agents?
Historically, behaviorally agents have often been more difficult to use (for the
economist deriving their actions) than rational agents. However, sparse agents
are often easier to use. For instance, they don’t need to solve the full equilibrium
in t