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A.1 FURTHER DETAILS FOR THE MAIN BODY OF THE PAPER

A.1.A A More Abstract Version of the Market Structure

It may be useful to have a more abstract presentation of the basic model. We focus on the US side, as the
Japanese side is entirely symmetric.

For generality, we present the monetary model, and then show how the real model can be viewed as a
special case of it. We call

c = (CH , CF, CNT , M, 0, 0) ,

the vector of consumptions of CH US tradables, CF Japanese tradables, CNT US non-tradables, and a quan-
tity M of US money, respectively. The last 2 slots in vector c (set at 0) are the consumption of Japanese
non-tradables, and Japanese money: they are zero for the US consumer. Likewise, the Japanese consumer
has consumption:

c∗ = (C∗H , C∗F, 0, 0, C∗NT , M∗) .

The Japanese household consumes C∗H US tradables, C∗F Japanese tradables, 0 US non-tradables, 0 US
money, C∗NT Japanese non-tradables, and M∗ Japanese money.

The US production vector is
y = (yH , 0, yNT , Ms, 0, 0) .

This shows that the US produces yH US tradables, 0 Japanese tradables, yNT US non-tradables, and 0
Japanese non-tradables and money. Here Ms is the money supply given by the government to the house-
hold. Japanese production is similarly

y∗ = (0, y∗F, 0, 0, y∗NT , Ms∗) .

The vector of prices in the US is
p = (pH , pF, pNT , 1, 0, 0) .

Utility is u (ct, φt), where φt is a taste shock. In the paper, φt = (at, ιt, χt, ωt, 0, 0), so that in the utility
function is

u (ct, φt) =
6

∑
i=1

φit ln cit, for t = 0, . . . , T.

Consumptions are non-negative, cit ≥ 0 for all i, t.
The fourth and sixth components of the above vectors correspond to money. In the real model they are

set to 0. Then, in this real model, the numéraire is the non-tradable good, so that pNT = 1.
We call Θt =

(
ΘUS

t , ΘJ
t

)
the holding by the US of US bonds and Japanese bonds, Pt = (1, et) the price

of bonds in dollars.
The US consumers’ problem is:

(A.1) max
(ct ,ΘUS

t )t≤T

E
T

∑
t=0

βtu (ct, φt) ,

s.t.
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(A.2) pt · (yt − ct) + Pt · DtΘt−1 + πF
t = Pt ·Θt, for t = 0, ..., T,

and

(A.3) ΘT = 0.

Here Dt = diag (R, R∗) is the diagonal matrix expressing the gross rate of return of bonds in each
currency and πF

t is a profit rebated by financiers. The left-hand side of (A.2) is the households’ financial
wealth (in dollars) after period t. US firms are fully owned by US households. Because the economy is
fully competitive, they make no profit. The entire production comes as labor income, whose value is pt · yt.
The budget constraint is the terminal asset holdings should be 0, which is expressed by (A.3). Finally, as is
usual, ct and ΘUS

t are adapted process, i.e. they depend only on information available at date t.
In the above maximization problems, US consumers choose optimally their consumption vector ct and

their dollar bond holdings ΘUS
t . However, they do not choose their holding of Japanese bonds ΘJ

t optimally.
In the basic model we preclude such holdings and set ΘJ

t = 0. In the extended model, we allow for such
holdings and study simple and intuitive cases: for instance, at time 0 the holdings of Japanese bonds can be
an endowment ΘJ

−1 = D J (or Japanese debt denoted in Yen). Alternatively, they could be a liquidity (noise

trader) shock ΘJ
0 = − f , or we could have f be a function of observables, but not the exchange rate directly,

e.g. f = b + c (R− R∗) for a carry-trader. We do not focus on the foundations for each type of demand, but
actually take the demands as exogenously specified. Possible microfoundations for these demands range
from rational models of portfolio delegation where the interest rate is an observable variable that is known,
in equilibrium, to load on the sources of risk of the model (see Section III.A), to models of “reaching for
yield" (Hanson and Stein, 2014), or to the “boundedly rational” households who focus on the interest rate
when investing without considering future exchange rate changes or covariance with marginal utility (as
in Gabaix (2014)).

To summarize, while all goods are frictionlessly traded within a period (with the non-tradable goods
being traded only within a country), asset markets are restricted: only US and Japanese bonds are traded
(rather than a full set of Arrow-Debreu securities).

The goods market clearing condition is:

(A.4) yt + y∗t = ct + c∗t at all dates t ≤ T.

Firms produce and repatriate their sales at every period. They have net asset flows,

Θ f irms
t = p∗Htc

∗
Ht (et,−1) ,

Θ f irms,∗
t = pFtcFt

(
−1,

1
et

)
.

The first equation expresses the asset flows of US exporters: in Japan, they have sales of p∗Htc
∗
Ht Yen in Japan

market; they repatriate those yens (hence a flow of−p∗Htc
∗
Ht in Yen), to buy dollars (hence a flow of p∗Htc

∗
Htet

dollars).
For instance, in the model with the log specification,

Θ f irms
t = p∗Htc

∗
Ht (et,−1) = m∗t ξt (et,−1) ,

Θ f irms,∗
t = pFtcFt

(
−1,

1
et

)
= mtιt

(
−1,

1
et

)
,

so that Θ f irms
t + Θ f irms,∗

t = (m∗t ξtet −mtιt)
(

1,− 1
et

)
. The real model is similar, replacing mt and m∗t by 1.

The gross demand by financiers is Qt (1,−1/et). Each period the financiers sell the previous period
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position, so that their net demand is:

(A.5) Qt (1,−1/et)− DtQt−1 (1,−1/et−1) = (1− DtL) Qt (1,−1/et) ,

where L is the lag operator, LXt = Xt−1.
Financiers choose Qt optimally, given the frictions, as in the main body of the paper and we do not

restate their problem here for brevity. In the last period, holdings are 0, i.e. QT = 0.
The asset market clearing condition is that the net demand for bonds is 0

(A.6) Θ f irms
t + Θ f irms,∗

t + (1− DtL) (Θt + Θ∗t + Qt (1,−1/et)) = 0.

For instance, for consumers, (1− DtL)Θt is the increased asset demand by the agent. To gain some intu-
ition, the first coordinate of equation (A.6), evaluated at time t = 0, in the case where Θt = Θ∗t = 0, gives
equation (25) of the paper:

ξ0e0m∗0 − ι0m0 + Q0 = 0;

and in the real case (corresponding to m0 = m∗0 = 1), we obtain the basic equation (13) of the paper:

ξ0e0 − ι0 + Q0 = 0.

We now state formally the definition of equilibrium in the case of flexible prices. Recall that we assume the
law of one price in goods market to hold such that:

(A.7) p∗Ht = pHt/et, p∗Ft = pFt/et.

Definition A competitive equilibrium consists of allocations
(

ct, c∗t , Θt, Θ∗t , Θ f irms
t , Θ f irms,∗

t , Qt

)
, prices pt, p∗t ,

exchange rate et, for t = 0, . . . , T such that the US consumers optimize their utility function (A.1) under the
above constraints (A.2-A.3), Japanese consumers optimize similarly, goods markets clear (A.4), and asset
markets clear (A.6), and the law of one price (A.7) holds.

As explained in the paper (Lemma 4), if we use local currency pricing (i.e. change (A.7), and replace
the value of p∗Ht and pFt by other, potentially arbitrary, values), the equilibrium value of the exchange rate
does not change (though consumptions do change).

The timing was already stated in the paper, but for completeness we restate it here. At time 0, pro-
ducers produce, consumers demand and consume, exporters repatriate their sales, financiers take their
FX positions, and asset and goods market clear (simultaneously, like in Arrow-Debreu). The potential di-
version by the financiers happens at time 0+, right after time 0 (of course, no diversion happens on the
equilibrium path). Then, at time 1 and potentially future periods, the same structure is repeated (with no
financiers’ position in the last period).

A.1.B Maximization Problem of the Japanese Household

We include there many details excluded from Section II for brevity. The dynamic budget constraint of
Japanese households (which holds state by state) is:

1

∑
t=0

Y∗NT,t + p∗F,tYF,t + π∗t
R∗t

=
1

∑
t=0

C∗NT,t + p∗H,tC
∗
H,t + p∗F,tC

∗
F,t

R∗t
,

where π∗t are the financiers’ profits remittances to the Japanese, π∗0 = 0, π∗1 = Q0(R− R∗e1/e0)/e1.
The static utility maximization problem of the Japanese household:

max
C∗NT,t ,C

∗
H,t ,C

∗
F,t

χ∗t ln C∗NT,t + ξt ln C∗H,t + a∗t ln C∗F,t + λ∗t
(
CE∗t − C∗NT,t − p∗H,tC

∗
H,t − p∗F,tC

∗
F,t
)

,

where CE∗t is aggregate consumption expenditure of the Japanese household, λ∗t is the associated Lagrange
multiplier, p∗H is the Yen price in Japan of US tradables, and p∗F is the Yen price in Japan of Japanese trad-
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ables. Standard optimality conditions imply:

C∗NT,t =
χ∗t
λ∗t

; p∗H,tC
∗
H,t =

ξt

λ∗t
; p∗F,tC

∗
F,t =

a∗t
λ∗t

.

Our assumption that Y∗NT,t = χ∗t , combined with the market clearing condition for Japanese non-tradables
Y∗NT,t = C∗NT,t, implies that in equilibrium λ∗t = 1. We obtain:

p∗H,tC
∗
H,t = ξt; p∗F,tC

∗
F,t = a∗t .

A.1.C The Euler Equation when there are Several Goods

We state the general Euler equation when there are several goods.
With utility ut (Ct) + βut+1 (Ct+1), where Ct is the vector of goods consumed (for instance, Ct =

(CNT,t, CH,t, CF,t) in our setup), if the consumer is at his optimum, we have:

Lemma A.1. When there are several goods, the Euler equation is:

(A.8) 1 = Et

[
βR

ut+1
cj,t+1

/pj,t+1

ut
ci,t

/pi,t

]
for all i, j.

This should be understood in “nominal” terms, i.e. the return R is in units of the (potentially arbitrary)
numéraire.

Proof. It is a variant on the usual one: the consumer can consume dε fewer dollars’ worth (assuming
that the “dollar” is the local unit of account) of good i at time t (hence, consume dci,t = − dε

pi,t
), invest

them at rate R, and consume the proceeds, i.e. Rdε more dollars of good j at time t + 1 (hence, consume
dcj,t+1 = Rdε

pj,t+1
). The total utility change is:

dU = ut
ci,t

dci,t + βEtut+1
cj,t+1

dcj,t+1 = Et

(
−ut

ci,t
/pi,t + βRut+1

cj,t+1
/pj,t+1

)
dε.

At the margin, the consumer should be indifferent, so dU = 0, hence (A.8). �
Applying this to our setup, with i = j = NT, with pNT,t = 1 and ut

cNT,t
= χt

CNT,t
= 1 for t = 0, 1, we

obtain: 1 = E
[

βR 1/1
1/1

]
, hence R = 1/β.

A.1.D Price Indices, Nominal and Real Exchange Rates

We explore here the relationship between the nominal and the real CPI-based exchange rate in our frame-
work. The real exchange rate can be defined as the ratio of two broad price levels, one in each country,
expressed in the same numéraire. It is most common to use consumer price indices (CPI) adjusted by the
nominal exchange rate, in which case one has: E ≡ P∗e

P . Notice that a fall in E is a US Dollar real apprecia-
tion.

Consider the nominal version of the basic Gamma model in Section IV. Standard calculations reported
below imply that the real CPI-based exchange rate is:

(A.9) E = θ̃
(p∗H)

ξ ′(p∗F)
a∗
′
(p∗NT)

χ∗
′

(pH)a′(pF)ι
′
(pNT)χ

′ et,

where θ̃ is a function of exogenous shocks and primed variables are normalized by θ. The above equation
is the most general formulation of the relationship between the CPI-RER and the nominal exchange rate in
the Gamma model.

Let us first derive the price indices {P, P∗}. The US price index P is defined as the minimum cost, in
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units of the numéraire (money), of obtaining one unit of the consumption basket:

Ct ≡
[(

Mt

Pt

)ωt

(CNT,t)
χt(CH,t)

at(CF,t)
ιt

] 1
θt

.

Let us define a “primed” variable as being normalized by the sum of the preference coefficients θt; so that,
for example, χ

′
t ≡

χt
θt

. Substituting the optimal demand for goods (see the first order conditions at the
beginning of Section IV) in the consumption basket formula we have:

1 =
(

ω
′
P
)ω
′ (

a
′ P
pH

)a
′ (

ι
′ P
pF

)ι
′ (

χ
′ P
pNT

)χ
′

.

Hence:

P = (pH)
a′(pF)

ι
′
(pNT)

χ
′
[
(ω
′
t)
−ω
′
t (ι
′
t)
−ι
′
t (a
′
t)
−a
′
t (χ

′
t)
−χ
′
t

]
.

The part in square brackets is a residual and not so interesting. Similarly for Japan, we have:

P∗ = (p∗H)
ξ ′(p∗F)

a∗
′
(p∗NT)

χ∗
′
[
(ω∗

′
t )−ω∗

′
t (ξ

′
t)
−ξ
′
t (a∗

′
t )−a∗

′
t (χ∗

′
t )−χ∗

′
t

]
.

The CPI-RER in equation (A.9) is then obtained by substituting the price indices above in the definition of
the real exchange rate E ≡ P∗e

P . For completeness, we report below the full expression for the function θ̃
that enters in equation (A.9):

θ̃t =
(ω∗

′
t )−ω∗

′
t (ξ

′
t)
−ξ
′
t (a∗

′
t )−a∗

′
t (χ∗

′
t )−χ∗

′
t

(ω
′
t)
−ω
′
t (ι
′
t)
−ι
′
t (a′t)

−a′t (χ
′
t)
−χ
′
t

.

If we impose further assumptions on Equation (A.9), we can derive some useful special cases.

The Basic Gamma Model Assume that ω = ω∗ = 0 and pNT = p∗NT = 1 so that there is no money
and the numéraire in each economy is the non-tradable good. Recall that in the basic Gamma model of
Section II the law of one price holds for tradables, so we have pH = p∗He and pF = p∗Fe. Equation (A.9)

then reduces to: E = θ̃ (pH)
ξ
′−a′(pF)

a∗
′−ι
′
eχ∗
′
. This equation describes the relationship between the RER as

defined in the basic Gamma model and the CPI-based RER. Notice that the two are close proxies of each
other whenever the baskets’ shares of tradables are symmetric across countries (i.e. ξ

′ ≈ a
′

and a∗
′ ≈ ι

′
)

and the non-tradable goods are a large fraction of the Japanese overall basket (i.e. χ∗
′ ≈ 1).

The Basic Complete Market Model We maintain all the assumptions from the paragraph above on
the Basic Gamma model, except that we now assume markets to be complete and frictionless. Recall from

Lemma 3 that we then obtain et = ν. Hence, the CPI-RER now follows: E = θ̃ (pH)
ξ
′−a′(pF)

a∗
′−ι
′
νχ∗

′
.

Notice that while the real exchange rate (e) is constant in complete markets in the basic Gamma model, the
CPI-RER will in general not be constant as long as the CPI baskets are not symmetric and relative prices of
goods move.

A.1.E The Backus and Smith Condition

In the spirit of re-deriving some classic results of international macroeconomics with the Gamma model,
let us analyze the Backus and Smith condition (Backus and Smith (1993)). Let us first consider the basic
Gamma set-up but with the additional assumption of complete markets as in Lemma 3. Then by equating
marginal utility growth in the two countries and converting, via the exchange rate, in the same units, we
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have: P0C0/θ0
P1C1/θ1

=
P∗0 C∗0 /θ∗0
P∗1 C∗1 /θ∗1

e0
e1

. Re-arranging we conclude:

(A.10)
C0/θ0

C1/θ1
=

C∗0 /θ∗0
C∗1 /θ∗1

E0

E1
,

where the reader should recall the definition E = P∗e
P . This is the Backus and Smith condition in our set-up

under complete markets: the perfect risk sharing benchmark equation.
Of course, this condition fails in the basic Gamma model because agents not only cannot trade all

Arrow-Debreu claims, but also have to trade with financiers in the presence of limited commitment prob-
lems. In our framework (Section II), however, an extended version of this condition holds:

(A.11)
C0/θ0

C1/θ1
=

C∗0 /θ∗0
C∗1 /θ∗1

E0

E1

e1

e0
.

The simple derivation of this result is reported below. The above equation is the extended Backus-Smith
condition that holds in our Gamma model. Notice that our condition in equation (A.11) differs from the
standard Backus-Smith condition in equation (A.10) by the growth rate of the “nominal” exchange rate e1

e0
.

Since exchange rates are much more volatile in the data than consumption, this omitted term creates an
ample wedge between the complete market and the Gamma version of the Backus-Smith condition.

The condition in equation (A.11) can be verified as follows:

C0/θ0

C1/θ1
=

C∗0 /θ∗0
C∗1 /θ∗1

E0

E1

e1

e0
⇐⇒ P0C0/θ0

P1C1/θ1
=

P∗0 C∗0 /θ∗0
P∗1 C∗1 /θ∗1

⇐⇒ 1
1
=

1
1

,

where the first equivalence simply makes use of the definition E ≡ P∗e
P , and the second equivalence follows

from PtCt = θt and P∗t C∗t = θ∗t for t = 0, 1. These latter equalities (we focus here on the US case) can
be recovered by substituting the households’ demand functions for goods in the static household budget
constraint: PtCt = CNT,t + pH,tCH,t + pF,tCF,t = χt + at + ιt = θt.

A.2 EXTENSIONS OF THE MODEL

A.2.A Japanese Households and the Carry Trade

In most of the main body of the paper, consumers do not do the carry trade themselves. In this subsection,
we extend Proposition 6 by analyzing the case in which Japanese consumers buy a quantity f ∗ of dollar
bonds, financing the purchase by shorting an equivalent amount of Yen bonds. We let this demand take the
form:

f ∗ = b (R− R∗) .

Recall that Proposition 6 assumes R < R∗, so that if b ≥ 0 the Japanese household demand is a form of
carry trade. The flow equations now are:

NX0 + Q + f ∗ = 0; NX1 − R (Q + f ∗) = 0.

We summarize the implications for the equilibrium carry trade in the Proposition below.

Proposition A.1. Assume ξt = 1 for t = 0, 1, R < R∗ and that Japanese consumers do the carry trade in amount
f ∗, the expected return to the carry trade in the Gamma model is:

Rc
= Γ

R∗
R E [ι1]− ι0 + f ∗(1 + R∗)

(R∗ + Γ) ι0 +
R∗
R E [ι1]− Γ f ∗

.

Hence the carry trade return is bigger: (i) when R∗/R is higher, (ii) when the funding country is a net foreign creditor,
and (iii) when consumers do the carry trade less ( f ∗ increases).
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If consumers do the carry trade on too large a scale ( f ∗ too negative), then the carry trade becomes
unprofitable, Rc

< 0.

A.2.B Endogenizing the Number of Financiers

In the basic model, there is a fixed quantity of financiers. We now show a possible way to endogenize entry
of financiers. This will confirm that the first order results of the paper are unchanged, except that γ is now
endogenous.

We call Ω = E0

[
1− e1

e0
R∗
R

]
the expected discounted return of currency trading. Suppose that each

potential trader has an incentive constraint of the form:

V0 ≡ Ωq0 = E0

[
β

(
R− R∗

e1

e0

)]
q0 ≥ G

q2
0

e0
,

and we have G = g (var0 (e1))
α for a parameter g. Hence g and G are the agent’s γ and Γ. Using Rβ = 1,

this entails an individual demand:
q0 =

Ωe0

G
,

and a benefit

V0 = Ωq0 =
Ω2e0

G
=

Ω2e0

g var0 (e1)
α .

In the spirit of Jeanne and Rose (2002), we posit that financiers decide to enter at date −1 (before the values
of ι0, E0 [ι1] are realized, hence before the actual expected currency trading return is known). Potential
financier i enters if and only if E−1 [V0] ≥ κi, where κi is a (perhaps psychological) cost drawn from a
distribution with CDF F (x) = P (κi ≤ x). This implies that the mass n of financiers is

n = F
(

E−1

[
Ω2e0var0 (e1)

−α
]

/g
)

.

The aggregate demand at time 0 is then:

Q0 = nq0 = n
Ωe0

g var0 (e1)
α .

Hence, we have Q0 = Ωe0
γ var0(e1)

α with

(A.12) γ =
g
n

,

so that

(A.13) γ =
g

F
(

E−1

[
Ω2e0var0 (e1)

−α
]

/g
) .

Hence, we have a fixed point determining γ, since e0 and e1 depend on γ.
Starting after date 0, the analysis is exactly like in the paper, except that the value of γ is pinned down

by considerations at time −1.
For instance, take our baseline case, where R = R∗ = 1. From Proposition 1, e0 = (1+Γ)ι0+E0[ι1]

2+Γ ,

Ω = Γ(ι0−E0[ι1])
(1+Γ)ι0+E0[ι1]

, and γ solves:

(A.14) g = γF

(
E−1[

Γ (γ)2 (ι0 −E0 [ι1])
2 var0 (e1)

−α

[(1 + Γ (γ)) ι0 + E0 [ι1]] (2 + Γ (γ)) g
]

)
with Γ (γ) = γ var0 (ι1)

α .
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We note that the government might wish to subsidize entry in the financial sector so to effectively remove
the financial constraint. This is a property common to many models of financial imperfections: for example
if the financiers had limited capital as in Kiyotaki and Moore (1997); Gertler and Kiyotaki (2010); Brun-
nermeier and Sannikov (2014); He and Krishnamurthy (2013), the government would want to recapitalize
them in many states of the world.59 Like those papers, we do not consider the optimal subsidy to financiers.
One reason for this is that in practice, it is difficult as the government might be facing frictions with the fi-
nanciers such as moral hazard or adverse selection. For example, the government might want to screen for
“smart” FX traders that stabilize FX markets, and not subsidize noise traders, who might actually worsen
the situation (they would be creating f , f ∗ shocks in our model).60

A.2.C A “Short-Run” Vs “Long-Run” Analysis

As in undergraduate textbooks, it is handy to have a notion of the “long run”. We develop here a way to
introduce it in our model. We have periods of unequal length: we say that period 0 is short, but period “1”
lasts for a length T. The equilibrium flow equations in the dollar-yen market become:

ξ0e0 − ι0 + Q0 = 0,
T (ξ1e1 − ι1)− RQ0 = 0.(A.15)

The reason for the “T” is that the imports and exports will occur over T periods. We assume a zero interest
rate “within period 1”. This already gives a good notion of the “long run”.61

Some extra simplicity is obtained by taking the limit T → ∞. The interpretation is that period 1 is “very
long” and period 0 is “very short”. The flow equation (A.15) can be written: ξ1e1 − ι1 − RQ0

T = 0. So in the
large T limit we obtain: ξ1e1− ι1 = 0. Economically, it means the trades absorbed by the financiers are very
small compared to the trades in the goods markets in the long run. We summarize the environment and its
solution in the following proposition.62

Proposition A.2. Consider a model with a “long-run” last period. Then, the flow equations become ξ0e0− ι0 +Q0 =

0 and ξ1e1 − ι1 = 0, while we still have Q0 = 1
Γ E
[
e0 − e1

R∗
R

]
. The exchange rates become:

e0 =

R∗
R E

[
ι1
ξ1

]
+ Γι0

1 + Γξ0
; e1 =

ι1
ξ1

.

In this view, the “long run” is determined by fundamentals e1 = ι1
ξ1

, while the “short run” is determined
both by fundamentals and financial imperfections (Γ) with short-run considerations (ι0, ξ0). In the simple
case R = R∗ = ξt = 1, we obtain: e0 = Γι0+E[ι1]

Γ+1 and e1 = ι1.

Application to the carry trade with three periods. In the 3-period carry trade model of Section III.A,
we take period 2 to be the “long run”. We assume that in period t = 1 financiers only intermediate the new
flows; stocks arising from previous flows are held passively by the households (long term investors) until
t=2. That allows us to analyze more clearly the dynamic environment. Without the “long-run” period 2,
the expressions are less intelligible, but the economics is the same.

59We thank a referee for remarks along these lines.
60With endogenous entry, the FX intervention considered in Section III.B will also ex ante affect entry, similarly to the

analysis in Jeanne and Rose (2002). We leave this interesting analysis to future research.
61The solution is simply obtained by Proposition 3, setting ι̃1 = Tι1, ξ̃1 = Tξ1.
62One derivation is as follows. Take Proposition 3, set ι̃1 = Tι1, ξ̃1 = Tξ1, and take the limit T → ∞.

A.8



A.2.D The Fama Regression over Longer Horizons

We take the context of the Fama regresssion in the paper, and now consider the Fama regression over a
2-period horizon:

1
2

e2 − e0

e0
= α + βUIP,2 (R− R∗) + ε1

i.e. regressing (normalized) the 2-period return on the interest rate differential. We assume that Γ1 is
deterministic.

Lemma A.2. The coefficient βUIP,2 = 1+Γ1/2
(1+Γ0)(1+Γ1)

, while the UIP coefficient in a 1-period regression is βUIP,1 ≡
βUIP = 1+Γ1−Γ0

(1+Γ0)(1+Γ1)
, as in the main text.

Proof We evaluate the derivative at R = R∗ = 1, and for simplicity take the case Γ1 deterministic.

βUIP,2 =
−1
2

∂E
[

e2−e0
e0

]
∂R∗

=
−1
2

∂

∂R∗
Γ0 + 1

Γ0ι0 +R∗E
[

Γ1ι1+R∗ ι2
Γ1+1

]
=

1
2

Γ0 + 1

(Γ0 + 1)2

(
E

[
Γ1ι1 + ι2
Γ1 + 1

]
+ E

[
ι2

Γ1 + 1

])
] =

1
2

1
Γ0 + 1

(
1 + E

[
1

Γ1 + 1

])
=

1
2

2 + Γ1

(Γ0 + 1) (1 + Γ1)
=

1 + Γ1/2
(1 + Γ0) (1 + Γ1)

.

�
Hence, we have 1 ≥ βUIP,2 as often found empirically. Furthermore, we have βUIP,2 ≥ βUIP,1 if

and only if Γ1 ≤ 2Γ0. For instance, suppose that Γ1 and Γ0 are drawn from the same distribution. Then,
E [βUIP,2] ≥ E [βUIP,1]: this means that as the horizon expands, the coefficient of the Fama regression is
closer to 1. This is consistent with the empirical evidence that the Fama regression coefficient is higher, and
closer to 1, at long horizons (Chinn and Meredith (2005)).

A.3 MODEL EXTENSIONS: MULTI-COUNTRY, MULTI-ASSET MODEL,
AND ADDITIONAL MATERIAL ON THE VARIANCE IN THE

CONSTRAINT

We provide below generalizations of the model. In particular, we develop a multi-asset, multi-country
model.

A.3.A Verification of the tractability of the model when the variance is in the constraint

In the paper, we propose a formulation of Γ = γvar(e1)
α. We verify that it leads to a tractable model in the

core parts of the paper. In this subsection of the appendix, we check that we also keep a tractable model in
a more general model with T periods.

When ξt is deterministic, the formulation remains tractable. We obtain each Γt in closed form.63 Let us

63However, when ξt is stochastic, the formulation is more complex. We obtain a fixed point problem not just in Γ0
(like in the 2-period model), but in (Γ0,...,ΓT−1).
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work out explicitly a 3-period example. We take ξt = R = R∗ = 1 for simplicity. The equations are:

e0 − ι0 + Q0 = 0,
e1 − ι1 −Q0 + Q1 = 0,

e2 − ι2 −Q1 = 0,

Qt =
Et [et − et+1]

Γt
for t = 0, 1,

Γt = γ vart (et+1)
α .

Notice that the model at t = 1, 2 is like the basic model with 2 periods, except for the pseudo-import term
ι̃1 = ι1 −Q1. Hence, we have {e2} = {ι2}, and

(A.16) Γ1 = γσ2α
ι2

.

This also implies that (by Proposition 3 applied to (e1, e2) rather than (e0, e1)): {e1} = 1+Γ1
2+Γ1

{ι1}, which
gives:

(A.17) Γ0 = γ

(
1 + Γ1

2 + Γ1
σι1

)2α

,

so we endogenize Γ0. Note that the σι1 is, in general, the variance of pseudo-imports, hence it would include
the volatility due to financial flows. Notice also that fundamental variance is endogenously amplified by the
imperfect financial market: var(e1) depends positively on Γ1, that itself depends positively on fundamental
variance.

The same idea and procedure applies to an arbitrary number of periods, and indeed to the infinite
period model. We could also have correlated innovations in ιt.

A.3.B A tractable multi-country model

We call et
i the exchange rate of country i at date t, with a high et

i being an appreciation of country i’s currency
versus the USD. There is a central country 0, for which we normalize et

0 = 1 at all dates t. As a short hand,
we call this country “the US”. For i 6= j, call ξij < 0 exports of country i to country j (minus the Cobb-
Douglas weight), and xi = −ξi0 > 0 exports of country i to country 0. Define the import weight as:

ξii ≡ − ∑
j=0,...,n,j 6=i

ξ ji > 0,

so that ξii equals total imports of country i. Call θi the holdings of country i’s bonds by financiers, expressed
in number of bonds: so, the dollar value of those bond holdings is qi ≡ θie0

i .
Hence, the net demand for currency i in the currency i / USD spot market, expressed in dollars, is:

(A.18) −∑
j 6=0

ξ0
ije

0
j + x0

i + θie0
i ,= 0,

and has to be 0 in market equilibrium. Indeed, at time 0 the country imports a dollar value ξ0
iie

0
i , creating a

negative demand −ξ0
iie

0
i for the currency. It also exports a dollar value −∑j 6=0 ξ0

ije
0
j + x0

i (recall that ξij < 0
for i 6= j); as those exports are repatriated, they lead to a demand for the currency. Finally, financiers
demand a dollar value θie0

i of the country’s bonds. Using qi ≡ θie0
i , equation (A.18) can be rewritten in

vector form:

(A.19) − ξ0e0 + x0 + q = 0.

The flow equation at time t = 1 is (again, net demand for currency i in the dollar-currency i market,
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expressed in dollars):

(A.20) −∑
j 6=0

ξ1
ije

1
j + x1

i − θie1
i + Πi = 0

where Πi is the time-1 rebate of financiers profits to country i. In the first equation, imports enter as−ξ0
iie

0
i <

0, creating a net negative demand for currency i, and exports to other countries enter as −∑j 6=0,i ξ0
ije

0
j > 0.

Total financiers’ profit is: Π ≡ ∑i Πi = ∑i θi
(
e1

i − e0
i
)
. We posit the following rule for the rebate Πi to

country i: Πi = θi
(
e1

i − e0
i
)
. Then, (A.20) becomes: −∑j 6=0 ξ1

ije
1
j + x1

i − θie0
i = 0, i.e., in vector form:

(A.21) − ξ1e1 + x1 − q = 0.

Finally, we will have the generalized demand for assets:

(A.22) q = Γ−1E
[
e1 − e0

]
,

where q, et are vectors, and Γ is a matrix. We provide a derivation of this demand in section A.3.C. The
financiers buy a dollar value qi of country i’s bonds at time 0, and −∑n

i=1 qi dollar bonds, so that the net
time-0 value of their initial position is 0. The correspondence with the basic Gamma model (with only 2
countries) is q = −Q, xit = ιit.

We summarize the set-up below.

Lemma A.3. In the extended n-country model, the basic equations describing the vectors of exchange rates et are:

ξ0e0 − x0 − q = 0,(A.23)

ξ1e1 − x1 + q = 0,(A.24)

E
[
e1 − e0

]
= Γq.(A.25)

Those are exactly the equations of the 2−country model (with QGamma = −qhere), and ιGamma = xhere,
but with n countries (so et ∈ Rn−1). Hence the solution is the same (using matrices). We assume that ξ1 is
deterministic.

Proposition A.3. The exchange rates in the n−country model are given by the following vectors:

e0 =
(

ξ0 + ξ1 + ξ1Γξ0
)−1 ((

1 + ξ1Γ
)

x0 + E
[

x1
])

,(A.26)

e1 =
(

ξ0 + ξ1 + ξ0Γξ1
)−1 (

x0 +
(

1 + ξ0Γ
)

E
[

x1
])

+
(

ξ1
)−1 {

x1
}

.(A.27)

Hence, the above model has networks of trade in goods, and multi-country asset demand.

A.3.C Derivation of the multi-asset, multi-country demand

We derive the financiers’ demand function in a multi-asset case. We start with a general asset case, and then
specialize our results to exchange rates.

A.3.C.1 General asset pricing case

Basic case We use notations that are valid in general asset pricing, as this makes the exposition
clearer and more general. We suppose that there are assets a = 1, . . . , A, with initial price p0, and period 1
payoffs p1 (all in RA). Suppose that the financiers hold a quantity position θ ∈ RA of those assets, so that
the terminal value is θ · p1. We want to compute the equilibrium price at time 0.

Let
π = E

[
p1
]
− p0,
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denote the expected gain (a vector), and
V = var

(
p1
)

,

denote the variance-covariance matrix of period 1 payoffs.
Given a matrix G, our demand will generate the relation

(A.28) π = Gθ∗,

This is a generalization to an arbitrary number of assets of the basic demand of Lemma 2, Q0 = 1
Γ E
[
e0 − e1

R∗
R

]
.

The traditional mean-variance case is G = γV. The present machinery yields more general terms: for exam-
ple, we could have G = VH′, for a “twist” matrix H. The mean-variance case is H = γIn, for a risk-aversion
scalar γ. The H can, however, represent deviations from that benchmark, e.g. source-dependent risk aver-
sion (if H = diag (γ1, ..., γA), we have a “risk aversion" scalar γa for source a), or tractability-inducing twists
(our main application here). Hence, the machinery we develop here will allow to go beyond the traditional
mean-variance setup.

The financiers’ profits (in dollars) are: θ ·
(

p1 − p0), and their expected value is θ′π, where π :=
E
[
p1]− p0. We posit that financiers solve:

max
θ∈RA

θ′π s.t. θ′π ≥ θ′Sθ,

where S is a symmetric, positive semi-definite matrix. This is a limited commitment constraint: the fi-
nanciers’ outside option is θ′Sθ. Hence, the incentive-compatibility condition is θ′π ≥ θ′Sθ. Again, this is a
generalization (to an arbitrary number of assets) of the constraint in the paper in Equation (8).

The problem implies:
π = Sθ∗,

where θ∗ is the equilibrium θ.64

Hence, we would deliver (A.28) if we could posit S = G. However, this is not exactly possible, because
S must be symmetric, and G is not necessarily symmetric.

We posit that the outside option θ′Sθ equals:65

(A.29) θ′Sθ ≡∑
i,j

θ2
i

1θ∗i 6=0

θ∗i
Gijθ

∗
j ,

where θ is chosen by the financier under consideration, and θ∗ is the equilibrium demand of other financiers
(in equilibrium, θ = θ∗). This functional form captures the fact that as the portfolio or balance sheet expands
(θi high), it is “more complex” and the outside option of the financiers increases. In addition (if say G = γV),
it captures that high variance assets tighten the constraint more (perhaps again because they are more
“complex” to monitor). The non-diagonal terms indicate that “similar” assets (as measured by covariance)
matter. Finally, the positions of other financiers matter. Mostly, this assumption is made for convenience.
However, it captures the idea (related to Basak and Pavlova (2013)) that the positions of other traders
influence the portfolio choice of a given trader. The influence here is mild: when G is diagonal, there is no
influence at all.

We will make the assumption that

(A.30) ∀i, sign (π∗i ) = sign (θ∗i ) , where π∗ ≡ Gθ∗.

This implies that S is a positive semi-definite matrix: for instance, when θ∗i 6= 0, ∑j
1
θ∗i

Gijθ
∗
j ≥ 0. Equation

(A.30) means that the sign of the position θ∗i is equal to the sign of the expected return πi. This is a mild

64The proof is as follows. Set up the Lagrangian L = θ′π + λ (θ′π − θ′Sθ). The first-order condition reads 0 = Lθ′ =

(1 + λ)π − 2λSθ. So, π = 2λ
1+λ Sθ. Left-multiplying by θ′ yields θ′π = 2λ

1+λ θ′Sθ. Since θ′π ≥ θ′Sθ, we need λ ≥ 1.
Hence, π = Sθ.

65This is, Sij = 1i=j
1
θ∗i

Gijθ
∗
j if θ∗i 6= 0, Sij = 0 if θ∗i = 0.

A.12



assumption that rules out situations where hedging terms are very large.
We summarize the previous results. Recall that we assume (A.30).

Proposition A.4. (General asset pricing case: foundation for the financiers’ demand) With the above set-up, the
financiers’ equilibrium holdings θ∗ satisfy:

(A.31) E
[

p1 − p0
]
= Gθ∗,

with G a matrix. When G is invertible, we obtain the demand θ∗ = G−1E
[
p1 − p0].

Proof: First, take the case θ∗i 6= 0. Deriving (A.29) w.r.t. θi: 2 (Sθ)i = ∑j
2θi
θ∗i

Gijθ
∗
j , so that (Sθ∗)i =

∑j Gijθ
∗
j = (Gθ∗)i. When θ∗i = 0, assumption (A.30) implies again (Sθ∗)i = ∑j Sijθ

∗
j = 0 = π∗i = (Gθ∗)i.

Thus, Sθ∗ = Gθ∗. Hence, the set-up induces π = Sθ∗ = Gθ∗. �

Proposition A.5. Suppose that we can write G = VH′, for some matrix H. Then, a riskless portfolio simply offers
the riskless US return, and in that sense the model is arbitrage-free.

Proof: Suppose that you have a riskless, 0-investment portfolio κ: κ′V = 0. Given π = VH′θ∗, we have
κ′π = κ′Gθ∗ = κ′VH′θ∗ = 0, i.e. the portfolio has 0 expected return, hence, as it is riskless, the portfolio
has 0 return. �

Proposition A.7 offers a stronger statement that the model is arbitrage-free.

A.3.C.2 Extension with derivatives and other redundant assets

The reader may wish to initially skip the following extension. When there are redundant assets (like deriva-
tives), some care needs to be taken when handling indeterminacies (as many portfolios are functionally
equivalent). Call Θ the full portfolio, including redundant assets, and Pt the full price vector. We say that
assets a ≤ B are a basis, and we reduce the portfolio Θ into its “basis-equivalent” portfolio in the basis,
θ ∈ RB, with price pt, defined by:

Θ · P1 = θ · p1, for all states of the world.

For instance, if asset c is redundant and equal to asset a minus asset b (p1
c = p1

a − p1
b), then (θa, θb) =

(Θa + Θc, Θb −Θc).
More generally, partition the full portfolio into basis assets ΘB and derivative assets ΘD, Θ = (ΘB, ΘD),

and similarly partition prices in P = (p, pD). We sometimes write pB rather than p when this clarifies
matters. As those assets are redundant, there is a matrix Z such that

p1
D = Zp1.

Then, the basis-equivalent portfolio is θ = ΘB + Z′ΘD.66

Then, we proceed as above, with the “basis-equivalent portfolio”. This gives the equilibrium pricing
of the basis assets, p0

B. Then, derivatives are priced by arbitrage:

p0
D = Zp0,

A.3.C.3 Formulation with a Stochastic Discount Factor

The following section is more advanced, and may be skipped by the reader.
It is often useful to represent pricing via a Stochastic Discount Factor (SDF). Let us see how to do that

here. Call w = P′1Θ = p′1θ the time-1 wealth of the financiers. Recall that we have π = Gθ∗, with G = VH′.
If we had traditional mean-variance preferences, with π = γVθ∗, we could use a SDF: M = 1− γ {w},

for a scalar γ. We want to generalize that idea.

66Proof: the payoffs are Θ′P1 = Θ′B p1 + Θ′D p1
D = Θ′B p1 + Θ′DZp1

B = θ′p1
B with θ′ = Θ′B + Θ′DZ.
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As before, we define
{X} ≡ X−E[X]

to be the innovation to a random variable X.
Recall that we are given B basis assets a = 1, . . . , B (i.e.,

({
p1

a
})

a=1,...,B are linearly independent), while
assets a = B + 1, ..., A are derivatives (e.g. forward contracts), and so their payoffs are spanned by the
vector

(
p1

a
)

a≤B.
Next, we choose a linear operator Ψ for the basis assets that maps random variables into random

variables.67 It is characterized by:

Ψ
{

p1
a

}
= ∑

b
Hab

{
p1

b

}
for a = 1, . . . , B, and for b = 1, . . . , B,

or, more compactly:
Ψ
{

p1
}
= H

{
p1
}

.

This is possible because
{

pa
1
}

are linearly independent. The operator extends to the whole space S of traded
assets (including redundant assets).

Proposition A.6. The pricing is given by the SDF:

(A.32) M = 1−Ψ {w} ,

where w = P′1Θ = p′1θ is the time-1 wealth of the financiers.

Proposition A.7. If the shocks
{

p1} are bounded and the norm of matrix H, ‖H‖, is small enough, then M > 0 and
the model is arbitrage-free.

In addition, it shows that the SDF depends linearly on the agents’ total terminal wealth w, including
their proceeds from positions in derivatives.

Proof. We need to check that this SDF generates: p0 = E
[
Mp1]. Letting M = 1−m with m = Ψ {w},

we need to check that p0 = E
[
p1 −mp1] = E

[
p1]−E

[
mp1], i.e. π := E

[
p1 − p0] = E

[
mp1]. Recall that

we have π = Gθ = VH′θ.
Hence, we compute:

E
[
mp1

a

]
= E

[
p1

a (Ψ {w})
]

= E

[
p1

a ∑
b,c

θcHcb

{
p1

b

}]
= ∑

b,c
E
[

p1
a

{
p1

b

}]
Hcbθc

= ∑
b,c

Vab
(

H′
)

bc θc =
(
VH′θ

)
a

i.e., indeed, E
[
mp1] = VH′θ = π. �

A.3.C.4 Application to the FX case in a multi-country set-up

We now specialize the previous machinery to the FX case. In equilibrium, we will indeed have (with
q = (qi)i=1,...,n):

(A.33) q = Γ−1E
[
e1 − e0

]
,

67Mathematically, call S the space of random payoffs spanned by (linear combinations of) the traded assets,(
p1

a
)

a=1,...,B. S is a subset of L2 (Ω), where Ω is the underlying probability space. Ψ: S → S is an operator from S
to S, while H is a B× B matrix.

A.14



and q0 = −∑n
i=1 qi ensures ∑n

i=0 qi = 0. We endogenize this demand, with

(A.34) Γ = γVα,

where V = var
(
e1), and var (x) = E [xx′] − E [x]E [x′] is the variance-covariance matrix of a random

vector x. Note that var
(
e1) = var

(
x1) is independent of e0. Hence, with this endogenous demand, we

have a model that depends on variance, is arbitrage free, and (we believe) sensible.
Let us see how the general asset pricing case applies to the FX case. The basis assets are the currencies,

with pt = et, θa is the position in currency a, and qa = θae0
a is the initial dollar value of the position. The

position held in dollars is q0 (and we still have et
0 = 1 as a normalization). We define

(A.35) D = diag
(

e0
)

,

so that q = Dθ. We take the G matrix to be

(A.36) G = γVαD,

for scalars γ > 0 and α ≥ 0. Recall that V = var
(
e1) is a matrix. The reader is encouraged to consider

the leading case where α = 1. In general, Vα is the variance-covariance matrix to the power α: if we write
V = U

′
ΛU for U an orthogonal matrix and Λ = diag (λi) a diagonal matrix, Vα = U

′
diag

(
λα

i
)

U.

Proposition A.8. (FX case: Foundation for the financiers’ demand (A.22)) With the above set-up, the financiers’
equilibrium holding q satisfies:

(A.37) E
[
e1 − e0

]
= Γq,

with
Γ = γVα,

where γ > 0 and α ≥ 0 are real numbers, and V = var
(
e1) is the variance-covariance matrix of exchange rates. In

other terms, when Γ is invertible, we obtain the Gamma demand (A.22), q = Γ−1E
[
e1 − e0].

Proof. This is a simple correlate of Proposition A.4. This Proposition yields

E
[

p1 − p0
]
= Gθ∗,

Using pt = et, Γ ≡ γVα, G ≡ ΓD, q = Dθ∗, we obtain

E
[
e1 − e0

]
= Gθ∗ = ΓDθ∗ = Γq.

�
It may be useful to check the logic by inspecting what this yields in the Basic Gamma model. There,

the outside option of the financiers is given by (A.29) (using θ = −q/e0, since in the basic Gamma model
the dollar value of the yen position is −q)

θ′Sθ = γθ2var (e1)
α e0 = γvar (e1)

α q2

e0
.

The financiers’ maximization problem is thus:

max
q

V0 where V0 := E

[
1− e1

e0

]
q,

s.t. V0 ≥ γ var (e1)
α q2

e0
,
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i.e., the divertable fraction is γvar (e1)
α q

e0
. It is increasing in q and the variance of the trade (a “complexity”

effect).
The constraint binds, and we obtain:

E

[
1− e1

e0

]
q = γvar (e1)

α q2

e0
,

or,

(A.38) E [e0 − e1] = γvar (e1)
α q,

which confirms the intuitive properties of this derivation.

A.3.C.5 Application to the CIP and UIP trades

Suppose that the assets are: dollar bonds paying at time 1, yen bonds paying at time 1 (so that their payoff
is e1), and yen futures that pay e1 − F at time 1, where F is the futures’ price. The payoffs (expressed in
dollars) are:

P1 = (1, e1, e1 − F)′ ,

and the equilibrium time-0 price is:
P0 = (1, e0, 0)′ ,

as a futures position requires 0 initial investment.
Suppose that financiers undertake the CIP trade, i.e. they hold a position:

ΘCIP = (e0,−1, 1)′ ,

where they are long the dollar, short the yen, and long the future. To review elementary notions in this
language, the initial price is ΘCIP · P0 = 0. The terminal payoff is ΘCIP · P1 = e0− F, hence, by no arbitrage,
we should have F = e0.

The financiers can also engage in the UIP trade; in the elementary UIP trade they are long 1 dollar, and
short the corresponding yen amount:

ΘUIP =

(
1,
−1
e0

, 0
)′

.

Assume that financiers’ portfolio is composed of C CIP trades, and q UIP trades:

Θ = CΘCIP + qΘUIP.

We expect the risk premia in this economy to come just from the risk currency part (q), not the CIP position
(C). Let us verify this.

In terms of the reduced basis, we have

θCIP = (e0 − F, 0)′ ,

θUIP =

(
1,
−1
e0

)′
,

so that
θ = CθCIP + qθUIP.

Hence, the model confirms that the financiers have 0 exposure to the yen coming from the CIP trade. We
then have

E [e0 − e1] = Γq,

with Γ = γvar (e1)
α. The CIP trade, causing no risk, causes no risk premia. We summarize the results in the

following lemmas.
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Lemma A.4. If the financiers undertake both CIP and UIP trades, only the net positions coming from the UIP trades
induce risk premia.

Lemma A.5. Assume that α ≥ 1, or that V = var
(

x1) is invertible (and α ≥ 0). Then, in the FX model risk-less
portfolios earn zero excess returns. In particular, CIP holds in the model, while UIP does not.

Proof: Define W = γVα−1D, which is well-defined under the lemma’s assumptions. Then, we can
write G = γVαD as G = VW, and apply Proposition A.5. �

A.4 NUMERICAL GENERALIZATION OF THE MODEL

We include here a generalization of the basic Gamma model of Section II that relaxes some of the assump-
tions imposed in the main body of the paper for tractability. The generalization of the model in Section
II has to be solved numerically. Our main aim is to verify, at least numerically, that all the core forces of
the basic model carry through to this more general environment. We provide a brief numerical simulation
and stress that this is only a numerical example without any pretense of being a full quantitative assess-
ment. A full quantitative assessment, with its need for further channels and numerical complications, while
interesting, is the domain of future research.

Model Equations Since the model is a generalization of the basic one, we do not restate, in the interest of
space, the entire structure of the economy. We only note here that the model has infinite horizon, symmetric
initial conditions (both countries start with zero bond positions), and report below the system of equations
needed to compute the solution.

Rt+1 =
χt/YNT,t

βtEt[χt+1/YNT,t+1]
,(A.39)

R∗t+1 =
χ∗t /Y∗NT,t

β∗t Et[χ∗t+1/Y∗NT,t+1]
,(A.40)

Qt =
1
Γ

Et

[(
ηβt

YNT,t/χt

YNT,t+1/χt+1
+ (1− η)β∗t

et

et+1

Y∗NT,t/χ∗t
Y∗NT,t+1/χ∗t+1

) (
etRt+1 − R∗t+1et+1

)]
(A.41)

Qt = ftet − f ∗t − Dt,(A.42)

Dt = Dt−1Rt + (ηQt−1 − et−1 ft−1)

(
Rt − R∗t

et

et−1

)
+ et

ξt

χ∗t
Y∗NT,t −

ιt
χt

YNT,t,(A.43)

where η is the share of financiers’ profits repatriated to the US, and D are the US net foreign assets. This is
a system of five nonlinear stochastic equations in five endogenous unknowns {R, R∗, e, Q, D}. We solve the
system numerically by second order approximation. The exogenous variables evolve according to:

ln ιt = (1− φι) ln ιt−1 + σιε ι,t; ln ξt = (1− φξ) ln ξt−1 + σξεξ,t,(A.44)

ft = (1− φ f ) ft−1 + σf ε f ,t; f ∗t = (1− φ f ) f ∗t−1 + σf ε f ∗ ,t,(A.45)

βt = β̄ exp (xt); β∗t = β̄ exp (x∗t ),(A.46)
xt = (1− φx)xt−1 + σxεx,t; x∗t = (1− φx)x∗t−1 + σxεx∗ ,t,(A.47)

where [ε ι, εξ , ε f , ε f ∗ , εx, εx∗] ∼ N(0, I). We assume that all other processes, including the endowments, are
constant.

The deterministic steady state is characterized by: {ē = 1, R̄ = R̄∗ = β̄−1, Q̄ = D̄ = D̄∗ = 0}.68 In
order to provide a numerical example of the solution, we briefly report here the chosen parameter values.
We stress that this is not an estimation, but simply a numerical example of the solutions. We set β̄ = 0.985

68Note that the deterministic steady state is stationary whenever Γ > 0, which we always assume here (i.e α = 0
from the main text). Similarly the portfolio of the intermediary is determinate via the assumption that households only
actively save in domestic currency and via the limited commitment problem of the intermediary.
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to imply a steady state annualized interest rate of 6%. We set the share of financiers’ payout to households
at η = 0.5, so that it is symmetric across countries. We set all constant output parameters at 1 (YH = YF =
a = a∗ = 1), except for the value of non-tradables set at 18 (YNT = Y∗NT = χ = χ∗ = 18), so that they
account for 90% of the consumption basket. We set Γ = 0.1.69 Finally, we set the shock parameters to:
φι = φξ = 0.018, σι = σξ = 0.037, φ f = 0.0001, σf = 0.05, φx = 0.0491, σx = 0.0073.

We report in Table A.1 below a short list of simulated moments.70 For a rough comparison, we also
provide data moments focusing on the GBP/USD exchange rate and US net exports.

Table A.1: Numerical Example of Simulated Moments

Moment Data Model

SD
(

et+1
et
− 1
)

0.1011 0.1269
φ(et+1, et) 0.2442 0.0831

R̄c 0.0300 0.0408
SD (Rc

t ) 0.1011 0.1269
SD(nxt) 0.0335 0.0143

φ(nxt, nxt−1) 0.0705 0.1438
SD(Rt) 0.0479 0.0479

φ(Rt+1, Rt) 0.1821 0.1824

Data and model-simulated moments. The first column reports the standard deviation (SD( et+1
et
− 1)) and (one minus) autocor-

relation (φ(et+1, et)) of exchange rates, the average carry trade return (R̄c) and its standard deviation (SD (Rc
t )), the standard

deviation (SD(nxt)) and (one minus) the autocorrelation coefficient (φ(nxt, nxt−1)) of net exports over GDP for the US, and
the standard deviation (SD(Rt)) and (one minus) autocorrelation of interest rates (φ(Rt+1, Rt)). Data sources: exchange rate
moments are for the GBP/USD, the carry trade moments are based on Lettau, Maggiori and Weber (2014) assuming the interest
rate differential is 5%, the interest rate moments are based on the yield on the 6-month treasury bill minus a 6-year moving average
of the 6-month rate of change of the CPI. All data are quarterly 1975Q1-2012Q2 (150 observations). The reported moments are
annualized. Model implied moments are computed by simulating 500,000 periods (and dropping the first 100,000). The carry trade
moments are computed selecting periods in the simulation when the interest rate differential is between 4% and 6%.

Finally, we provide a numerical example of classic UIP regressions. The regression specification fol-
lows:

∆ ln(et+1) = α + βUIP[ln(Rt)− ln(R∗t )] + εt.

The above regression is the empirical analog to the theoretical results in Section III.A.71 We find a regression
coefficient well below one (β̂ = 0.33), the level implied by UIP. Indeed, on average we strongly reject UIP
with an average standard error of 0.19. The regression adjusted R2 is also low at 0.018. The results are
broadly in line with the classic empirical literature on UIP.

69We set this conservative value of Γ based on a thought experiment on the aggregate elasticity of the exchange
rate to capital flows. We suppose that an inelastic short-term flow to buy the Dollar, where the scale of the flow is
comparable to 1 year worth of US exports (i.e. f ∗ = 1), would induce the Dollar to appreciate 10%. The numbers
are simply illustrative, but are in broad congruence with the experience of Israel and Switzerland during the recent
financial crisis. Let us revert to the basic Gamma model. Suppose that period 1 is a “long run” during which inflows
have already mean-reverted (so that the model equations are: e0 − 1 + f ∗ + Q = 0, e1 = 1, Q = 1

Γ (e0 − e1)). Then, we
have e0 = 1− Γ

1+Γ f ∗. Hence, the price impact is e0 − 1 = − Γ
1+Γ ' −0.1. This leads to Γ ' 0.1.

70The moments are computed by simulating 500,000 periods with pruning. We drop the first 100,000 observations
(burn-in period).

71To estimate the regression based on model-produced data, we simulate the model for 500,000 periods, dropping
the first 100,000, and then sample at random 10,000 data intervals of length 150. The length is chosen to reflect the data
span usually available for the modern period of floating currencies (150 quarters). On each data interval, we estimate
the above regression. Finally, we average across the regression output from the 10,000 samples.
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A.5 PROOFS FOR THE MAIN BODY OF THE PAPER

Proof of Proposition 3 The flow equilibrium conditions in the dollar-yen markets are:

ξ0e0 − ι0 + Q0 = 0,(A.48)
ξ1e1 − ι1 − RQ0 = 0.(A.49)

Summing (A.48) and (A.49) gives the intertemporal budget constraint: R (ξ0e0 − ι0) + ξ1e1 − ι1 = 0. From
this, we obtain:

(A.50) e1 = ξ−1
1 (Rι0 + ι1 − Rξ0e0) .

The market clearing in the Dollar / Yen market, ξ0e0 − ι0 +
1
Γ E
[
e0 − R∗

R e1

]
= 0, gives:

(A.51)
R∗

R
E [e1] = e0 + Γ (ξ0e0 − ι0) = (1 + Γξ0) e0 − Γι0.

Combining (A.50) and (A.51),

E [e1] = E
[
ξ−1

1 (Rι0 + ι1)
]
−E

[
ξ−1

1

]
ξ0Re0 =

R
R∗

(1 + Γξ0) e0 −
R
R∗

Γι0,

i.e.

e0 =

R
R∗ Γι0 + E

[
ξ−1

1 (Rι0 + ι1)
]

R
R∗ (1 + Γξ0) + E

[
ξ−1

1

]
ξ0R

=

(
E
[

R∗ξ−1
1

]
+ Γ

)
ι0 + E

[
R∗
R ξ−1

1 ι1

]
(

E
[

R∗ξ−1
1

]
+ Γ

)
ξ0 + 1

=
E
[

R∗
ξ1

(
ι0 +

ι1
R
)]

+ Γι0

E
[

R∗
ξ1

(
ξ0 +

ξ1
R∗

)]
+ Γξ0

.

We can now calculate e1. We start from its expected value:

R∗

R
E [e1] = (1 + Γξ0) e0 − Γι0 = (1 + Γξ0)

(
E
[

R∗
ξ1

]
+ Γ

)
ι0 + E

[
R∗
ξ1

ι1
R

]
(

E
[

R∗
ξ1

]
+ Γ

)
ξ0 + 1

− Γι0

=

{
(1 + Γξ0)

(
E
[

R∗
ξ1

]
+ Γ

)
− Γ

[(
E
[

R∗
ξ1

]
+ Γ

)
ξ0 + 1

]}
ι0 + (1 + Γξ0)E

[
R∗
ξ1

ι1
R

]
(

E
[

R∗
ξ1

]
+ Γ

)
ξ0 + 1

=
E
[

R∗
ξ1

]
ι0 + (1 + Γξ0)E

[
R∗
ξ1

ι1
R

]
(

E
[

R∗
ξ1

]
+ Γ

)
ξ0 + 1

=
E
[

R∗
ξ1

(
ι0 +

ι1
R
)]

+ Γξ0E
[

R∗
ξ1

ι1
R

]
E
[

R∗
ξ1

(
ξ0 +

ξ1
R∗

)]
+ Γξ0

.

To obtain the time-1 innovation, we observe that e1 = 1
ξ1
(Rι0 + ι1 − Rξ0e0) implies:

{e1} =
{

ι1
ξ1

}
+ R (ι0 − ξ0e0)

{
1
ξ1

}
.

As:

ι0 − ξ0e0 = ι0 − ξ0

(
E
[

R∗
ξ1

]
+ Γ

)
ι0 + E

[
R∗
ξ1

ι1
R

]
(

E
[

R∗
ξ1

]
+ Γ

)
ξ0 + 1

=
ι0 −E

[
ξ0

R∗
ξ1

ι1
R

]
(

E
[

R∗
ξ1

]
+ Γ

)
ξ0 + 1

,
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we obtain:

{e1} =
{

ι1
ξ1

}
+ R

ι0 −E
[
ξ0

R∗
ξ1

ι1
R

]
(

E
[

R∗
ξ1

]
+ Γ

)
ξ0 + 1

{
1
ξ1

}
.

We next derive the value of Γ. Notice that we can write the above equation as:

{e1} = ε +
1

a + Γ
η,

ε ≡
{

ι1
ξ1

}
,

η ≡
(

ι0 −E

[
ξ0

R∗

ξ1

ι1
R

])
1
ξ0

{
1
ξ1

}
,

a ≡ E

[
R∗

ξ1

(
ξ0 +

ξ1

R∗

)]
1
ξ0

.

Then,

var (e1) = σ2
ε +

2σεη

a + Γ
+

σ2
η

(a + Γ)2 .

Letting G(Γ) be

(A.52) G (Γ) ≡ Γ− γ

(
σ2

ε +
2σεη

a + Γ
+

σ2
η

(a + Γ)2

)α

,

then Γ is defined as

(A.53) G (Γ) = 0.

When α = 0, we get the basic Gamma model. When α = 1, we have a polynomial of degree 3 in Γ. When
there is no noise and α > 0, Γ = 0. In general, it is still amenable to computation: there is a unique positive
solution of G (Γ) (as G (Γ) is increasing in Γ, and G (0) < 0, limΓ→∞ G (Γ) = ∞).

Proof of Lemma 3 In the decentralized allocation, the consumer’s intra-period consumption, Equation
(5), gives the first order conditions:

pNTCNT =
χ

λ
; p∗NTC∗NT =

χ∗

λ∗
;

pHCH =
a
λ

;
pH
e

C∗H =
ξ

λ∗
;(A.54)

ep∗FCF =
ι

λ
; p∗FC∗F =

a∗

λ∗
.

so that

e =
C∗Hλ∗

ξ

CHλ
a

.

Suppose that the Negishi weight is ν. The planner maximizes U + νU∗ subject to the resource constraint;
hence, in particular maxCH+C∗H≤YH a ln CH + νξ ln C∗H , which gives the planner’s first order condition a

CH
=

νξ
C∗H

. Hence, in the first best exchange rate satisfies:

eFB
t = ν

λ∗t
λt

= ν
pNTCNT, t/χt

p∗NTC∗NT, t/χ∗t
.
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In the basic case of Lemma 3, we have λt = λ∗t = 1, so eFB
t = ν. Note that this is derived under the

assumption of identical discount factor β = β∗. �

Proof of Proposition 6

Rc
=

E
[

R∗
R e1 − e0

]
e0

=
−ΓQ0

e0

= −Γ
(

ι0 − e0

e0

)
= Γ

(
1− ι0

e0

)
.

Recall that:

e0 =
(R∗ + Γ) ι0 +

R∗
R E [ι1]

R∗ + Γ + 1
,

so that we conclude:

Rc
= Γ

(
1− ι0

R∗ + Γ + 1
(R∗ + Γ) ι0 +

R∗
R E [ι1]

)
.

which, rearranged, gives the announced expression.

Derivation of 3-period economy exchange rates We will use the notation:

R∗ ≡ R∗

R
.

Recall that we assume that in period t = 1 financiers only intermediate the new flows; stocks arising from
previous flows are held passively by the households (long term investors) until t=2. Therefore, from the
flow demand equation for t = 1, e1 − ι1 + Q1 = 0, and the financiers’ demand, Q1 = e1−R∗E[e2]

Γ1
, we get an

expression for e1:

e1 =
Γ1ι1 +R∗E1 [e2]

Γ1 + 1
.

The flow demand equation for t = 2 gives e2 = ι2, so we can rewrite e1 as:

e1 =
Γ1ι1 +R∗E1 [ι2]

Γ1 + 1
.

Similarly for e0, we have

e0 =
Γ0ι0 +R∗E0 [e1]

Γ0 + 1
,

and we can use our expression for e1 above to express e0 as:

e0 =
Γ0ι0 +R∗E0

[
Γ1ι1+R∗ ι2

Γ1+1

]
Γ0 + 1

.�

Proof of Proposition 7 We have already derived Claim 1. For Claim 2, we can calculate, from the
definition of carry trade returns (Rc ≡ R∗

R
e1
e0
− 1) and equation (24):

Rc
= (R∗ − 1) Γ0

Γ1 + 1 +R∗

Γ1(Γ0 +R∗) + Γ0 + (R∗)2 > 0.

Hence, the expected carry trade return is positive.
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For Claim 3, recall that a function ax+b
cx+d is increasing in x iff ∆x ≡ ad− bc > 0. For Γ0,

∆Γ0 =
(
1 + Γ1 +R∗

) (
Γ1R∗ + (R∗)2

)
> 0,

which proves ∂Rc

∂Γ0
> 0.

For Γ1, the discriminant is

∆Γ1

(R∗ − 1) Γ0
= Γ0 + (R∗)2 − (1 +R∗) (Γ0 +R∗) = −R∗ (1 + Γ0) < 0,

so that ∂Rc

∂Γ1
< 0.

Finally, forR∗, we simply compute:

∂Rc

∂R∗ =
Γ0 (1 + Γ0) (1 + Γ1)

(
2R∗ + Γ1

)(
Γ0
(
1 + Γ1

)
+ Γ1R∗ + (R∗)2

)2 > 0.�

Proof of Proposition 8 The regression corresponds to: βUIP = −∂
∂R∗E

[
e1
e0
− 1
]
. For simplicity we calcu-

late this derivative at R = R∗ = Eιt = 1, and with deterministic Γ1 = Γ1. Equation (24) yields, for those
values but keeping R∗ potentially different from 1:

e0 =
Γ0 + R∗ Γ1+R∗

Γ1+1

Γ0 + 1
; Ee1 =

Γ1 + R∗

Γ1 + 1
.

Calculating βUIP = −∂
∂R∗E

[
e1
e0
− 1
]
= −∂

∂R∗
Ee1
e0

gives:

βUIP =
1 + Γ1 − Γ0

(1 + Γ0)
(
1 + Γ1

) .

Hence, βUIP ≤ 1+Γ1
(1+Γ0)(1+Γ1)

= 1
1+Γ0

< 1. �

Proof of Proposition 9 Lemma 6 shows that the Yen (strictly) monotonically depreciates as a function
of the intervention q∗. Let e0(q∗) be the exchange rate as a function of the intervention. From Section II.E
and the assumption in this proposition that output is demand determined under PCP, we know that:

(A.55) YF,0 =
1 + 1

e0(q∗)

p∗F
∀q∗ ∈ [0, q∗),

so that Japanese tradable output increases monotonically as a function of the intervention. We define q∗ ≡
min{argmaxq∗ YF,0(q∗)} as the smallest intervention that achieves full employment. Strict monotonicity of
YF,0(q∗) for all q∗ such that YF,0 < L and the fact that YF,0 is bounded above by L guarantee that q∗ exists
and is unique.

The consumption shares are obtained from the household demand functions plus market clearing, so
that:

CH,t = (1− s∗t )L; CF,t = (1− s∗t )YF,t;
C∗H,t = s∗t L; C∗F,t = s∗t YF,t;

where s∗t ≡
et

1+et
. To derive the solution for CF,t, recall that the US household demand function is given
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by CF,t = ιt
pF,t

. At time t = 0 we have ι0 = 1 and pF,0 = p∗Fe0, and substituting in the output expression

in (A.55), we obtain CF,0 = 1
1+e0

YF,0. At time t = 1 we have pF,1 = e1 p∗F,1 = e1
a∗1+ι1/e1

L = ι1(1+e1)
L , so that

CF,1 = 1
1+e1

L. The rest of the expressions can be derived by analogy. �

Proof of Proposition 12 We first prove a Lemma.

Lemma A.6. In the setup of Proposition 3, e0 is increasing in ιt and R∗ and decreasing in ξt and R; ∂e0
∂ι0

increases in
Γ. In addition, e0 increases in Γ if and only if the US is a natural net debtor at time 0+, i.e. N0+ ≡ ξ0e0 − ι0 < 0.

Proof: The comparative statics with respect to ιt, ξ0, and R are simply by inspection. We report here
the less obvious ones:

∂e0

∂ξ1
=

E

[
e0ξ0−ι0−

ι1
R

ξ2
1

]
E

[
ξ0+

ξ1
R∗

ξ1

]
+ Γξ0

R∗

= −
E
[

e1
Rξ1

]
E

[
ξ0+

ξ1
R∗

ξ1

]
+ Γξ0

R∗

< 0,

where we made use of the state-by-state budget constraint e0ξ0 − ι0 +
e1ξ1−ι1

R = 0. To be very precise, a
notation like ∂e0

∂ξ1
is the sensitivity of e0 to a small, deterministic increment to random variable ξ1.

∂e0

∂R∗
=

1
R∗2

e0 − ΓQ

E

[
ξ0+

ξ1
R∗

ξ1

]
+ Γξ0

R∗

=
1

RR∗
E [e1]

E

[
ξ0+

ξ1
R∗

ξ1

]
+ Γξ0

R∗

> 0,

where we made use of the financiers’ demand equation, ΓQ0 = E
[
e0 − R∗

R e1

]
, and the flow equation,

ξ0e0 − ι0 + Q0 = 0.
We also have,

∂e0

∂Γ
= −N0+

1

1 + R∗E
[

ξ0
ξ1

]
+ ξ0Γ

< 0,

where we made use of the definition N0+ = e0ξ0 − ι0. This implies:

∂2e0

∂Γ∂ι0
=

1(
R∗E

[
ξ0
ξ1

]
+ 1 + Γξ0

)2 > 0.�

This implies all the points of Proposition 12 with two exceptions. The effects with respect to interest rate
changes, both domestic and foreign, hold for f , f ∗ sufficiently small. Finally, we focus on the impact of f ∗.
Simple calculations yield:

∂e0

∂ f ∗
= − Γ

R∗E
[

ξ0
ξ1

]
+ 1 + Γξ0

< 0.

We notice that the comparative statics with respect to f are less clear-cut, because f affects the value of Γξ̃1,
and hence affects risk-taking. However, we have ∂e0

∂ f > 0 for typical values (e.g. R = R∗ = 1, ξ̃0 = ξ̃1). �
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