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Abstract

This paper describes a mechanism that sustains high markups, even in markets with

homogenous goods and many competing firms. We show that random utility models

with idiosyncratic taste shocks driven by standard noise distributions produce, in large

markets, robustly high equilibrium markups that are insensitive to the degree of com-

petition. For example, with Gaussian noise and n firms, markups are asymptotically

proportional to 1/
√

lnn; consequently, a hundred-fold increase in n, from 10 to 1000

competing firms, only halves the equilibrium markup. The elasticity of the markup with

respect to n asymptotically equals the distribution’s tail exponent from extreme value

theory. Only noise distributions with very thin tails have negative asymptotic markup

elasticities.
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1 Introduction

This paper studies the impact of competition on prices in large markets. It focuses on random

utility models in a setting of monopolistic competition, where consumer choice is influenced by

firm-specific ‘noise’ shocks (e.g., Luce 1959; McFadden 1981; Anderson, De Palma, and Thisse

1992). We derive a tractable general expression for equilibrium markups in symmetric random

utility models with many competing firms.1 This expression allows us to characterize the

impact of different noise distributions on competitive outcomes. We find that high mark-ups

are a robust feature of such models. Specifically, random utility models with standard (thin-

tailed) noise distributions produce high markups, even with homogenous goods and many

competing firms; increased competition in large markets only weakly drives down equilibrium

mark-ups.

Explicit expressions for equilibrium markups in random-utility settings have previously

been derived only for some specific distributions of noise. In these special cases, equilibrium

markups turn out to be either completely unresponsive or extremely responsive to compe-

tition. Consider the Perloff and Salop (1985) random utility model. If consumer noise has

an exponential density or a logit (i.e., Gumbel) density, then markups converge to a strictly

positive value as the number of competing firms n goes to infinity: asymptotic markups have

zero elasticity with respect to n (Perloff and Salop 1985; Anderson, De Palma, and Thisse

1992). In contrast, when noise is uniformly distributed, markups are proportional to 1/n:

markups have unit elasticity and thus decrease strongly with n (Perloff and Salop 1985).

These special cases — exponential, logit, and uniform — are appealing for their analytic

tractability rather than their realism. Relative to the Gaussian distribution, the exponential

and logit cases have relatively fat tails while the uniform case has no tails. We seek to

understand how prices respond to competition in the general case; in particular, for empirically

realistic noise distributions.

Applying tools from Extreme Value Theory (EVT), we show that markups are asymptoti-

cally proportional to 1/ (nf [F−1 (1− 1/n)]), where F is the cumulative distribution function

(CDF) of the noise and f = F ′ is the corresponding density function. This expression is

easy to compute. Further, it highlights a simple ‘limit pricing’ logic for the determination

1The restriction to the symmetric-firm case maintains tractability. This precludes us from addressing in-
stances of asymmetries; see the discussions in Bajari and Benkard (2003) and Armstrong (2015). Consequently,
our propositions can be viewed as only suggestive of what happens in the richer structural models that are
most frequently used in empirical industrial organization.

2



of equilibrium markups. Heuristically, each firm sets prices by conditioning on receiving the

best random shock amongst all competing firms, then choosing a markup corresponding to

the expected difference between its random shock and that of the next-best firm. In more

formal terms, our markup expression is asymptotically proportional (and often equal) to the

expected gap between the highest draw and second highest draw in a sample of n random

draws of noise. Thus for large n, markups are pinned down by the tail properties of the noise

distribution.

The Gaussian case – which has relatively thin tails – is illustrative. In our setting of

consumer choice, the Gaussian distribution is a natural benchmark: if a consumer receives

many small, idiosyncratic influences on his preferences or beliefs, then (under appropriate

assumptions) the sum of these influences produces a Gaussian-distributed ‘taste’ shock.2 No

closed-form solutions for equilibrium markups associated with Gaussian noise have previously

been derived. We show that markups in the Gaussian case are asymptotically proportional to

1/
√

lnn. This implies that an increase in the number of competing firms from 10 to 1000 firms

results in only a halving of the equilibrium markup. In contrast, with Cournot competition,

where markups are proportional to 1/n, such an increase would result in the markup becoming

100 times smaller. This example shows that in large markets, competition with plausible noise

distributions may only exert weak pressure on prices (even in the extreme case of homogeneous

goods).

Further, we argue that insensitive prices are the norm rather than the exception. Specif-

ically, we find that the elasticity of the markup with respect to the number of firms asymp-

totically equals the EVT tail index of the noise distribution, an easy-to-calculate magnitude

that captures the notion of tail “fatness”. Using this result, we show that markups have zero

asymptotic markup elasticity for a wide range of noise distributions, characterized by inter-

mediate tail fatness. Only distributions with very thin or fat tails have asymptotic markup

elasticities different from zero.

Distributions with right-bounded support (i.e., finite right tails), such as the bounded

power-law, correspond to settings where consumers’ per-unit valuations of goods are bounded;

such settings are increasingly popular in models of trade (e.g., Arkolakis, Costinot, Donaldson,

and Rodŕıguez-Clare 2015).3 In our setting, with bounded consumer valuations, one might

2As implied by various versions of the central limit theorem; see, for example, Feller (1971, p. 262).
3In these models, bounded consumer valuations are typically imposed either as a consequence of convenient

assumptions (e.g., linear demand functions; see Melitz and Ottaviano 2008) or to produce certain desiderata.
For example, in Arkolakis, Costinot, Donaldson, and Rodŕıguez-Clare (2015), the assumption of bounded
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expect intense competition between homogenous firms to generate large and negative markup

elasticities (see also Vives 1985). We show that this intuition does not always hold: although

asymptotic markup elasticities are indeed negative for common right-bounded distributions

such as the uniform and the bounded power-law, there exist right-bounded distributions where

the asymptotic markup elasticity equals zero.

For distributions with fatter-than-exponential tails (e.g., the lognormal and Pareto distri-

butions), mark-ups paradoxically increase as the number of competing firms increase. While

the possibility of price-increasing competition is not new to the literature (see, e.g., Weyl and

Fabinger 2013), our limit-pricing logic highlights a simple intuition for this phenomenon: with

sufficiently fat tails, the expected gap between the highest and second-highest of n random

draws is asymptotically increasing in n (i.e., the number of competing firms).

Importantly, our findings exhibit “detail-independence”. They hold for all of the random

utility models that we consider: Perloff and Salop (1985), Sattinger (1984), Hart (1985b). The

Perloff-Salop, Sattinger, and Hart models differ in a host of important ways.4 Yet, these three

models produce (asymptotically) the same equilibrium markup up to a scaling constant, for

a wide range of different noise distributions. Such detail-independence permits a more robust

analysis than would be possible if results depended on the specific properties of the demand

specification.

In addition to an understanding of the economics of random utility models, the tools that

we develop allow us to calculate the large-n asymptotic behavior of integrals for a class of

functions h (x), of the form ∫
h (x) fk(x)F n(x)dx, k ≥ 1. (1)

This integral can be used to calculate the expected value of a function of the maximum of

n random variables, or the gap between the maximum and the second largest value of those

random variables. Using EVT, we derive robust approximations of this integral for large n.

These mathematical results have broad applications to various economic settings related to

market and auction mechanisms in large economies.5 In particular, Mangin (2015a) analyzes

consumer valuations (leading, in their setting, to a finite choke price) ensures that marginal changes in trade
costs have continuous effects on prices and welfare, thus enabling tractable analysis.

4For instance, in the Perloff-Salop model, consumers need to buy one unit of the good. In the Sattinger
model, they allocate a fixed dollar amount to the good. The Hart model does not impose either constraint.

5More generally, EVT techniques are important in many areas of economics, such as industrial organization
and discrete choice (e.g., Luce 1959, McFadden 1981, Anderson, De Palma, and Thisse 1992, Dagsvik 1994,
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an elegant model of frictional labor markets where firms compete via auction to hire workers,

and points out that the present paper’s results may be applied to calculate the asymptotic

value of key economic quantities such as the income share of labor. Using a closely related

framework, Mangin (2015b) points out that Theorem 3 of the present paper may be applied

to derive aggregate production functions from an underlying productivity distribution.6

Theoretical results quantifying the effect of competition on markups in large markets have

so far been limited. Some papers derive explicit markup expressions under specific functional

form assumptions (e.g., Dixit and Stiglitz 1977; Perloff and Salop 1985). One exception

is Vives (1985), who derives asymptotic bounds on the markup function under Bertrand

and Cournot competition given bounded consumer valuations and “sufficiently substitutable”

competing products; this corresponds to the case of right-bounded distributions in our model.

We briefly discuss the comparison with Vives (1985) in Section 2.3.

A related theoretical literature studies qualitative features of the effect of competition on

markups; the key insights are laid out in Vives (2001, Section 6.4). If competing products

become infinitely substitutable as the number of competing firms grows large (as in Vives

1985), then markups asymptotically approach zero. Indeed, given bounded noise distributions

in our random-demand setting, each product will (in expectation) have “nearby” competitors

with similar taste shock realizations as n grows large, so markups vanish asymptotically (see

also Perloff and Salop 1985). Similarly, Mas-Colell (1975) argues that if consumers have

continuous preferences over a compact product space, then the competitive outcome obtains

at the large-n limit. The converse point – that markups do not vanish asymptotically if

products remain imperfectly substitutable even at the large-n asymptotic limit – has also

been made; see, e.g., Hart (1985a). This latter point is analogous to our finding that for

sufficiently fat-tailed distributions, markups do not vanish because the expected gap between

the largest and second-largest noise shocks remains bounded away from zero.

Perhaps closest to our paper – and in particular to our finding that markups decrease

(increase) with competition for thin-tailed (fat-tailed) distributions – are Weyl and Fabinger

Bulow and Klemperer 2002, Dagsvik and Karlstrom 2005, Ibragimov and Walden 2010, Bulow and Klemperer
2012, Weyl and Fabinger 2013, and Armstrong 2015), international trade (e.g., Eaton and Kortum 2002,
Bernard, Eaton, Jensen, and Kortum 2003, and Chaney 2008, 2015), macroeconomics and growth (e.g.,
Gabaix 1999, 2011, Jones 2005, Luttmer 2007, and Acemoglu, Carvalho, Ozdaglar, and Tahbaz Salehi 2012),
systemic risk analysis (e.g., Jansen and de Vries 1991 and Ibragimov, Jaffee, and Walden 2009, 2011) and
auction theory (e.g., Hong and Shum 2004.)

6In a separate application, Gabaix and Landier (2008) use some of our results to analyze the upper tail of
the distribution of CEO talents.
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(2013) and Quint (2014), who show how comparative statics of pricing behavior hinge cru-

cially on log-concavity of the demand function; relating this insight to our results, Weyl and

Fabinger (2013) point out that competition increases (decreases) markups if the distribution

of consumer valuations is log-convex (log-concave).7 These papers precisely demarcate the

boundary between price-increasing and price-decreasing competition. Complementing these

papers, we quantify the impact of competition on prices for general distributions. In fact, we

show that for a wide range of distributions above and below the aforementioned boundary,

prices are relatively insensitive to competition.

Our results also relate to some stylized facts about competition and markups. A number

of papers document high markups in industries with homogenous goods and many competing

firms. Hortaçsu and Syverson (2004) document high mark-ups in the mutual fund market,

representing more than 1% of assets under management for most asset classes, even in asset

classes with hundreds of competing funds. Ausubel (1991) and Stango (2000) show that

interest rates on credit cards have been much greater than the cost of funds, despite the

presence of hundreds of competing card-issuing banks.8 Our model provides some relevant

conceptual insights for interpreting these facts. A more rigorous theoretical investigation of

these industries would require a model with ex-ante heterogenous firms to allow for dispersed

markups, something that our symmetric-firm model does not address.

An empirical literature studies the rate at which markups change with entry. Bresnahan

and Reiss (1991) show, in a study of US firms, that oligopolistic markups decrease rapidly

with n when n is small (between 1 and 3), but level off (above zero) beyond three competi-

tors.9 While Bresnahan and Reiss (1991)’s sample is limited to small markets (typically with

no more than ten competitors) and thus does not overlap with the large-n focus of our pa-

per, their results are broadly consistent with our conceptual point that for sufficiently large

markets, under a wide range of circumstances, markups are relatively insensitive to increased

7Relatedly, a number of other papers focus on the point that prices may rise with more intense competi-
tion: see, e.g., Chen and Riordan (2008), as well as Rosenthal (1980), Bénabou and Gertner (1993), Bulow
and Klemperer (2002), Carlin (2009), and Zhelobodko, Kokovin, Parenti, and Thisse (2012) for perverse
competitive effects generated by different microfoundations.

8Further examples of high markups in financial products abound. Bergstresser, Chalmers, and Tufano
(2009) find that mutual funds sold by brokers have anomalously high fees and low net-of-fee returns. Henderson
and Pearson (2011) find that structured equity products also have robustly high mark-ups, and hypothesize
that this is related to investor confusion about product quality. Another complementary explanation is that
investors like the psychological comfort given by specific mutual fund brokers (Gennaioli, Shleifer, and Vishny
2015).

9Another result in this vein is from Mazzeo (2002), who finds in small, local motel markets that the marginal
effect of additional competition on markups decreases quickly with the number of competitors.
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competition. On the other hand, Campbell and Hopenhayn (2005) show that establishment

size is positively correlated with market size in large retail markets, and suggest that this

correlation arises because markups decrease with market size (so that firms in large markets

have to exploit economies of scale to overcome fixed costs).

The paper proceeds as follows. Section 2 presents the main economic result using the

random utility model of Perloff and Salop (1985), demonstrates the equivalence of our results

to the limit-pricing and auction settings, and discusses welfare implications. Section 3 con-

siders alternative random utility models (Sattinger 1984; and Hart 1985b), and shows that

the details of the demand-side modeling matter little, or not at all, to markups. Section 4

presents the main mathematical result: an asymptotic approximation of a key integral that

is needed to characterize economic environments in which extremes matter. We show that

the tail of the noise distribution – captured by the tail index – is the crucial determinant of

prices. As many common noise distributions have a tail index of zero, our results imply that

in a wide range of market contexts additional competition has little effect on prices, once the

market goes beyond a small number of firms. Section 5 concludes.

We prove our main results (including Theorems 1 and 3) in Appendix A, and our other

results in an online Appendix.

2 How Much Does Competition Affect Prices?

In this section, we describe the random utility model from Perloff and Salop (1985). Post-

poning some of the mathematical elements of the proof (which are provided in Section 4),

we report our key result: an asymptotic expression for price markups under oligopolistic

competition. We then discuss implications and applications.

2.1 The Perloff-Salop Model

There is a single representative consumer and an exogenously specified number of firms, n.

The consumer seeks to purchase exactly one unit of the good from one firm. He perceives that

he will receive net utility Ui = Xi − pi by purchasing the good of firm i, where Xi is a noise

term representing a random taste shock, i.i.d. across firms and consumers, and pi is the price

charged by firm i. Thus the consumer chooses to purchase the good that maximizes Xi − pi.
Each firm can produce at marginal cost c. The timing is as follows:
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1. Firms simultaneously set prices;

2. Random taste shocks are realized;

3. Consumers make purchase decisions;

4. Each firm produces the amount purchased from that firm;

5. Profits are realized.

The key economic object of interest is the price markup in a symmetric equilibrium, which

we derive by solving the first-order condition for each firm’s profit maximization problem.

Firm i’s profit function is given by

πi = (pi − c)D (p1, ..., pn; i) (2)

where D (p1, ..., pn; i) is the demand function for firm i given the price vector (p1, ..., pn) of the

n goods. The first order condition for profit maximization implies the following equilibrium

markup in a symmetric equilibrium

p− c = − D (p, p;n)

D1 (p, p;n)
. (3)

Here p is the symmetric equilibrium price, D (p, p′;n) denotes the demand function for a firm

that sets price p when there are n goods and all other firms set price p′, and D1 (p, p′;n) ≡
∂D (p, p′;n) /∂p. Denote the markup p− c in a symmetric equilibrium with n firms as µn.

In a symmetric-price equilibrium, the demand function of firm i is the probability that the

consumer’s surplus at firm i, Xi − pi, exceeds the consumer’s surplus at all other firms,

D (p1, ..., pn; i) = P(Xi − pi ≥ max
j 6=i
{Xj − pj}) = P(Xi ≥ max

j 6=i
{Xj}). (4)

Let Mn denote max {X1, ..., Xn}, which has density nf(x)F n−1(x).10 Evaluation of (3)

gives the following markup expression for the symmetric equilibrium of the Perloff-Salop

model:

µn =
1

nE [f(Mn−1)]
=

1

n (n− 1)
∫
f 2(x)F n−2(x) dx

. (5)

10Indeed, P (Mn ≤ x) = P (Xi ≤ x for i = 1...n) = {P (Xi ≤ x)}n = F (x)
n
.
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Here F is the distribution function and f is the corresponding density of Xi.

Before proceeding to our analysis of the markup expression (5), let us briefly discuss our

modeling approach. We use a stripped-down model of random utility for our analysis. In the

model, the consumer’s payoff function takes an additive form. We show in Section 3 that our

results do not rely on this specification. There, we analyze two other random utility models

which feature (as in Perloff and Salop 1985) a representative consumer who has random i.i.d.

taste shocks over producers, but differ in the form of consumer preferences. Our results from

the present section are preserved in these alternative models, suggesting that the impact of

competition on markups is independent of many of the institutional details of competition in

random-utility settings.

A second feature of our model is that firms are completely symmetric ex ante, and thus

each firm receives an equal 1/n expected market share in equilibrium. This assumption is

strong, but enables tractable analysis.

2.2 Extreme Value Theory: Some Basics

We very briefly introduce some necessary machinery, and postpone some of the mathematical

details to Section 4. As in Section 2.1, define Mn ≡ maxi=1,...,nXi to be the maximum of

n independent random variables Xi with distribution F , and define the counter-cumulative

distribution function F (x) ≡ 1 − F (x). We are particularly interested in the connection

between Mn and F
−1

(1/n);11 informally (in analogy with the empirical distribution function),

one may think of F
−1

(1/n) as the “typical” value of Mn. In fact, the key to our analysis is

to formalize this relationship between F
−1

(1/n) and Mn for large n.

Our analysis is restricted to what we call well-behaved distributions:

Definition 1. Let F be a distribution function with support on (wl, wu), where wu ≤ ∞. We

say F is well-behaved iff f = F ′ is differentiable in some neighborhood of wu, limx→wu F (x)/f(x) =

a exists with a ∈ [0,∞], and

γ = lim
x→wu

d

dx

(
F (x)

f (x)

)
(6)

exists and is finite. We call γ the tail index of F .

11Strictly speaking, we abuse notation in cases where F is not strictly increasing by using F
−1

(t) to denote
F
←

(t) = F← (1− t), where F← (t) = inf {x ∈ (wl, wu) : F (x) ≥ t} is the generalized inverse of F (Embrechts
et al. 1997, p.130). This is for expositional convenience: our results hold with the generalized inverse as well.
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The tail index γ measures the fatness of F ’s right tail. The case γ < 0 consists of very thin-

tailed distributions such as the uniform distribution. The case γ = 0 consists of distributions

with tails of intermediate thickness. A wide range of economically interesting distributions

fall within this domain, ranging from the relatively thin-tailed Gaussian distribution to the

relatively fat-tailed lognormal distribution, as well as other distributions in between, such as

the exponential distribution. The case γ > 0 consists of fat-tailed, Pareto-like distributions

such as the Pareto and the Fréchet distributions.

Being well-behaved in the sense of Definition 1 is not a particularly strong restriction. It

is satisfied by most distributions of interest, and is easy to verify.12 In Section 2.3, Table 1

lists a number of popular densities and the corresponding tail index γ. Note that distributions

with an exponential-like right tail all have γ = 0.

To ensure that the quantities that we are calculating do not diverge, we also impose some

restrictions on the rest of F .

Definition 2. Let j : R→ R have support on (wl, wu). The function j(x) is (wl, wu)-integrable

iff
∫ w
wl
|j (x)| dx <∞ for all w ∈ (wl, wu).

For example, in Theorem 1 we require that f 2 be (wl, wu)-integrable. Verification of this

condition is typically straightforward; for example, f 2 (x) is (wl, wu)-integrable if f = F ′ is

uniformly bounded. Throughout the paper, we use wl = inf{x : F (x) > 0} and wu = sup{x :

F (x) < 1} to denote, respectively, the lower and upper bounds of the support of the noise

distribution F .

2.3 How do markups change with competition?

The next theorem is our key result: it characterizes, asymptotically, the equilibrium markup

as a function of the noise distribution and the number of competing firms.13 Assume that

F is well-behaved, f 2 (x) is (wl, wu)-integrable, and the tail index satisfies −1.45 ≤ γ ≤
0.64.14 Adopting standard notation, we write an ∼n→∞ bn (or simply an ∼ bn) if and only if

limn→∞ an/bn = 1.

12Condition (6) is well-known in the EVT literature as a von Mises condition.
13The proof relies on Theorem 3, proven later; for expositional convenience, we start with the main economic

results.
14This is the range over which the second order condition holds (see the online appendix for details); the

first order condition holds whenever γ > −2. Note that this assumption on γ is not very restrictive. It permits
thin-tailed distributions such as the Weibull, and all (fat-tailed) Pareto distributions with finite variance.
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Theorem 1. The symmetric equilibrium markup in the Perloff-Salop model is, asymptotically

(for n→∞),

µn ∼
1

nf
(
F
−1 ( 1

n

))
Γ (γ + 2)

.

where F (x) ≡ 1− F (x), and Γ(t) ≡
∫∞

0
yt−1e−ydy is the standard Gamma function.

Table 1: Asymptotic Expressions for Markups
This table lists asymptotic markups (under symmetric equilibrium) for the Perloff-Salop model for various

noise distributions as a function of the number of firms n. f specifies the density function, and γ spec-

ifies the distribution’s tail index. Distributions are listed in order of increasing tail fatness. Asymptotic

approximations are calculated using Theorem 1 except where the markup can be exactly evaluated.

Name of Distribution f γ µn limn→∞ µn

Uniform 1, x ∈ [−1, 0] −1 1/n 0

Bounded Power Law
α (−x)

α−1

α ≥ 1, x ∈ [−1, 0]
−1/α Γ(1−1/α+n)

αΓ(2−1/α)Γ(1+n) ∼
n−1/α

αΓ(2−1/α) 0

Weibull
α (−x)

α−1
e−(−x)α

α ≥ 1, x < 0
−1/α 1

αΓ(2−1/α)
n1−1/α

n−1 ∼ n−1/α

αΓ(2−1/α) 0

Bounded
Exponential-like

e−x/(1−x)

(1−x)2

x ∈ [0, 1]
0 ∼ 1

(lnn)2 0

Gaussian (2π)
−1/2

e−x
2/2 0 ∼ (2 lnn)−1/2 0

Rootzen class, φ > 1 κλφxa+φ−1e−x
φ

0 ∼ 1
φλ1/φ (lnn)

1/φ−1
0

Gumbel exp(−e−x − x) 0 n
n−1 1

Exponential e−x, x > 0 0 1 1

Rootzen Gamma
τxτ−1e−x

τ

x > 0, τ < 1
0 ∼ 1

τ (lnn)
1/τ−1 ∞

Lognormal
exp(−2−1 log2 x)

x
√

2π

x > 0
0 ∼ 1√

2 lnn
e
√

2 lnn ∞

Pareto
αx−α−1

α > 1, x ≥ 1
1/α Γ(1+1/α+n)

αΓ(2+1/α)Γ(1+n) ∼
n1/α

αΓ(2+1/α) ∞

Fréchet
αx−α−1e−x

−α

α > 1, x ≥ 0
1/α 1

αΓ(2+1/α)
n1+1/α

n−1 ∼ n1/α

αΓ(2+1/α) ∞

Theorem 1 allows us to calculate the equilibrium markup for various noise distributions.
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Markups for some common distributions are listed in Table 1, where distributions are presented

in increasing order of tail fatness. At one extreme, the uniform distribution has the thinnest

tails (γ = −1). The uniform distribution produces an asymptotic markup that is proportional

to 1/n. In this case, competition dramatically reduces markups. Going down the table, as

tail fatness increases, markups become less sensitive to n. This cursory inspection suggests

a tight connection between the tail fatness and the impact of competition on markups. We

state this point more precisely in the following proposition. It shows that the tail index γ in

(6) has a concrete economic implication: γ is the asymptotic elasticity of the markup with

respect to the number of firms. In other words, interpreting n as a continuous variable, the

markup behaves locally as µ ∼ knγ. Assume that the conditions in Theorem 1 hold, and

further that f 2 (x) logF (x) is (wl, wu)-integrable.

Proposition 1. The asymptotic elasticity of the Perloff-Salop markup with respect to the

number of firms n is

lim
n→∞

n

µn

dµn
dn

= γ.

The case γ < 0 consists of distributions with very thin tails. For these distributions,

asymptotic elasticity is strictly negative: markups are sensitive to the number of firms n, even

as n→∞. The extreme case is the uniform distribution, with asymptotic elasticity γ = −1.
15 The bounded power law and Weibull distributions are particularly flexible, and allow us

to span the gamut of negative asymptotic elasticities within (−1, 0). One common feature of

these distributions is that they have right-bounded support, so that consumers’ valuations of

each good are bounded above by wu <∞.

While all distributions with γ < 0 have right-bounded support (e.g., uniform, bounded

power-law, and Weibull), the converse is not true: there exist right-bounded distributions

with zero asymptotic elasticity. Table 1 includes a bounded exponential-like distribution (see

Gnedenko 1943; and Resnick 1987, p. 39) where markups decrease very slowly for large n:

specifically, as 1/(log n)2. In other words, prices may be insensitive to additional compe-

tition in large markets, even in settings with bounded consumer valuations. These results

are somewhat in contrast with those of Vives (1985), which shows that in a differentiated-

product setting with bounded consumer valuations and additional assumptions about the

substitutability of competing goods, asymptotic markup elasticities are large and negative

15Distributions with tail index γ < −1 may be considered “thinner” than the uniform and have even larger
negative asymptotic elasticities. However, they have the unattractive and unnatural feature that their density
diverges at the (finite) upper bound of their support.
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(≤ −1) in the sense that markups go to zero at a rate of at least 1/n.16 In our model, such

elasticities are only achieved in the extreme thin-tailed case of the uniform distribution.

At the other end of Table 1, for distributions with fatter tails than the exponential distri-

bution, markups rise as the number of competitors increases. This set includes the fat-tailed,

Pareto-like distributions, which have γ > 0; for these distributions, the asymptotic elasticity

is strictly positive, so markups increase quite dramatically with n. It also includes some rel-

atively fat-tailed distributions with γ = 0, such as the lognormal. Intuitively, for sufficiently

fat-tailed noise, as n increases, the difference between the best draw and the second-best draw,

which is proportional to nf
(
F
−1

(1/n)
)

, increases with n (see also Section 2.4 below).17

Returning to the middle of Table 1, a wide range of distributions – those with interme-

diate tail fatness, γ = 0 – have zero asymptotic elasticity. This range encompasses cases of

price-decreasing competition (e.g., Bounded Exponential-like, and Gaussian) as well as price-

increasing competition (e.g., lognormal). It encompasses cases of bounded and unbounded

support. Within this range, Proposition 1 tells us that increased competition has remarkably

little effect on markups in large markets.

Markup sensitivity: a numerical example

Consider the (relatively thin-tailed) case of Gaussian noise. In this case, the markup µn is

proportional to 1/
√

lnn. Accordingly, µn converges to zero, but this convergence proceeds

at a glacial pace.

To conceptually illustrate this slow convergence, we calculate µn when noise is Gaussian for

a series of values of n. Table 2 shows that with Gaussian noise, a highly competitive industry

with n = 1, 000, 000 firms (far more than in any realistic setting) will nonetheless retain a

third of the markup of a relatively concentrated industry with only n = 10 competitors. We

also compare markups in our model to those in the Cournot model, which features markups

proportional to 1/n and a markup elasticity w.r.t. n of −1 (note that this is equal to markups

in the Perloff-Salop model with uniformly distributed noise.)

More generally, in cases with moderate tail fatness, such as the Gumbel (i.e., logit), expo-

16Relatedly, Mas-Colell (1975) shows in a setting where the space of product characteristics is compact that
markups vanish as n→∞ (see also Vives 2001, Section 6.4).

17This logic also explains why the exponential distribution, and asymptotic tail equivalents such as the
Gumbel distribution, demarcate the threshold between price-decreasing and price-increasing competition. For
such distributions, the expected difference between the best draw and the second-best draw is asymptotically
constant in n.
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Table 2: Markups with Gaussian Noise and Uniform Noise
Markups are calculated for (i) the symmetric equilibrium of the Perloff-Salop model for Gaussian noise and

(ii) under Cournot Competition, for various values of the number of firms n, where n is the number of firms

in the market. Markups are normalized to equal one at n = 10.

n Markup with Gaussian noise Markup under Cournot Competition

10 1 1

100 0.61 0.1

1, 000 0.47 0.01

10, 000 0.40 0.001

100, 000 0.35 0.0001

1, 000, 000 0.32 0.00001

nential, and lognormal densities, the markup again shows little (zero asymptotic) response to

changes in n. Nevertheless, the markups become unbounded for the lognormal distribution.

Finally, the bounded exponential-like distribution shows that an infinite support is not nec-

essary for our results. In this case the markup is asymptotically proportional to 1/(log n)2

and markup decay remains slow. In concrete terms, in markets with noisy demand and many

competitors, one should not assume that increased competition dramatically reduces markups.

2.4 Limit Pricing: An Alternative Interpretation

We now discuss an alternative model of oligopolistic competition, sometimes called “limit

pricing”, which has proven to be very useful in trade and macroeconomics (e.g., Bernard,

Eaton, Jensen, and Kortum 2003; see also Auer and Chaney 2009). The price-setting mech-

anism in the limit pricing model is remarkably simple, yet it produces (asymptotically) the

same markups as the Perloff and Salop (1985) model. This equivalence result implies that a

similar logic underlies the equilibrium markups for these models, and thus generates a simple

but useful interpretation of our economic results.

In the limit pricing model, each firm i draws an i.i.d. quality shock Xi. Firms simultane-

ously set prices pi after observing the other firms’ quality shocks. (This is in contrast with the

Perloff and Salop (1985) model, where prices are set before taste shocks are observed.) The
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representative consumer purchases one unit of the good, and picks the firm which maximizes

Xi − pi. As before, call Mn = maxi=1...nXi the largest quality draw from the n firms, and

Sn the second-largest draw. In the competitive equilibrium, the firm with the highest quality,

Mn, captures the entire market, and sets a markup of µLPn = Mn−Sn. This is just enough to

take all the market away from the firm with the second-highest quality.

The next Proposition analyzes the equilibrium markup under Limit Pricing. We assume

that F is well-behaved with tail index γ < 1, and that E [Xi] <∞.

Proposition 2. Let Mn and Sn be, respectively, the largest and second largest realizations of

n i.i.d. random variables with CDF F . Then limit pricing markup is µLPn = Mn − Sn, and

E
[
µLPn

]
∼n→∞

Γ (1− γ)

nf
(
F
−1 ( 1

n

)) . (7)

Notice that this markup is asymptotically proportional to the markup from Theorem

1. This suggests the following intuition for Theorem 1: to set its optimum price, a firm

conditions on getting the largest draw, then evaluates the likely draw of the second highest

firm and engages in limit pricing, where it charges a markup equal to the difference between

its draw and the next highest draw: E
[
µLPn

]
≈ Mn − Sn. (This is analogous to the analysis

of a first-price sealed-bid auction.) In fact, this reasoning gets us approximately the correct

answer: observe that E
[
F (Mn)

]
' 1

n+1
and E

[
F (Sn)

]
' 2

n+1
, which suggests that Mn (the

highest draw) will be close to F
−1 ( 1

n

)
and that Sn (the second-highest draw) will be close to

F
−1 ( 2

n

)
. So,

E
[
µLPn

]
≈Mn − Sn ≈ F

−1
(1/n)− F−1

(1/n+ 1/n)

≈ − 1

n
·
(
F
−1
)′

(1/n) by Taylor expansion

=
1

nf
(
F
−1

(1/n)
) .

In fact, revisiting Theorem 1, we see that this heuristic argument generates the right approxi-

mation for the Perloff-Salop markups when γ = 0 (e.g. Gaussian, logit (Gumbel), exponential,

and lognormal distributions), and that the approximation remains accurate up to a corrective

constant for the other distributions.
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An Application to Auctions

Our mathematical results can also be applied to the analysis of auctions. Consider a second-

price auction with a single good and n bidders where each bidder i privately values the good at

Xi, which is i.i.d. with CDF F . It is well-known that if F is strictly increasing on (wl, wu), then

in equilibrium each bidder bids his private valuation; the bidder with the highest valuation

Mn wins and pays the second-highest valuation Sn. Proposition 2 then immediately implies

that the expected surplus for the winner of the auction is18

E [Mn − Sn] ∼n→∞
Γ (1− γ)

nf
(
F
−1

(1/n)
) . (8)

Other key quantities are also easily derived. For example, the seller’s expected revenue is

E [Sn] ∼n→∞ F
−1

(1/n) Γ (2− γ) if wu =∞. (9)

For some applications of these results to large auction settings, see, e.g., Mangin (2015a).

2.5 Consumer Surplus

The random utility framework is sometimes criticized for generating an unrealistically high

value for consumer surplus and social surplus. Indeed, if the noise distribution is unbounded

(and the noise is treated as normatively meaningful taste shocks), then total consumer surplus

tends to ∞ as the number of firms increases. Our analytical results allow us to examine this

criticism.

To perform welfare analysis in the Perloff and Salop (1985) model, in this subsection

we interpret taste shocks as capturing preference heterogeneity among consumers. So our

measure of consumer surplus is simply Xi− pi where Xi is the consumer taste shock and pi is

the price for the purchased good. In this setting, expected consumer surplus is E [Mn]−p and

expected social surplus is E [Mn]− c, where p is the equilibrium price and Mn ≡ maxi=1,...,nXi

is the largest quality draw from n firms. For brevity, we restrict ourselves to the case with

unbounded distributions and γ ≥ 0.

We can show that E [Mn] ∼ Γ (1− γ)F
−1

(1/n) for 0 ≤ γ < 1.19 For all the distributions

18The case γ 6= 0 of result (8) appeared in Caserta (2002, Prop. 4.1). Her proof relied on a different
argument.

19See Resnick (1987), p. 77, Proposition 2.1. Alternatively, this result is an immediate application of
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that we study except the Pareto-like cases, F
−1

(1/n) rises only slowly with n. Hence, even

for unbounded distributions, and large numbers of producers, surplus can be quite small. For

example, for the case of Gaussian noise when consumer preferences have a standard deviation

of $1, F
−1

(1/n) ∼
√

2 lnn; with a million toothpaste producers, consumer surplus averages no

more than $5.25 per tube. Hence, in many instances, the framework — even with unbounded

distributions — does not generate counterfactual predictions about surplus or counterfactual

predictions about the prices that cartels would set.

3 Detail-Independence

This section demonstrates the robustness of our main findings from Section 2 to alternative

assumptions about consumer preferences.

3.1 Alternative Models

We briefly describe two alternative random-utility models and show that these models also

obey the asymptotic markup rule of Theorem 1. These models differ from Perloff and Salop

(1985) in the specification of consumer preferences, but otherwise share common features:

there is a single representative consumer and n firms, indexed as i = {1, ..., n}. The timing is

also the same: firms set prices simultaneously, before taste shocks are realized. As before, c is

the marginal cost of production, pi is the price of good i, and the random shocks Xi associated

with each good i are i.i.d. randomly distributed with distribution function F .

Sattinger (1984) analyzes the case of multiplicative random utility, where consumers de-

mand a fixed dollar amount. There are two types of goods. Besides the monopolistically

competitive market, there is a composite good purchased from an industry with homogenous

output. Our focus is on markups in the monopolistically competitive market. The consumer

has utility function

U = Z1−θ

[
n∑
i=1

AiQi

]θ
, (10)

where Z is the quantity of the composite good, Ai = eXi is the random taste shock, and Qi is

the quantity consumed of good i. The consumer faces the budget constraint y = qZ+
∑

i piQi,

Theorem 3, which we present in Section 4.
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where y is the consumer’s endowment and q is the price of the composite good. In the online

appendix, we show that the equilibrium markup in this model is

µSattn

c
=

1

n (n− 1)
∫
f 2(x)F n−2(x) dx

=
1

nE [f(Mn−1)]
. (11)

Hart (1985b) analyzes a richer setup where consumers’ demand is flexible in quantity and

value. In comparison, in the Perloff-Salop model, the quantity demanded is fixed; whereas in

the Sattinger model, expenditure is fixed. The consumer’s utility function is:

UHart =
ψ + 1

ψ

(
n∑
i=1

AiQi

)ψ/(ψ+1)

−
n∑
i=1

piQi, (12)

where Ai = eXi is the associated random taste shock for good i and Qi is the quantity

consumed. The equilibrium markup of the Hart (1985b) model is20

µHartn

c
=

1

ψ + (n− 1)
∫
eψxf2(x)Fn−2(x)dx∫
eψxf(x)Fn−1(x)dx

=
1

ψ + (n− 1)
E[eψMn−1f(Mn−1)]

E[eψMn−1 ]

. (13)

3.2 Comparing Equilibrium Markups

We now characterize equilibrium markups for the Sattinger (1984) and Hart (1985b) models.

As in Theorem 1, we assume that F is well-behaved, and that f 2 (x) is [wl, wu)-integrable. For

the Sattinger model, assume that −1.45 ≤ γ ≤ 0.64.21 For the Hart model with parameter

ψ, assume that −1 < γ ≤ 0; if γ = 0, we further require that 1 − ψa > 0.22 Denote the

Perloff-Salop, Sattinger and Hart markups as, respectively, µn, µSattn , and µHartn . The following

theorem states that (up to the marginal cost factor c) all three markups are asymptotically

equal; in fact, the Sattinger markup is exactly equal to the Perloff-Salop markup.

Theorem 2. The symmetric equilibrium markups in the Perloff-Salop, Sattinger and Hart

20Note that in the special case ψ = 0, by comparing (11) with (13), we see that µHartn = µSattn ; that is, the
Hart model generates the same demand functions and markups as the Sattinger model.

21As with the Perloff and Salop (1985) model, this is the range over which the second order condition holds
(see the online appendix for details).

22For distributions violating this condition, no symmetric price equilibrium can be calculated in the Hart
model because each firm would face infinite demand.
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Table 3: Asymptotic Expressions for Sattinger and Hart Markups
This table reproduces Table 1 and adds asymptotic markups for the Sattinger and Hart models. µn, µSattn

and µHartn are respectively the asymptotic markup expressions for the Perloff-Salop, Sattinger, and Hart

models. Asymptotic approximations are calculated using Theorems 1 and 2 except where the markup can

be exactly evaluated. The Hart markup is undefined for distributions fatter than the exponential.

Distribution f µn = µSattn /c µHartn /c limn→∞ µn

Uniform 1, x ∈ [−1, 0] 1/n ∼ 1/n 0

Bounded Power Law
α (−x)

α−1

α ≥ 1, x ∈ [−1, 0]

Γ(1−1/α+n)
αΓ(2−1/α)Γ(1+n) ∼

n−1/α

αΓ(2−1/α) ∼ n−1/α

αΓ(2−1/α) 0

Weibull
α (−x)

α−1
e−(−x)α

α ≥ 1, x < 0

1
αΓ(2−1/α)

n1−1/α

n−1 ∼ n−1/α

αΓ(2−1/α) ∼ n−1/α

αΓ(2−1/α) 0

Bounded
Exponential-like

e−x/(1−x)

(1−x)2

x ∈ [0, 1]
∼ 1

(lnn)2 0

Gaussian (2π)
−1/2

e−x
2/2 ∼ (2 lnn)−1/2 0

Rootzen class, φ > 1 κλφxa+φ−1e−x
φ ∼ 1

φλ1/φ (lnn)
1/φ−1

0

Gumbel exp(−e−x − x) n
n−1 ∼ 1 1

Exponential e−x, x > 0 1 1

Rootzen Gamma
τxτ−1e−x

τ

x > 0, τ < 1
∼ 1

τ (lnn)
1/τ−1 − ∞

Lognormal
exp(−2−1 log2 x)

x
√

2π

x > 0
∼ 1√

2 lnn
e
√

2 lnn − ∞

Pareto
αx−α−1

α > 1, x ≥ 1

Γ(1+1/α+n)
αΓ(2+1/α)Γ(1+n) ∼

n1/α

αΓ(2+1/α) − ∞

Fréchet
αx−α−1e−x

−α

α > 1, x ≥ 0

1
αΓ(2+1/α)

n1+1/α

n−1 ∼ n1/α

αΓ(2+1/α) − ∞

models are asymptotically

µn = µSattn /c ∼ µHartn /c ∼ 1

nf
(
F
−1 ( 1

n

))
Γ (γ + 2)

. (14)

with F (x) ≡ 1− F (x).

Theorem 2 delivers the perhaps unexpected result that the Perloff and Salop (1985), Sat-
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tinger (1984), and Hart (1985b) models generate asymptotically equal (up to a multiplicative

constant) markups; see Table 3. Hence, detail-independence holds: equilibrium markups do

not depend on the details of the model of competition. The key ingredient in the modeling is

the specification of the noise distribution, rather than the details of the particular oligopoly

model. In particular, these results suggest that the limit-pricing logic of Section 2.4 has broad

applicability to random utility models of monopolistic competition.

4 Methodological Results

This section presents our main mathematical results. Solving for the symmetric equilibrium

outcome for distribution function F requires the evaluation of integrals of the form∫
xjeψxfk(x)F (x)n−ldx (15)

where k, l ≥ 1 and j, ψ ≥ 0. For large n, such integrals mainly depend on the tail of the

distribution F , which suggests that techniques from Extreme Value Theory (EVT) may be

applied. (See Resnick 1987, and Embrechts, Klüppelberg, and Mikosch 1997 for an introduc-

tion to EVT.)

Before evaluating (15), we first introduce the notion of regular variation.

Definition 3. A function h : R+ → R is regularly varying at ∞ with index ρ if h is strictly

positive in a neighborhood of ∞, and

∀λ > 0, lim
x→∞

h (λx)

h (x)
= λρ. (16)

We indicate this by writing h ∈ RV ∞ρ .

Analogously, we say that h : R+ → R is regularly varying at zero with index ρ if, ∀λ >
0, limx→0 h (λx) /h (x) = λρ, and denote this by h ∈ RV 0

ρ . Intuitively, a regularly varying

function h (x) with index ρ behaves like xρ as x goes to the appropriate limit, perhaps up to

logarithmic corrections. For instance, xρ and xρ |lnx| are regularly varying (with index ρ) at

both 0 and ∞. Much of our analysis requires the concept of regular variation; specifically,

we require that certain transformations of the noise distribution F be regularly varying. In

the case ρ = 0, we say that h is slowly varying (for example, ln x varies slowly at infinity and

zero).
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Our core mathematical result documents an asymptotic relationship between Mn and

F
−1

(1/n).

Theorem 3. Let F be a differentiable CDF with support on (wl, wu) that is strictly increasing

in a left neighborhood of wu. Let G : (wl, wu)→ R be strictly positive in some left neighborhood

of wu. Suppose that Ĝ (t) ≡ G
(
F
−1

(t)
)
∈ RV 0

ρ with ρ > −1, and that
∣∣∣Ĝ (t)

∣∣∣ is integrable

on t ∈
(
t, 1
)

for all t ∈ (0, 1) (or, equivalently, G (x) f(x) is (wl, wu)-integrable in the sense

of Definition 2). Then, for n→∞,

E [G (Mn)] =

∫ wu

wl

nG (x) f(x)F (x)n−1dx ∼ G

(
F
−1
(

1

n

))
Γ (ρ+ 1) (17)

where Mn is the largest realization of n i.i.d. random variables with CDF F .

We provide some intuition for equation (17). Note that Mn is the maximum of n F -

distributed random variables and exceeds an independent F -distributed random variable n

times out of n+ 1. In other words, E [F (Mn)] = n
n+1

, or equivalently E
[
F (Mn)

]
= 1

n+1
≈ 1

n
.

Consequently, we might conjecture – via heroic commutation of the expectations operator –

that E [Mn] ≈ F
−1 ( 1

n

)
, and more generally that E [G (Mn)] ≈ G (E [Mn]) ≈ G

(
F
−1 ( 1

n

))
. It

turns out that this heuristic argument gives us the correct approximation, up to a correction

factor Γ (ρ+ 1).23

We next present an intermediate result that is neither novel (see Pickands 1986) nor

technically demanding, but allows us to apply Theorem 3 to expressions of the form (15).

The proof is straightforward, and consequently omitted.

Lemma 1. Let F be well-behaved with tail index γ. Then

1. f
(
F
−1

(t)
)
∈ RV 0

γ+1.

2. If wu =∞, then F
−1

(t) ∈ RV 0
−γ. If wu <∞, then wu − F

−1
(t) ∈ RV 0

−γ.

3. If a is finite, then eF
−1

(t) ∈ RV 0
−a.

23Notice that the correction is downward if 0 < ρ < 1, and upward otherwise. Informally, this is because

G
(
F
−1

(x)
)

behaves like xρ close to x = 0; so G
(
F
−1

(x)
)

is approximately concave near zero if 0 < ρ < 1,

and approximately convex near zero otherwise. Jensen’s inequality then suggests that for large n, E [G (Mn)] =

E
[
G
(
F
−1 (

F (Mn)
))]

is smaller than G
(
F
−1 (E [F (Mn)

]))
≈ G

(
F
−1

(1/n)
)

, necessitating a downward

correction, if and only if 0 < ρ < 1.
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Lemma 1 ensures that when F is well-behaved, (15) satisfies the conditions imposed in

Theorem 3 for a wide range of parameter values. The following proposition is then an imme-

diate implication of Theorem 3 and Lemma 1.

Proposition 3. Let F be well behaved with tail index γ. Let j, ψ ≥ 0, k ≥ 1 and let xjeψxfk(x)

be (wl, wu)-integrable. If j > 0, assume that wu > 0. If ψ = 0, we can treat ψa = 0 in the

following expressions. If (k − j − 1) γ − ψa+ k > 0, then as n→∞,∫ wu

wl

xjeψxfk(x)F (x)n−ldx

∼

 n−1
(
F
−1

(1/n)
)j
eψF

−1
(1/n)fk−1

(
F
−1

(1/n)
)

Γ ((k − j − 1) γ − ψa+ k) : wu =∞

n−1wjue
ψwufk−1

(
F
−1

(1/n)
)

Γ ((k − 1) γ + k) : wu <∞
.

Proposition 3 allows us to approximate (15) for well-behaved distributions.24 The param-

eter restriction (k − j − 1) γ − ψa + k > 0 is necessary to ensure that (15) does not diverge.

For our purposes, this restriction is rather mild. One notable exception is that when ψ > 0,

we cannot analyze heavy-tailed distributions (which have fatter-than-exponential tails) such

as the lognormal distribution; for these distributions, a =∞.25

In fact, Theorem 1 is now an immediate corollary of Proposition 3. More generally, these

results are relatively easy to apply. For example, the key mathematical objects in Theorem 1,

γ and nf
(
F
−1

(1/n)
)

, are easy to calculate for most distributions of interest, and are listed

for commonly used distributions in Table 4. The following fact, which is verified using Lemma

A1.6, may often be useful to simplify calculations further for the case γ 6= 0: as n→∞,

1

nf
(
F
−1

(1/n)
) ∼

γF
−1

(1/n) , γ > 0

−γ(wu − F
−1

(1/n)), γ < 0
.

24For a antecedent to this result, see Maller and Resnick (1984).
25Here we define a distribution to be heavy-tailed if eλxF (x) → ∞ as x → ∞ for all λ > 0. To see

why a = ∞ in this case, note that limx→∞ F (x) /f (x) = ∞ implies − d
dx logF (x) = o (1) as x → ∞, so

− logF (x) = o (x) and e−λx = o
(
F (x)

)
for all λ.
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Table 4: Properties of Common Densities
Densities are listed in order of increasing tail fatness whenever possible.

Name of distribution f γ nf
(
F
−1

(1/n)
)

F
−1

(1/n)

Uniform 1, x ∈ [−1, 0] −1 n − 1
n

Bounded Power Law α (−x)
α−1

, α ≥ 1, x ∈ [−1, 0] −1/α αn1/α −n−1/α

Weibull α(−x)α−1e−(−x)α , α ≥ 1, x < 0 −1/α αn1/α ∼ −n−1/α

Bounded
Exponential-like

e−x/(1−x)

(1−x)2 , x ∈ [0, 1] 0 (1 + lnn)2 1− 1
1+logn

Gaussian (2π)−1/2e−x
2/2 0 ∼

√
2 lnn ∼

√
2 lnn

Rootzen Class κλφxa+φ−1e−x
φ

, x > 0, φ > 1 0 ∼ φλ1/φ (lnn)
1−1/φ ∼ (lnn)

1/φ

Gumbel exp(−e−x − x) 0 ∼ 1 ∼ lnn

Exponential e−x, x > 0 0 1 lnn

Lognormal (2π)−1/2x−1e−(log2 x)/2, x > 0 0 ∼
√

2 lnn

F
−1

(1/n)
∼ e
√

2 lnn

Pareto αx−α−1, α > 0, x ≥ 1 1/α αn−1/α n1/α

Fréchet αx−α−1e−x
−α
, α > 0, x ≥ 0 1/α αn−1/α ∼ n1/α

5 Conclusion

Random utility models are a convenient and tractable tool for analyzing settings of imperfect

competition. The choice of noise distributions in random utility models is often influenced

by tractability concerns. It is important to understand the consequences of these modelling

choices and, when possible, to expand the set of tractable models. With this challenge in

mind, our paper makes three sets of contributions.

First, we derive equilibrium markups for general noise distributions in various types of

random utility models of monopolistic competition in large markets. We show that markups

are asymptotically determined by the tail behavior of the distribution of taste shocks.

Second, our results reveal a substantial degree of “detail-independence.” Specifically, the

behavior of price markups are asymptotically identical (up to a constant factor) for all models

that we study. Moreover, for the wide class of distributions with a zero extreme value tail

exponent – including the canonical case of Gaussian noise – we show that the elasticity of

markups to the number of firms is asymptotically zero. In other words, for many types of

large markets, markups are relatively insensitive to the degree of competition.
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Third, we show how to approximate an integral that is useful for studying a wide range

of economic environments in which extreme outcomes determine the equilibrium allocation.

For example, our framework can be used to model imperfect competition in large economies,

including applications in macroeconomics and trade.

Our analysis is agnostic about the source of noise in consumer choice. The noise may

reflect either heterogenous preferences with normative validity or consumer confusion about

product quality. Thus, our results are relevant to both the classical literature on imperfect

competition and the emerging literature on behavioral industrial organization. That said,

we find the behavioral interpretation that noise arises from consumer mistakes particularly

intriguing. Consumer errors in product evaluation may arise from a variety of mechanisms.

Let us briefly outline two hypotheses. First, firms may engage in obfuscation to confuse naive

(boundedly rational) consumers about product quality.26 This point is developed in a number

of recent papers, including Spiegler (2006), Gabaix and Laibson (2006), Ellison and Ellison

(2009), Armstrong and Vickers (2012), and Heidhues, Koszegi, and Murooka (2014a,b).27

Second, consumers may be influenced by a multitude of idiosyncratic behavioral cues in their

decision-making. For example, a consumer who is evaluating a mutual fund may rely on

otherwise uninformative ‘tips’ from his friends and family.

Outside the scope of the present paper, but of definite interest for future work, is to

allow for firm heterogeneity in the model. The analysis of asymmetric outcomes in large

markets introduces additional mathematical challenges, but may produce further insights.

Such an extension would allow us to address some stylized facts about competition in large

monopolistically-competitive markets, such as variation in markups across firms. It could also

potentially lead to a richer set of testable empirical implications.

26Our basic model exogenously specifies the degree of “obfuscation”. In the online appendix, we augment our
model to consider deliberate shrouding / obfuscation by sellers, and show that our key insights are preserved
in this richer setting.

27Relatedly, other papers (e.g. Bordalo, Gennaioli, and Shleifer 2015) emphasize the impact of endogenous
salience on market equilibrium.
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Appendix A Proofs

This appendix proves the methodological results from Section 4, then applies them to prove

the economic results of Sections 2 and 3. To clarify notation: denote fn ∼ gn if fn/gn → 1,

fn = o(gn) if fn/gn → 0 and fn = O(gn) if there exists M > 0 and n′ ≥ 1 such that for all

n ≥ n′, |fn| ≤M |gn|.

Methodological Results

We start by collecting some useful facts about regular variation; for background, see Resnick

(1987) or Bingham, Goldie, and Teugels (1989).

Lemma A1.

1. If g (t) ∈ RV 0
a , then the limit limt→0 g (xt) /g (t) = xa holds locally uniformly (with

respect to x) on (0,∞).

2. If limx→0 h(x)/s(x) = 1, limx→0 s (x) = 0 and g(x) ∈ RV 0
ρ , then g(h(x)) ∼ g(s(x)).

3. If g (t) ∈ RV 0
a and h (t) ∈ RV 0

b , then g (t)h (t) ∈ RV 0
a+b.

4. If g (t) ∈ RV 0
a , h (t) ∈ RV 0

b and limt→0 h (t) = 0, then g ◦ h (t) ∈ RV 0
ab.

5. If g (t) ∈ RV 0
a and non-decreasing, then g−1 (t) ∈ RV 0

a−1 if limt→0 g (t) = 0.

6. Let U ∈ RV 0
ρ . If ρ > −1 (or ρ = −1 and

∫ x
0
U (t) dt < ∞), then

∫ x
0
U (t) dt ∈ RV 0

ρ+1

and

lim
x→0

xU (x)∫ x
0
U (t) dt

= ρ+ 1.

If ρ ≤ −1, then for x > 0,
∫ x
x
U (t) dt ∈ RV 0

ρ+1 and

lim
x→0

xU (x)∫ x
x
U (t) dt

= −ρ− 1.

7. If limt→∞ tj
′(t)/j(t) = ρ, then j ∈ RV ∞ρ . Similarly, if limt→0 tj

′(t)/j(t) = ρ, then

j ∈ RV 0
ρ .

8. If g ∈ RV ∞ρ and ε > 0, then g (t) = o (tρ+ε) and tρ−ε = o (g (t)) as t → ∞; and if

g ∈ RV 0
ρ and ε > 0, then g (t) = o (tρ−ε) and tρ+ε = o (g (t)) as t→ 0.
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Proof. See the online appendix.

Our proof of Theorem 3 depends critically on the following seminal result.

Theorem A1. (Karamata’s Tauberian Theorem) Assume U : (0,∞) → [0,∞) is weakly

increasing. Let Ũ(s) =
∫∞

0
e−sxdU (x) be the Laplace-Stieltjes transform of U(x), and assume

Ũ(s) < ∞ for all sufficiently large s. Then with α ≥ 0, U(x) ∈ RV 0
α if and only if Ũ(s) ∈

RV ∞−α. Further, if either condition holds, then∫ ∞
0

e−sxdU (x) ∼s→∞ U (1/s) Γ (α + 1) .

For a proof, see Bingham, Goldie, and Teugels (1989, pp. 38, Th. 1.7.1’) or (Feller, 1971,

XIII.5, Th. 1).

Proof of Theorem 3. Assume for now that G (x) ≥ 0 for all x ∈ (wl, wu); we relax this

assumption later. Differentiation of P (Mn ≤ x) = F n (x) gives the density of Mn: fn(x) =

nf(x)F n−1(x). Using the change of variable x = F
−1

(t) and observing that dF
−1

(t) /dt =

−1/f
(
F
−1

(t)
)

E [G (Mn)] =

∫ wu

wl

G(x)nf(x)F n−1(x)dx

= n

∫ wu

wl

G(x)F n−1(x) (f(x)dx)

= n

∫ 1

0

G(F
−1

(t))[F (F
−1

(t))]n−1dt

= n

∫ 1

0

Ĝ (t) (1− t)n−1 dt.

We next use the change in variables x = − ln (1− t), so t = 1− e−x, dt = e−xdx, and so

E [G (Mn)] = n

∫ ∞
0

Ĝ
(
1− e−x

)
e−xe−n

′xdx

where n′ = n−1. Define h (x) = Ĝ (1− e−x) e−x, and µ(x) =
∫ x

0
h (y) dy. Since Ĝ is regularly

varying at zero with index ρ > −1, Lemma A1.8 implies that
∫ s

0

∣∣∣Ĝ (t)
∣∣∣ dt <∞ for sufficiently

small s. This, with the assumptions G (t) ≥ 0 and
∫ 1

s

∣∣∣Ĝ (t)
∣∣∣ dt < ∞ for all s ∈ (0, 1),
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ensure that µ(x) =
∫ 1−e−x

0
Ĝ (t) dt is finite and non-decreasing on [0,∞). By Lemma A1.2,

h (x) ∼x→0 Ĝ(x). So h ∈ RV 0
ρ , and by Lemma A1.6

µ(x) =

∫ x

0

h (y) dy ∼x→0
1

1 + ρ
h(x)x ∼x→0

1

1 + ρ
Ĝ(x)x.

Therefore, µ(x) ∈ RV 0
ρ+1. Noting our assumption that ρ+1 > 0, we can now apply Karamata’s

Theorem A1 in combination with the last expression to obtain∫ ∞
0

e−n
′xdµ (x) ∼n′→∞ µ (1/n′) Γ (2 + ρ)

∼n′→∞
1

1 + ρ
Ĝ (1/n′) (n′)

−1
Γ (2 + ρ)

∼n→∞ Ĝ (1/n)n−1Γ (1 + ρ) .

Thus

E [G (Mn)] = n

∫ ∞
0

e−n
′xdµ (x)

∼ nĜ (1/n)n−1Γ (1 + ρ) = G(F
−1

(1/n))Γ (1 + ρ)

holds when G (x) ≥ 0 for all x ∈ (wl, wu). Now relax the assumption that G (x) ≥ 0 for all

x ∈ (wl, wu). Choose t ∈ (0, 1) such that G (t) > 0 for t ∈
[
0, t
]
. The assumption that G (·)

is strictly positive in a left neighborhood of wu ensures that such t exists. Thus we can write

E [G (Mn)] = n

∫ t

0

Ĝ (t) (1− t)n−1 dt+ n

∫ 1

t

Ĝ (t) (1− t)n−1 dt

Consider G̃ : (0, 1)→ R defined by

G̃ (t) ≡

{
Ĝ (t) : t ≤ t

0 : t > t
.

It is easy to check that G̃ satisfies the conditions of the theorem and additionally is weakly
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positive everywhere on (wl, wu). The argument above shows that as 1/n→ 0

n

∫ t

0

Ĝ (t) (1− t)n−1 dt = n

∫ 1

0

G̃ (t) (1− t)n−1 dt ∼ G̃ (1/n) Γ (1 + ρ) ∼ Ĝ (1/n) Γ (1 + ρ) .

(18)

To complete the proof we demonstrate that as n→∞

∣∣∣∣∫ 1

t

Ĝ (t) (1− t)n−1 dt

∣∣∣∣ = o

(∫ t

0

Ĝ (t) (1− t)n−1 dt

)
.

First, by (18): for n→∞,

∫ t

0

Ĝ (t) (1− t)n−1 dt ∼ n−1Ĝ (1/n) Γ (1 + ρ) ∈ RV ∞−ρ−1.

Lemma A1.8 implies that
∫ t

0
Ĝ (t) (1− t)n−1 dt > n−ρ−1−ε for sufficiently large n and given

some ε > 0. Also, ∣∣∣∣∫ 1

t

Ĝ (t) (1− t)n−1 dt

∣∣∣∣ ≤ ∫ 1

t

∣∣∣Ĝ (t)
∣∣∣ (1− t)n−1 dt

≤
(
1− t

)n−1
∫ 1

t

∣∣∣Ĝ (t)
∣∣∣ dt

≤
(
1− t

)n−1
∫ 1

0

∣∣∣Ĝ (t)
∣∣∣ dt.

By assumption
∫ 1

s

∣∣∣Ĝ (t)
∣∣∣ dt <∞ for all s ∈ (0, 1), therefore

∣∣∣∫ 1

t
Ĝ (t) (1− t)n−1 dt

∣∣∣∫ t
0
Ĝ (t) (1− t)n−1 dt

≤

(
1− t

)n−1 ∫ 1

0

∣∣∣Ĝ (t)
∣∣∣ dt

n−ρ−1−ε = o (1) as n→∞.

This completes the proof.

Proof of Proposition 3. Follows immediately from Theorem 3 and Lemma 1.

Economic Results: Markups, Elasticities, and Auctions

Proof of Theorem 1. Follows immediately from Proposition 3.
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Proof of Proposition 1. Treating n as continuous, we have

n

µPSn

dµPSn
dn

= −
(

2n− 1

n− 1
+
n
∫
f 2 (x)F n−2 (x) logF (x) dx∫

f 2 (x)F n−2 (x) dx

)
.

Noting that − log (1− x) ∼ x ∈ RV 0
1 , applying Theorem 3 to G (x) ≡ f(x)

F (x)
logF (x), using

Lemma A1.3, we obtain∫
f 2(x)F n−2(x) logF (x)dx ∼ −n−2f

(
F
−1

(1/n)
)

Γ(3 + γ).

Together with Theorem 1, it follows that

n

µn

dµn
dn

= −

2−
n−2nf

(
F
−1

(1/n)
)

Γ(3 + γ)

n−2nf
(
F
−1

(1/n)
)

Γ(2 + γ)
+ o (1)

 = γ + o (1) .

Proof of Proposition 2. See the online appendix.

Proof of Theorem 2. The Sattinger case follows directly from Proposition 3. For the Hart

case, see the online appendix.
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