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B Continuous Time

We now consider the continuous-time analog of the model, assuming ∗ =  ∀  (from Theorem
4). The CEO’s utility is given by:
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The firm’s returns evolve according to:

 = + 

where  is a Brownian motion, and the volatility process  is deterministic. We normalize

0 = 0 and the risk premium to zero, i.e. the expected rate of return on the stock is  in each

period.

Proposition 3 (Optimal contract, continuous time, log utility). The continuous-time limit of

the optimal contract pays the CEO  at each instant, where  satisfies:

ln  =

Z 

0

 + , (57)

where  and  are deterministic functions. If short-termism is impossible, the sensitivity  is

given by:
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If short-termism is possible,  is given by:
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where:
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If private saving is impossible, the constant  is given by
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If private saving is possible,  is given by
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where  ensures that the agent is at his reservation utility.

Proposition 4 (Optimal contract, continuous time, general CRRA utility, with PS constraint).

Let  denote the stock volatility. The optimal contract pays the CEO  at each instant, where

 satisfies:
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where  and  are deterministic functions. The continuous-time limit of the optimal contract

is the following. The sensitivity  is given by:
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The value of  is:
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where  ensures that the agent is at his reservation utility.

The implications of the optimal contract are the same as for discrete time, except that the

rebalancing of the account is now continuous. As in the discrete time case, the expressions

become simpler if  =  =∞. We have
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We then have  =
0(̄)∞


−()(−) , i.e.

 = 0(̄)()

The solution is the one in the discrete time model in the main paper, (27).

C Analysis of Theorem 2

This section provides the analysis behind the comparative statics of the determinants of ,

discussed in the main paper shortly after Theorem 2. To study the impact of volatility on the

contract, we parameterize the innovations by  = 0, where  indicates volatility. We define

the function:

 (  ) =
 − 1


ln
h
−

0
i
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h
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0
i

in the domain  ≥ 0  ≥ 0  ≥ 1. For instance, when 0 is a standard normal,  (  ) =

22 −1
2
, and  is increasing in  , and .

We also define

 (  ) =  (  )− ln +



If ln + is sufficiently close to 0, then  (  ) is increasing in in   .

Lemma 5 Consider the domain  ≥ 0  ≥ 0  ≥ 1, in the case where  = 0,  =  and

∗ = ∗ ∀. Suppose that  (  ) is increasing in its arguments in that domain. Then,
 = 0 (∗), and for    ,  is increasing in , in , and decreasing in . If  (  ) is

close enough to 0, then  is increasing in .

The lemma means that the sensitivity profile is increasing, and becomes flatter as  and

 are higher. The intuition is thus: a higher , a higher , or a lower , tend to decrease the

relative importance of future consumptions 
£


1−


¤
. Hence, it is important to give a higher

sensitivity to the agent early on. By contrast, when  is low, future consumptions are more

important and so it is sufficient to give a lower sensitivity early on.

Proof Using Theorem 2, simple calculations show, for  ≤ ,
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We have  = 0 (∗). Proceeding by backward induction on , starting at  =  , we see

that  is increasing in : this is because a higher  increases  (  ) via the direct effect

on , and the effect on the future  (  ), so it increases . The same reasoning holds for

the comparative statics with respect to  and .

The last part of Lemma 5 comes from the fact that when  → 0,  → 0(∗)
= 

−(−) , which

is increasing in .

Another tractable case is the infinite horizon limit, where  = →∞. Since the problem
is stationary,  is equal to a limit . From (65), this satisfies:
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For instance, in the continuous-time, Gaussian noise limit,
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2
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which gives the solution (27). The sensitivity of incentives () is higher when the agent is more

risk-averse (higher , provided ln + is close enough to 0), there is more risk (higher ), and

the agent is less patient (lower ).

D Variable Cost of Effort

This section extends the core model to allow a deterministically varying marginal cost of effort.

In practice, this occurs if either the cost function or high effort level changes over time. For

example, for a start-up firm, the CEO can undertake many actions to improve firm value

(augmenting the boundary effort level) and effort is relatively productive (reducing the cost of

effort). However, the scope and productivity of effort declines as the firm matures.

We now allow for a time-varying boundary effort level  and cost of effort  (·). The
sensitivity of the contract in Theorem 1 and Proposition 2 (equations (9) and (33)) now becomes:
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if myopia is impossible, and if myopia is possible
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With a non-constant marginal cost of effort, the contract sensitivity  is time-varying, even

in an infinite-horizon model. In particular,  is high in the periods in which 
0
 (̄) is high. Let

 ≤  denote the period in which 0 (̄) is highest. Even if there is no discounting (
 = 1),

the CEO may have an incentive to increase  at the expense of the signal in period  (where

 ≤  +), if the difference in slopes  and  is sufficient to outweigh the inefficiency of

earnings inflation (  1). Thus, the sensitivity  will have to rise to be sufficiently close to 

to deter such myopia. However, this in turn has a knock-on effect: since  has now risen, the

CEO may have an incentive to increase  at the expense of  (where  ≤  +) and so on.

Therefore, if  is sufficiently high (to make myopia attractive), the high sensitivity at  forces

upward the sensitivity in all periods  ≤ + , even those more than  periods away from ,

owing to the knock-on effects. This “resonance” explains the recursive formulation in equation

(67), where a high 0 (̄) may affect the sensitivity for all  ≤ + .

This dependence can be illustrated in a numerical example. We set  = 5,  = 3,  = 1,

01 (1) = 2 and 02 (2) = 03 (3) = 1. If myopia is impossible, the optimal contract is
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Since the marginal cost of effort is high at  = 1, the contract sensitivity must be high at  = 1

to satisfy the EF condition. However, this now gives the CEO incentives to engage in myopia

if it were possible. Assume  = 1 and 1 
1√
2
. If he engages in myopia that increases 1 by

 units and reduces 2 by 1 unit, lifetime consumption rises by 21 units from the former and

falls by 1 unit from the latter. Therefore, the sensitivity of the contract at  = 2 must increase

to remove these incentives. The sensitivity is now 1
2
per period to give a total lifetime reward

of 21. This increased sensitivity at  = 2 in turn augments the required sensitivity at  = 3,

else the CEO would inflate 2 at the expense of 3: 3 now becomes
221
3

 1
3
. Therefore, even

though the maximum release lag  is 1 and so the CEO cannot take any actions to inflate 1

at the expense of 3, the high sensitivity at 1 still affects the sensitivity at 3 by changing the

sensitivity at 2. Finally, the contract must remain sensitive to firm returns beyond retirement,
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to deter the CEO from inflating 3 at the expense of 4. The new contract is given by:
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This result contrasts with the example in Section 5.2.1 where the possibility of myopia did

not change the contract for  ≤  under no discounting and a constant marginal cost of effort.

E Additional Proofs

This section contains proofs of lemmas, corollaries and other claims in the main paper.

E.1 Proof of Corollary 1

As  =  = ∞ so that we have a constant  =  and  = . For notational simplicity we

normalize (without loss of generality)  = 0 and ̄ = 0. The expected cost of the contract is:
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For the contract without PS, we have  = + ln − ln £¤, so
C = 
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For the contract with PS, we have  = + ln + ln
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E.2 Proof of Theorem 4

We wish to show that, if baseline firm size  is sufficiently large, the optimal contract imple-

ments high effort ( ≡  for all ).

Fix any contract (  ) that is incentive compatible and gives expected utility , where

 = (1  ) is the effort schedule,  : [ ]
 → [0 ], and  = (1   ) is the payoff

schedule,  : [ ]
 → R. The timing in each period is as follows: the agent reports noise

, then is supposed to exert effort (1  ). If the return is  + (1  ) he receives

payoff (1  ), else he receives a payoff that is sufficiently low to deter such “off-equilibrium”

deviations. We require this richer framework, since in general the noises might not be identifiable

from observed returns (when  + (1  ) = 0 + (1  −1 0) for  6= 0 ). Note that

the required low payoff may be negative. A limited liability constraint would be simple to

address, e.g. by imposing a lower bound on . We will denote (1  ) by η.

To establish the result it is sufficient to show that we can find a different contract (∗  ∗)

that implements high effort ( ≡  for all ), and is not significantly costlier than (  ), in

the sense that



"
X
=1

−(∗ (η)− (η))

#
≤ ( [− 1(1)]    [− (η)]) (68)
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for some linear function   : R → R with (0  0) = 0 This is sufficient, because if

initial firm size  is sufficiently large, then for every sequence of noises and actions, firm value


−1

=1(+())+ is greater than , where  is the highest sensitivity coefficient of . This

in turn implies


−1

=1(+())+ ×
£
 − ()

¤ ≥  × [− (η)]  (69)

and so the benefits of implementing high effort outweigh the costs, i.e. the RHS of (68) exceeds

the LHS of (68). To keep the proof concise we assume  = 1,  =  and the noises  are

independent across time. The general case is proven along analogously.

We introduce the following notation. For any contract (  ) and history η let (η) =
[()

−(())]1−

1− (or (η) = ln (η)− (()) for  = 1) denote the CEO’s stage game util-

ity for truthful reporting in period  after history η when he consumes his income, let (η) =



hP

= 
−(η)

i
denote his continuation utility, and (η) = 

−
 (η)

−(1−)(()) de-

note his marginal utility of consumption. We divide the proof into the following six steps.

Step 1. Local necessary conditions. First, we generalize the local effort constraint (5)

to contracts that need not implement high effort.

Lemma 6 Fix an incentive compatible contract (  ), with each (η−1 ·) continuous almost
everywhere and bounded on every compact subinterval, and a history η−1. The CEO’s contin-

uation utility (η−1 ) must satisfy the following:

(η−1 ) = (η−1 ) +
Z 



[(η−1 )
−((−1))]1−0((η−1 )) (70)

with (η)  0

Step 2. Bound on the cost of incentives per period. For any history η−1 and

contract (  ), consider “repairing” the contract at time  as follows. Following any history

η−1 , multiply all the payoffs by the appropriate constant (η−1 ) such that the continuation

utilities 
#
 (η−1 ) for the resulting contract satisfy (70) with (η−1 ) =  for all  In

other words, the local EF constraint for high effort at time  after history η−1 is satisfied. The

following Lemma bounds the expectation of how much we have to scale up the payoffs by the

expectation of how much the target effort falls short of the boundary effort level.

Lemma 7 Fix an incentive compatible contract (  ) and a history η−1, and consider the

contract (#  #) such that:


#
 (η−1 ) =  for all  else 

#
 ≡ 

# (η) = (η)× (η−1 ) if η| = −1  and else 
#
 (η) ≡ (η)
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where (η−1 ) ≥ 1 is the unique number such that #
 (η−1 ) = (−1 ) and


#
 (η−1 ) = 

#
 (η−1 ) +

Z 



[(η−1 )(η−1 )
−()]1−0() (71)

Then:

−1
£
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where () = 
0() sup 00
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¡
1 + 11

()−()0()(1− )
¢
for  6= 1,

() = 
0() sup 00

02 
¡
1 + ()−()0()

¢
for  = 1, and  is the pdf of noise .

Step 3. Constructing the contract that satisfies the local EF constraint in every

period. We want to use the procedure from step 2 to construct a new contract (  ) that

implements high effort, satisfies the local EF in every period, and has a cost difference over

(  ) that is bounded by how much (  ) falls short of the contract that implements high

effort. For this we need the following Lemma.

Lemma 8 For a contract (  ) and any   0 consider the contract (  ) in which all the

payoffs are multiplied by 

i) if (  ) satisfies the local EF constraint then so does (  );

ii) if (  ) satisfies the local PS constraint then so does (  ).

Given an incentive compatible contract (  ), we construct the contract (  ) as follows.

The contract always prescribes high effort. Regarding the payoffs, for any period  after a history

η−1 we first multiply all payoffs after history (−1 ) with fixed constants (η−1 )  1 as

in Lemma 7 so that the resulting utilities 
#
 (η) satisfy (71). Then we multiply all payoffs

following history η−1 by the appropriate constant 
(η−1)  1 so that for the resulting

contract (  ) we obtain the original promised utility, i.e. −1(η−1) = 
−1(η−1). By

construction and the above Lemmas, the contract (  ) satisfies the local EF constraint. In

particular, due to Lemma 8, repairing the contract after history η−1 will not upset the local

EF constraint after history
¡
η−1; 

¢
.

The original contract (  ) satisfies the local PS constraint, i.e. the current marginal utility

of consumption always equals the next-period expected marginal utility. Providing incentives

for high effort in contract (  ) upsets this condition. In the following two steps, given

(  ) we construct the contract (∗  ∗) that also satisfies the local PS constraint and

is not much costlier. In particular, we show that the extent to which the marginal utilities of

consumption in (∗  ∗) depart from the marginal utilities in (  ) is bounded by the extent

to which effort falls short of the high effort level in contract (  )

Step 4. Bound on the decrease of expected MU of consumption per period. We

split this step into two Lemmas. The first bounds the expected decrease in marginal utility
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of consumption from providing incentives for high effort in the current period, as in step 2.

The second bounds the decrease in expected marginal utility by the expected decrease of the

marginal utility.

Lemma 9 Fix any history η−1 and look at the original contract (  ) and the contract

(#  #) from step 1. Then:

−1

"


#
 (η−1 )

(η−1 )

#
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−0() sup 00

02−1[−()]
¡
1− 11−(1+)(1−)[()−()]0()(1− )(1 + )−1 [− (η)]
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Lemma 10 Fix any history η−1 and look at any two contracts (
  ) (  ) with positive

payoffs that satisfy (70) and for every , (η−1 ) ≤  (η−1 ). Then, for some

2  0 :
−1

£
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−1

£
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¤ ≥ 1−2

µ
1−−1

∙
(η−1 )
 (η−1 )

¸¶


Step 5. Constructing the contract that satisfies the local PS constraint in every

period. Providing incentives for high effort in (  ) at (say) time  affects the marginal

utility of consumption in period  and upsets the PS constraint in period  − 1 However,
restoring the PS constraint in period  − 1 will affect the marginal utility of consumption in
period −1 and so upset the PS constraint in period −2, and so on. In the following Lemma
we bound this overall effect using Lemma 9 and iteratively Lemma 10.

Lemma 11 There is a contract (∗  ∗) that implements maximal effort and satisfies the local

EF and PS constraints, and for every history η:

∗ (η)
 (η)

≥
Y

=+1

−( [ (−1 [− (η)])]), (73)

where () = 1−2 (1− )  () = 
−0() sup 00

02 
¡
1− 11−(1+)(1−)[()−()]0()(1− )(1 + )

¢


Step 6. Bounding the cost difference (68). By construction, contract (∗  ∗) from

Lemma 11 implements high effort, causes the local EF constraint to bind, satisfies the local PS

constraint and leaves the CEO with the expected discounted utility . Therefore it is identical

to the contract from Theorem 2, and so also satisfies the global constraints (Theorem 3). It

therefore remains to prove (68).

One can verify that for some 3  0 for every history η we have 
∗
 (η)  3 Moreover,

for any    ∈ R,

−  ≤ 

µ
max{− 
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 0}
¶
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³
max{


 1}− 1 +max{


 1}− 1

´
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Consequently,
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−( [ (−1 [− (η)])])
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− 1 +  (−1 [− (η)])− 1
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where  is as in Lemma 7, while  and  are as in Lemma 11. All functions   
Q

=+1 

and 
− 1
 are continuously differentiable and take value 1 for argument(s) equal to 1, whereas

− (η) is bounded. Therefore there is a linear function  : R
 → R with (0  0) = 0 such

that (68) is satisfied.

The above proof is for the case where private saving is possible as this is the more complex

case. If  = 1 and private saving is impossible, step 4 is not needed and Lemma 11 in step 5

and step 6 become significantly simpler.

E.3 Contract with CARA Utility and Additive Preferences

With these preferences, the agent has period utility

( ) = −−(−())

The derivation of the local constraints and the contract are analogous to the paper. Consider

a two period model with no discounting. From EF we have:

2(1 2) = (1) + 0()× 2

PS yields:



1
= 1

∙


2

¸
−(1−()) = 1

h
−((1)+

0()×2−())
i


1 − () = (1)− ()− log1
£
−(

0()×2)¤




1(1) = (1) + 

and so we have

1(1) = 11 + 1

2(1 2) = 11 + 22 + 1 + 2
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similar to the main paper.

E.4 Negative Effect of Short-Termism

We show that the condition (31) is sufficient for myopia to have a negative impact on the

expected terminal dividend. Fix the effort strategy to be the high effort strategy. Consider any

time  and assume that it has been shown that any myopic actions past time  are suboptimal.

We must establish that:
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For any  ≤ we have:
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+−(+)
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where the first inequality follows from the Mean Value Theorem.

E.5 Proofs of Lemmas

Proof of Lemma 2 Let

(()≤ ) = 


=1 ()

(()≤ ) =
X

=




=1 () =

X
=

(()≤ )

for any  ≤  . For the rest of the proof, fix an argument sequence ()≤ . We will evaluate

all the functions at this sequence, and consequently economize on notation by dropping the

argument of ,  and .
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For unit vectors  and   ≥ , consider the derivatives of the function :
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We will bound the expression in (74). For this purpose note that for any  ≤  and  ≤ −
we have:
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Consequently, for any vector =()≤   ∈ R:
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where the first and third inequalities follow from the Cauchy-Schwartz inequality, and  is as

in (76).

Therefore, using both (74) and (77) we obtain:
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establishing the Lemma.

Proof of Lemma 3 To show that  (()≤) is jointly concave in leisure ()≤ we use Lemma

2 with  =  and:

() = ( − +1) (()− ∗) + ln  (78)

Since

 0() =
−1

0(())
  00() =

−00(())
03(())



and we have assumed that  − +1 ≥ 0, the condition (52) is satisfied if  has sufficiently
high curvature.

Proof of Lemma 4We must verify condition (52) in Lemma 2 for  =  and  defined as:

() = ( − +1) (()− ∗) +

for  = (1− ) + ln
¡
(1−)

¢
+ ln + (1− )

¡

¡
∗−1

¢
+  (∗)

¢
 The rest of the proof

follows as in the  = 1 case, with the derivatives of the  function being:
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for  = 

1−(1− ). Consequently  0(()≤) is jointly concave.

Proof of Lemma 6 Let (η; 
0
) be the CEO’s continuation utility after history η if the agent

reports η−1 
0
 (70) follows from the standard envelope conditions, i.e. 

0
(η; 

0
)|0= = 0

together with:

(η; 
0
) = (η−1 

0
) + ((η−1 

0
))− ((η−1 

0
) + 0 − ) for  = 1

(η; 
0
) = (η−1 

0
) +

(η−1 
0
)
1− £−((−10)+0−)(1−) − −((−1

0
))(1−)

¤
1− 

 for  6= 1

The technical assumptions on (η−1 ·) guarantee that (η−1 ·) is absolutely continuous (see
EG for details). (η)  0 follows from PS, since the marginal utility of consumption at zero

is infinite.

Proof of Lemma 7 Note that if instead of 
#
 (η−1 ·) and (η−1 ·) we solve for the functions


#
 (η−1 ·) and (η−1 ·) that satisfy #

 (η−1 ) = (η−1 ) and


#
 (η−1 ) = 

#
 (η−1 ) +

Z 



[(η−1 )(η−1 )
−()]1−0() (79)


#
 (η−1 )− (η−1 ) = ((η−1 ))− () + ln (η−1 )  = 1


#
 (η−1 )
(η−1 )

=
[(η−1 )(η−1 )

−()]1−

[(η−1 )
−((−1))]1−

 for  6= 1
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then we have (η−1 ) ≤ (η−1 ) (and (η−1 ) = (η−1 ) when  = ) Therefore it

will be sufficient to −1
£
(η−1 )

¤


Since η−1 is fixed, to economize on notation we write () instead of (η−1 ) etc.

Case  6= 1 We have:


#
 () = 

#
 () +

Z 




#
 ()

()

£
()

−(())¤1− 0(()) 0()
0(())



() = 
#
 () +

Z 



£
()

−(())¤1− 0(())
Therefore:Ã

#
 ()

()

!0
=

=


#
 ()

()

£
()

−(())¤1− 0(()) 0()
0(())

()−
£
()

−(())¤1− 0(())#
 ()

()2
=

=

#
 ()

£
()

−(())¤1− 0(()) h 0()
0(())

− 1
i

()2
≤ 

#
 ()

()
(1− )0()

∙
0()

0(())
− 1
¸
for   1

It follows that:


#
 ()

()
≤ 

(1−)0()  



0()

0(())
−1

 ≤ 

(1−) sup 0()


−1


0()
0(())

−1

≤ 

(1−)0() sup 00
02−1[−()] for   1

(80)

where the last inequality follows because
0()
0() = 0()

h
1

0() + (− )
00(+(1−))
02(+(1−))

i
for some

 ∈ [0 1] For   1 we obtain the analogous chain with the inequality signs reversed. Thus,

−1
£
()

¤
= −1

⎡⎣"#
 ()

()

# 1
1−

[()−(())](1−)

⎤⎦ ≤ (81)

≤ 
0() sup 00

02−1[−()]−1
£
[()−(())](1−)

¤ ≤
≤ 

0() sup 00
02−1[−()]

¡
1 + 11

()−()(1− )0()−1 [− ()]
¢


Case  = 1 Comparing (70) and (79) we immediately obtain:

ln () =

Z 



µ
0()

0(())
− 1
¶
0(())+ ()− (())
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Using the analogous bounds as in (80) and (81) we obtain:

−1
£
()

¤ ≤ −1

∙

0()

 



0()

0(())
−1

+()−(())

¸
≤ 

0() sup 00
02−1[−()]−1

£
()−(())

¤ ≤
≤ 

0() sup 00
02−1[−()]

¡
1 + ()−()0()−1 [− ()]

¢


Proof of Lemma 8 Multiplying all payoffs by  results in all the continuation utilities (η)

and deviation continuation utilities (η; 
0
) multiplied by constant 

1− for  6= 1, or having
a constant ln  ×P−

=0 
 added at time , for  = 1, and so EF is unaffected. This also results

in the marginal utilities of current consumption multiplied by −, and so PS is also unaffected.

Proof of Lemma 9We prove only the  6= 1 case. For the  as in the proof of Lemma (7) we
have:

−1

"


#
 (η−1 )

(η−1 )

#
≥ −1

h

−
(η−1 −1)× (1−)(((−1))−())

i
=

= −1

⎡⎣"#
 (η−1 )
(η−1 )

# −
1−

−(1−)[()−((−1))] × (1−)(((−1))−())

⎤⎦ =
≥ 

−0() sup 00
02−1[−()]−1

£
−(1+)(1−)[()−((−1))]

¤ ≥
≥ 

−0() sup 00
02−1[−()]

¡
1− 11−(1+)(1−)[()−()]0()(1− )(1 + )−1 [− (η)]

¢


Proof of Lemma 10We prove only the  6= 1 case. From (70) it follows that for every  and
0 :

(−)
0() ×  (η−1 )

1−−(1−)(

 (−1)) ≥  (η−1 

0
)
1−−(1−)(


 (−1

0
))

and so for every  and 0 :

(η−1 
0
)
−(


 (−1

0
)) ≥ 

−| 
1− |(−)0() ×  (η−1 )

−(
(−1))

−1
£
 (η−1 )

¤ ≥ 
−| 

1− |(−)0()+()−() ×max


 (η−1 )
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It follows that for 2 = | 
1− |(−)0()+()−()

−1
£
(η−1 )

¤
−1

£
 (η−1 )

¤ ≥ −1
£
 (η−1 )

¤ ³
1−2 ×

³
1−−1

h
(−1)
 (−1)

i´´
−1

£
 (η−1 )

¤ =

= 1−2 ×
µ
1−−1

∙
(η−1 )
 (η−1 )

¸¶


Proof of Lemma 11 Let  0 be the payoff scheme  . For any  0     we construct the

payoff scheme   as follows. Start with the payoff scheme  −1 After any history η multiply

the payoffs at time  by (η)  1 so that PS at history η is satisfied; then multiply the

payoffs after any history η,  ≥  and η| = η by 
(η)  1 so that the continuation

utility at history η remains unchanged. After any history η−1 multiply the payoffs at time

 − 1 by (η−1)  1 so that PS at η−1 is satisfied; then multiply the payoffs after any

history η,  ≥ − 1 and η|−1 = η−1 by 
(η−1)  1 so that the continuation utility

at η−1 remains unchanged. Follow this procedure until histories at time 1, and let 
 be the

resulting payoff scheme. One can inductively show that (η)× (η) ≥ 1,  ≤ 

Let ∗ always require the high effort. Lemma 8 yields that each contract (∗  ) satisfies

EF and also PS up to round . Let  ∗ =  −1. It remains to prove (73).

For any history η we have 
∗
() = ()×

Q−1
=1

Q−1
= (η|) ≤ () and so the

condition (73) is satisfied.

For any history η,    we have, by construction above:

∗ (η)
 (η)

=

Ã
Y

=1

−1Y
=

(η|)×
−1Y
=

(η)

!−
≥
Ã

−1Y
=

(η)

!−


Moreover,

(η)
− =



£
+1(η−1 )

¤


£
+1(η−1 )

¤ ≥ 

µ


∙
+1(η−1 )
+1(η−1 )

¸¶
≥

≥  ( ( [− +1(+1)])) 

where the first inequality follows from Lemma 10, and the second one from Lemma 9. By the
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same logic, for any     ≤ − 1

(η)
− =



£
+1(η +1)

¤


£
−1+1 (η +1)

¤ ≥ 

µ


∙
+1(η +1)

−1+1 (η +1)

¸¶
≥ 

¡


£
(η +1)

−¤¢
= 

Ã


"
+1

£
+2( +1 +2)

¤
+1

£
−1+2 (η +1 +2)

¤#! ≥ 

µ


∙


µ
+1

∙
+2(η +1 +2)

−1+2 (η +1 +2)

¸¶¸¶
= 2

µ


∙
+2(η +1 +2)

−1+2 (η +1 +2)

¸¶
≥  ≥ −

µ


∙
(η +1  )

−1 (η +1  )

¸¶
≥ −

¡


£
(η +1  )

−¤¢ = −
Ã


"


£
+1(η +1  +1)

¤
 [+1(η +1  +1)]

#!
≥ −+1 ( [ ( [− +1(η +1  +1)])]) 
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