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Abstract

We measure learning and forgetting dynamics using a panel with four million

monthly credit card statements. Through negative feedback —i.e. paying a fee —con-

sumers learn to avoid future fees. Paying a fee last month reduces fee payment in

the current month by 40%. Monthly fee payments fall by 75% during the first four

years of a card holder’s account life. Consumers forget some of what they learn and

exhibit a strong recency effect: knowledge depreciates about 10% or more per month.

Higher-income borrowers learn twice as fast, and forget twice as slowly, as lower-income

borrowers. (JEL: D1, D4, D8, G2)
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1 Introduction

Economists often motivate optimization and equilibrium as the outcome of learning. Ac-

cordingly, learning is a key mechanism that underpins economic theories of rational behavior.

Many economic studies have analyzed learning in the lab1 and the field.2 However,

because of data limitations, only a few papers have measured learning with household-

level panel data. Such studies usually find that households improve their decisions as they

acquire more experience. For example, Miravete (2003) and Agarwal, Chomsisengphet, Liu

and Souleles (2006) respectively show that consumers switch telephone calling plans and

credit card contracts to minimize monthly bill payments. Ketcham, Lucarelli, Miravete

and Roebuck (2012) show that Medicare Part D enrollees initially choose suboptimal plans

and improve over time.3 DellaVigna and Malmendier (2006) show that gym usage rises for

members who renew their annual contracts. Several papers are able to identify the specific

information flows that elicit learning. Haselhuhn, Pope, Schweitzer and Fishman (2012) find

that renters at video stores are more likely to return their videos on time if they have recently

been fined for returning them late. Grubb and Osborne (2012) find that “bill shock”appears

to draw consumers’attention to past cellular phone usage.4

In the current paper, we study credit card behavior. Credit cards are used by the vast

majority of U.S. households, and have become a significant source of household credit. In

the U.S. alone, households carry $850 billion of revolving debt, implying $7,000 of revolving

debt on average per household.5

In addition to interest payment, credit card fees have also become a meaningful compo-

nent of the implicit price of credit card usage. We study household level payments of add-on

1For example, Van Huyck, Cook and Battalio (1994), Crawford (1995), Roth and Erev (1995), Camerer
(2003), and Wixted (2004).

2For example, see Bahk and Gort (1993), Marimon and Sunder (1994), Thornton and Thompson (2001),
and Malmendier and Nagel (2011).

3This initial suboptimality is also demonstrated in cross-sectional data in work by Heiss, McFadden, and
Winter (2007), Abaluck and Gruber (2011), and Kling, Mullainathan, Shafir, Vermeulen, and Wrobel (2011).

4Other papers documenting apparent instances of learning in the field include Ho and Chong (2003),
who use grocery store scanner data to estimate a model in which consumers learn about product attributes.
Their learning model has greater predictive power, with fewer parameters, than forecasting models used by
retailers. Lemieux and MacLeod (2000) study the effect of an increase in unemployment benefits in Canada.
They find that the propensity to collect unemployment benefits increases as a consequence of a previous
unemployment spell. Odean, Strahlevitz and Barber (2010) find evidence that individual investors tend
to repurchase stocks that they previously sold for a gain. Dellavigna (2009) surveys the field evidence on
behavioral phenomena.

5Board of Governors of the Federal Reserve System, Flow of Funds (G-19), preliminary 2012 data.
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fees in the credit card market– late payment, over limit, and cash advance fees.6 Some

observers argue that account holders do not optimally minimize such fees.7 We measure the

ways in which fee payments change as credit card holders gain experience. To do this, we

build a novel panel dataset that contains three years of credit card transactions, represent-

ing 128,000 consumers and 4,000,000 monthly statements. Our analysis reveals substantial

fee-based learning, and a surprisingly large amount of subsequent forgetting.

We find that new credit card accounts generate direct monthly fee payments (not in-

cluding interest) averaging about $14 per month.8 We also find that these payments fall by

about 75 percent during the first four years of account life. These fee dynamics are proba-

bly generated by several different channels. Consumers learn more about the existence and

magnitude of fees when they knowingly or accidentally trigger them. Painful fee payments

may also train account holders to be more vigilant in their card usage.

Our analysis reveals that the learning dynamics are not monotonic. Card holders act as

if their knowledge fades —i.e., learning patterns exhibit a recency effect.9 A late payment

charge from the previous month engenders a high level of fee avoidance this month, and

this response is much stronger than the fee avoidance engendered by a late payment charge

that occurred many months ago. We estimate that the learning effect of a fee payment

effectively depreciates at a rate of between 10 and 20 percent per month. At first glance,

such depreciation is counter-intuitive. However, if attention is a scarce resource, attention

6Ausubel (1991, 1999), Shui and Ausubel (2004) and Kerr and Dunn (2008) analyze the magnitude of
interest payments and fees in the credit card market.

7For example, Frontline reports that “The new billions in revenue reflect an age-old habit of human
behavior: Most people never anticipate they will pay late, so they do not shop around for better late
fees.” (http://www.pbs.org/wgbh/pages/frontline/shows/credit/more/rise.html) There is also a nascent
academic literature that studies how perfectly rational firms interact in equilibrium with imperfectly rational
consumers. Aide from the papers on Medicare Part D above, see Shui and Ausubel (2004), DellaVigna and
Malmendier (2004), Mullainathan and Shleifer (2005), Oster and Morton (2005), Gabaix and Laibson (2006),
Jin and Leslie (2003), Koszegi and Rabin (2006), Malmendier and Shanthikumar (2007), Grubb (2009), and
Bertrand et al. (2010). Spiegler (2011) provides an overview. It is important to note that much of this
literature studies cross-sectional data, and is therefore not able to study learning with as much ease as studies
using panel data.

8Moreover, this understates the impact of fees, since some behavior – e.g. a pair of late payments –
not only triggers direct fees but also triggers an interest rate increase, which is not captured in our $14
calculation. Suppose that a consumer is carrying $2,000 of debt. Changing the consumer’s interest rate
from 10% to 20% is equivalent to charging the consumer an extra $200 per year. Late payments also
may prompt a report to the credit bureau, adversely affecting the card holder’s credit accessability and
creditworthness. The average consumer has 4.8 cards and 2.7 actively used cards.

9See Lehrer (1988), Aumann, Hart and Perry (1997) and Besanko et al. (2010) for some theoretical
models of forgetfulness.
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may wander as the salience of a past fee payment declines. Immediately after making a

costly mistake (e.g., getting a speeding ticket), people are likely to pay attention and avoid

repeating the mistake; however as the painful event becomes a distant memory, vigilance

may fade with the recency of the memory.

There are several others papers that have documented forgetting effects. For instance,

Benkard (2000) finds evidence for both organizational learning and forgetting — that is,

depreciation of productivity over time — in the manufacturing of aircraft, as do Argote,

Beckman and Epple (1990), in shipbuilding. Ericson (2011) shows that subjects forget

to pick up a delayed monetary reward (and underforecast their own tendency to forget).

Malmendier and Nagel (2011) document a recency effect in stock market forecasts —people

weight recent returns, which they personally experienced, more heavily than older historical

returns.10 In more closely related work, Haselhuhn, Pope, Schweitzer and Fishman (2012)

find that the effect of past late payment fines on current fines declines as time passes.

Gallagher (2012) documents that flood insurance take-up rates rise in the year a flood occurs

in that community, but fall in the years thereafter.

We analyze many of the plausible mechanisms that may explain the fee dynamics that we

measure. We first explore several explanations that are not consistent with our benchmark

model of learning/forgetting—for example, that card usage might be negatively autocorrelated—

and find that these alternative explanations are not consistent with the data. On the other

hand, we find support for mechanisms that support the learning/forgetting interpretation.

Notably, we find that in the month after paying a late fee, account holders are especially

likely to make their next payment more than two weeks before the due date. This suggests

that a late payment fee acts as a wake up call that induces earlier fee payment.

Our analysis also implies that the speed of (i) net learning, (ii) the magnitude of the

recency effect, and (iii) the speed of forgetting all differ across borrower characteristics.

Higher-income borrowers learn more than twice as fast, have a recency learning effect double

the size, and forget about three-times as slowly as lower-income borrowers. Likewise, middle-

aged borrowers have similar learning advantages relative to older borrowers.

Although we observe all of the information reported in households’ credit card state-

ments, as well as the information contained in credit reports, we do not directly observe

card holders’ level of knowledge/awareness/attention with respect to their credit card ac-

10This could be interpreted either as a forgetting effect or an awareness effect
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counts. Hence we cannot conclusively determine whether the empirical regularities that we

observe are the results of learning. Our large dataset contains robust patterns of behavior

that are all consistent with a learning and forgetting mechanism. Moreover, we do not

find evidence for alternative explanations. Nevertheless, our lack of any direct data on

knowledge/beliefs/awareness/attention prevents us from drawing firm conclusions about the

psychological mechanisms behind the effects that we document.

In summary, our analysis suggests that a high rate of knowledge depreciation offsets

learning. Nevertheless, learning dominates knowledge depreciation. On average, fees fall

over the life of the credit card. These learning mechanisms are most advantageous for high-

income and middle-aged borrowers. The rates of learning and forgetting that we find are quite

high: a forgetting rate of 10 to 20 percent per month, which modulates an overall learning

process that generates a 75 percent decline in fees over four years of personal experience with

the credit card. However, given the non-experimental nature of the variation that we study

and the absence of direct observations about beliefs, our findings should be interpreted only

as suggestive correlations.

We organize our paper as follows. Section 2 summarizes our data and presents our basic

evidence for learning and backsliding/forgetting. Section 3 analyzes various alternative (non-

learning) explanations for our findings. Section 4 discusses extensions of our analysis on

learning and forgetting, including results on the demographics of learning. In Section 5, we

draw some conclusions.

2 Two Patterns in Fee Payment

In this section, we describe the data. We then show that fee payments decline sharply

with account tenure. We also show that the learning dynamics exhibit a recency effect:

a late payment charge from the previous month is strongly associated with fee avoidance

this month, and this elasticity declines as the time gap increases between the previous fee

payment and the current period.

2.1 Data

We use a proprietary panel dataset from a large U.S. bank that issues credit cards na-

tionally. The dataset contains a representative random sample of about 128,000 credit card
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accounts followed monthly over a 36 month period (from January 2002 through December

2004). The bulk of the data consists of the main billing information listed on each ac-

count’s monthly statement, including previous payment, purchases, credit limit, balance,

debt, amount due, purchase APR, cash advance APR, date of previous payment, and fees

incurred. At a quarterly frequency, we observe each customer’s credit bureau rating (FICO

score) and a proprietary (internal) credit ‘behavior’ score. We have credit bureau data

reporting the number of other credit cards held by the account holder, total credit card bal-

ances, and mortgage balances. We have data on the age, gender and income of the account

holder, collected at the time the account was opened. Further details on the data, including

summary statistics and variable definitions, are available in the appendix.11

We focus on three important types of fees, described below: late fees, over limit fees, and

cash advance fees.12

1. Late Fee: A direct late fee of $30 or $35 is assessed if the borrower makes a payment

beyond the due date on the credit card statement. If the borrower is late by more

than 60 days once, or by more than 30 days twice within a year, the bank may also

impose indirect late fees by raising the APR to over 24 percent.13 Such indirect fees

are referred to as ‘penalty pricing.’The bank may also choose to report late payments

to credit bureaus, adversely affecting consumers’FICO scores. Our analysis measures

only direct late fees, and therefore excludes indirect costs associated with penalty

pricing.

2. Over Limit Fee: A direct over limit fee, also of $30 or $35, is assessed the first time

the borrower exceeds his or her credit limit in a given month. Penalty pricing also

results from over limit transactions. Our analysis measures only direct over limit fees.

11In the analysis below, we drop accounts if the account holder declares bankruptcy, cancels his or her
account, or if the card is reported stolen. The results do not change if we add these accounts back to our
sample.
12Other types of fees include annual, balance transfer, foreign transactions, and pay by phone. All of

these fees are relatively less important to both the bank and the borrower. During the period we sample,
almost no issuers with the exception of American Express charged annual fees, largely as a result of increased
competition for new borrowers (see Agarwal et al., 2006). The cards in our data do not have annual fees.
A balance transfer fee of 2%-3% of the amount transferred is assessed on borrowers who shift debt from one
card to another. Since few consumers repeatedly transfer balances, borrower response to this fee will not
allow us to study learning about fee payment. The foreign transaction fees and pay by phone fees together
comprise less than three percent of the total fees collected by banks.
13If the borrower does not make a late payment during the six months after the last late payment, the

APR will revert to its normal (though not its promotional) level.

6



3. Cash Advance Fee: A direct cash advance fee of 3 percent of the amount advanced

or $5 (whichever is greater) is levied for each cash advance on the credit card. Unlike

the first two types of fees, a cash advance fee can be assessed many times per month.

Cash advances do not invoke penalty pricing. However, the APR on cash advances

is typically greater than that on purchases, and is usually 16 percent or more. Our

analysis measures only direct cash advance fees (and not subsequent interest charges).

2.2 Fee payment by account tenure

Figure 1 reports the frequency of each fee type as a function of account tenure. The

regression – like all those that follow – controls for time effects, account fixed effects, and

time-varying attributes of the borrower (e.g., variables that capture card utilization each pay

cycle). The data plotted in Figure 1 is generated by estimating,14

f ji,t = α + φi + ψtime + ΓtTenurei,t(1)

+η1Purchasei,t + η2Activei,t + η3BillExisti,t−1

+γ1Utili,t−1 + γ2Behavei,t−3 + γ3FICOi,t−3 + εi,t.

The dependent variable f ji,t is a dummy variable that takes the value 1 if a fee of type j is

paid by account i at tenure t. Note that t indexes account tenure —not calendar time. When

we refer to calendar time we use subscript time. Fee categories, j, include late payment fees

– fLatei,t – over limit fees – fOveri,t – and cash advance fees – fAdvancei,t . Parameter α is a

constant; φi is an account fixed effect; ψtime is a time fixed-effect; Γt is a vector of coeffi cients

multiplying Tenurei,t, a set of monthly dummy variables for account tenure; Purchasei,t

is the total quantity of purchases in the current month; Activei,t is a dummy variable that

reflects the existence of any account activity in the current month; BillExisti,t−1 is a dummy

variable that reflects the existence of a bill with a non-zero balance in the previous balance;

Utili,t, for utilization, is debt divided by the credit limit; Behavei,t−3 is a behavior score

(an internal credit-risk measure compiled by the bank), observed quarterly; FICOi,t−3 is the

FICO score (a credit-risk measure; a higher FICO score indicates that the borrower is lower-

risk); and εi,t is an error term. Coeffi cients and standard errors on the control variables are

14Because we have such a large dataset – over 4,000,000 observations —we estimate the equation with
OLS, rather than a non-linear choice model (e.g., probit) that would use an iterative hill climbing algorithm.
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reported in an online appendix.

Figure 1 plots the expected frequency of fees as a function of account tenure, holding the

other control variables fixed at their means.15 This analysis shows that fee payments are

fairly common when accounts are initially opened, but that the frequency of fee payments

declines rapidly as account tenure increases. In the first year of account tenure, the monthly

frequency of cash advance fees drops from 42% of all accounts to 27%; of late payment fees

from about 27% to about 19%, and over limit fees from 11% to 5%. After four years

of account tenure, the monthly frequencies of cash advance, late, and over limit fees drop

further to 8%, 7%, and 1%, respectively. In other words, after four years, the fee frequencies

fall 75% or more from their initial values.

To establish that the estimated pattern is robust to alternative specifications, we estimate

several variants (the online appendix provides details). When we estimate equation 1 as a

conditional logit the results are qualitatively similar. We also repeat the analysis omitting

controls for behavior and FICO scores and this has almost no effect on the tenure dummies.

In addition, to eliminate the possibility that attrition has distorted the results, we have

restricted the sample to only those accounts that are active for all 36 months of our sample;

the results are little changed. Results also do not differ qualitatively if we restrict our sample

to only those consumers who pay a fee in the second month—that is, account holders who

pay fees right away do not, over time, behave differently from those who do not.

It is also interesting to ask how the dollar value of fees paid (per month) varies with

account tenure. This is determined by both the frequency of fee payments and the magnitude

of each type of fee.16 Figure 2 reports the average dollar value of fees paid in each category

as a function of account tenure, conditional on other factors that might affect fee payment.

The data plotted in Figure 2 is generated by estimating,

V j
i,,t = α + φi + ψtime + ΓtTenurei,t(2)

+η1Purchasei,t + η2Activei,t + η3BillExisti,t−1

+γ1Utili,t−1 + +γ2Behavei,t−3 + γ3FICOi,t−3 + εi,t.

15Tenure in all figures starts at month two since borrowers cannot, by definition, pay late fees or over limit
fees in the first month their accounts are open.
16For the late fee and over limit fees, the fee magnitude is constant over our 36 month sample, while for

the cash advance fee, the fee magnitude varies over time.
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The dependent variable V j
i,t is the value of fees of type j paid by account i at tenure t. All

other variables are as before. Coeffi cients and standard errors on the control variables are

reported in an online appendix.17

Figure 2 shows that, shortly after an account is opened, the card holder pays $6.19 per

month in cash advance fees, $5.28 per month in late fees, and $2.36 per month in over limit

fees. These numbers understate the total cost incurred by fee payments, as these numbers

do not include interest payments on the cash advances, the effects of penalty pricing (i.e.,

higher interest rates), and the adverse effects of higher credit scores on other credit card fee

structures. Like Figure 1, Figure 2 shows that the average value of fee payments declines

rapidly with account tenure.

Figures 1 and 2 imply that fee payments fall substantially with experience. We next turn

to a second pattern in our data.

2.3 The impact of past fee payment on current fee payment

There are four reasons to expect fee payments of agent i to be correlated (positively or

negatively) at two arbitrary dates t and t+ k.

First, the (cross-sectional) type of the card holder (e.g., forgetful) may influence fee

paying behavior. If person i pays a fee in period t then person i is more likely to be of the

type that pays fees in general, implying that person i has a higher likelihood of paying a fee

in period t+ k relative to other subjects in our sample. As long as the cross-sectional ‘type’

of the account holder is a fixed characteristic, this first source of intertemporal linkage could

be modeled as a fixed effect. If the true fixed effect were added to the model, the residual

variation would no longer be correlated across time. However, as we discuss below, Nickell

bias (1981) introduces a wrinkle when the fixed effect needs to be estimated.

Second, transitory shocks that persist over more than one month (for instance, an un-

employment spell) may influence fee paying behavior, causing fees to be positively autocor-

related.

Third, transitory shocks that are negatively correlated across months (for instance, an

annual summer vacation) will cause fees to be negatively autocorrelated.

Fourth, fee payments may engender learning, causing fees to be negatively autocorrelated.

17Results (available in the online appendix) do not differ qualitatively if fee value divided by account
holder income is used as the dependent variable.
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One natural approach to estimating the force of these four effects would be to estimate

an autoregressive model, in which current fee payment would be allowed to depend on lagged

fee payment, controlling for account fixed effects and time-varying characteristics. However,

Nickell (1981) showed that including fixed effects in dynamic panel data models causes the

autoregressive coeffi cients to exhibit a bias of order -1/T , where T is the number of time

series observations. We thus adopt two approaches to deal with this problem. The first is

to calculate the following statistic:

Lt,k ≡
E [ft | ft−k = 1]

E [ft]

=
Probability of paying a fee at tenure t given the agent paid a fee k periods ago

Probability of paying a fee at tenure t
(3)

without conditioning on the RHS variables from the previous subsection (most importantly,

we do not use person fixed effects to calculate Lt,k). Note that E [ft] is just the average

frequency of fee payments in period t.18 Likewise, E [ft | ft−k = 1] is the average frequency

of fee payments in period t among the account holders who paid a fee at time t− k.
Conditioning on this sparse information, a consumer who paid a fee k periods ago has a

probability of paying a fee equal to the baseline probability, E [ft] , multiplied by Lt,k. A

value of 1 for Lt,k indicates that having paid a fee k periods does not change the expected

probability of paying a fee this period; a value less than one indicates lagged fee payment

is associated with a reduction in the expected probability, and a value greater than one

indicates lagged fee payment are associated with an increase in the expected probability.

For example, if Lt,1 = 0.6, a consumer who paid a fee last month has a probability of paying

a fee this month that is 40% below the baseline probability.

We report averages of Lt,k:

(4) Lk ≡
1

T

T∑
t=1

Lt,k.

Hence, Lk is the average relative likelihood of paying a fee, if the account holder paid a fee

k periods ago. The Lk statistic illustrates some important time series properties in our data

while avoiding econometric problems associated with estimating probit or logit models with

18Observations used for the calculation of Lk are from subjects who are in our sample at both date t and
date t− k.
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fixed effects for a large N dataset.

Figure 3 plots Lk for all three types of credit card fees for values of k ranging from 1 to

35. All three lines start below 1, indicating that a fee payment last month is associated with

a less than average likelihood of making a fee payment this month. For both cash advance

and late fees, having paid a fee one month ago is associated with a 40 percent reduction in

the likelihood of paying a fee in the current month. For over limit fees, having paid a fee

last month is associated with a 50 percent reduction in the likelihood of paying a fee in the

current month.

The Lk plots rise with k, indicating that as a given fee payment recedes into the past,

the negative association between this fixed lagged fee payment and current fee payments is

diminished. By the time one year has passed, the association between the lagged fee payment

and current fee payment has almost vanished.

For large values of k, all three graphs rise above 1. This asymptotic property reflects the

variation in fee payments that is driven by cross-sectional variation in the (persistent) type

of the borrower. Some individuals have a relatively high long-run likelihood of paying fees.

For instance, imagine that 20 percent of consumers never pay a fee (maybe because they are

very disciplined), while the others have a long-run monthly probability b > 0 of paying a fee.

Then, the long run Lk is 1/0.8 = 1.25.19

2.3.1 Dynamic panel models with fixed effects

Our second approach to estimating the impact of past fee payments on current fee pay-

ments is to estimate dynamic panel data models with fixed effects for each fee, while using

Monte Carlo simulations to bound the size of the bias. As noted above, Nickell (1981) ana-

lytically derived that the size of the bias for an AR(1) with fixed effects is of order −1/T .

Since in our estimation, T = 36, the implied bias is approximately −1/36 = −.028. This

amount is much too small to explain the large reduction in fee frequency this month as-

sociated with a fee payment last month. However, we are interested in the impact of fee

payments at longer lags than one month on current fee payment; no analytical results exist

for determining the size of the bias for higher-order autoregressive models. We thus use

Monte Carlo simulations to determine the size of the bias in such cases.

19The numerator of (3) is b, while the denominator is 0.8b. So Lk = b/ (0.8b) = 1/0.8.
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Specifically, we first draw 10,000 times from a uniform (0,1) distribution; call each draw

αi, where i = 1, ..., 10, 000. For each i, we then draw 36 times from a uniform (0,1), recoding

the results as 1 if the draw is less than αi and 0 otherwise. This algorithm simulates 36 i.i.d.

draws from a binomial distribution with probability of success αi (for 10,000 households). On

these N =10,000 and T = 36 observations, we then estimate an AR(1), AR(12) and AR(18)

with fixed effects. We repeat the whole process 5,000 times, and report mean and standard

deviations. Note that, if there were no Nickell bias, all of the autoregressive coeffi cients

should be zero.

Table 1 reports the mean values of those coeffi cients for all three cases. The AR(1) case

shows a bias of about −.028, confirming the analytical results of Nickell (1981). The AR(12)

and AR(18) cases show somewhat larger biases —for the first lag, about −0.06 and −0.10,

respectively —that decline in absolute value with the lag.20 Although this declining pattern

does mimic in a qualitative fashion the recency effects we see above, the magnitude of the

bias is again not nearly suffi cient to explain the size of the recency effects that we measure.

We show this in Table 2, which estimates:

f ji,t = α + φi + ψtime + A(L)f ji,t−1(5)

+η1Purchasei,t + η2Activei,t + η3BillExisti,t−1

+γ1Utili,t−1 + +γ2Behavei,t−3 + γ3FICOi,t−3 + εi,t.

where A(L) is a twelfth-order lag polynomial for each of the three kinds of fees.21 As with

the Lk measure, all three sets of results show a strong recency effect, far larger than can

be explained by Nickell bias. The coeffi cients decrease in absolute value with lag, reaching

zero by the eleventh or twelfth lag. For late fees, the coeffi cient on the first lag shows that

having paid a fee one month ago is associated with nearly a 50 percent reduction in the

frequency of current fee payments —or about a 45 percent reduction once the bias resulting

from the Monte Carlo simulations is subtracted. For the over limit and cash advance fees,

the reductions are slightly over 40 percent and 30 percent, respectively (again controlling

for the bias). These large reductions are all within ten percentage points of those associated

with the Lk approach estimated above.

20We are grateful to Devin Pope for pointing out this pattern of bias in higher-order autoregressive models.
21For brevity, we only report the autoregressive coeffi cients.
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We note that a third way of estimating the recency effect would be to use the instrumental

variables approach of Arellano and Bond (1991) or the conditional logit estimators derived

by Chamberlain (1993) and Honoré and Kyriazidou (2000), which allow for the presence

of lagged endogenous variables. Reestimating Table 2 using Arellano and Bond’s approach

does not appreciably change the results—the coeffi cients differ by less than 0.02 (results are

presented in the online appendix). We do not use these approaches as our default because

they all limit the extent to which the disturbance terms may be serially correlated We think

it likely that agents do face autocorrelated shocks that may affect their likelihood of fee

payment. Honoré and Kyriazidou (2000) also require that there not be time effects; we

in turn think that agents may face different shocks at different times—for example, due to

changing macroeconomic conditions.

2.4 Summary and Comparison With Previous Results

The data exhibit several robust time-series patterns. The frequency of fee payment falls

sharply through time, declining by between about 33 and 55 percent after one year and

between 65 and 85 percent after three years. Paying a fee last month is associated with

a sharply reduced likelihood of paying a fee this month (relative to other members of your

account-holding cohort). Paying a fee a year ago has little relationship to the likelihood

of paying a fee now (relative to other members of your account-holding cohort). Paying a

fee two years ago is associated with a 20% elevation in the likelihood of paying a fee now

(relative to other members of your account-holding cohort).

Our findings imply that the there must be a mechanism that produces the short-run

negative association (or recency effect). Moreover, this mechanism must be strong enough

to temporarily overwhelm the positive long-run association in fee payments driven by type

variation.22

The magnitudes of our effects are often greater than the magnitudes found in other

contexts. Haselhuhn, Pope, Schweitzer and Fishman (2012) find that paying a fine for

returning a video late reduces the probability of payment of a late fee by 8.8% in the next

visit, and 4.3% for the visit after that. By contrast, in our analysis paying a late fee reduces

the probability of paying late the next month by over 40%. DellaVigna and Malmendier

22The short-run drop in Lk would be even bigger if it were not offset by the positive autocorrelation in
fees produced by both variation in types and transitory (multi-month) variation in fee-paying propensities.
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(2006) find that gym attendance rises by about 27 percent in the second year for those

gym members with annual accounts who renew such accounts. It is unclear whether this

phenomenon, which combines learning and selection effects, is directly comparable to the

one we study; perhaps the receipt of the bill for annual renewal is an equivalent shock to

payment of a fee. We find reductions of between 33 and 55 percent in fee payment after

one year, a bit higher than the 27 percent they find. Grubb and Osborne (2012) find that

10 percent of cell-phone contract holders switch to a contract that saves them money.

Three sets of studies do find very large effects. Ketcham, Lucarelli, Miravete, and

Roebuck (2012) show that Medicare Part D enrollees reduced the amount of overspending in

prescription drug insurance by about 55 percent in the second year after enrolling. Second,

the work on organizational forgetting in the learning-by-doing literature of Benkard (2000)

and Argote, Beckamn, and Epple (1990) finds that between 60 and 70 percent of knowledge

accumulated in the course of production can be forgotten over the course of a year. Third,

Gallagher (2012) shows that flood insurance take-up rates spike 9 percentage points the

year after a flood, and then decline very slowly, returning to baseline eight years later.23

Kahneman (2011) references similar work by Howard Kunreuther on insurance takeups after

earthquakes (p. 237). These last two sets of studies partially involve the transmission of

knowledge across individuals, and not exclusively the retention of knowledge by the same

individual.

3 Alternative Explanations, Which Do Not Rely in

Learning and Forgetting

The patterns of fee payments that we document is explained by a model in which con-

sumers learn to avoid fees by first experiencing them. The learning dynamics are complicated

by partial backsliding or forgetting. In our view, this is like the effect of getting a speeding

ticket; a driver may slow down for a few weeks, but will partially revert to type and speed

again.24 In our credit card analysis, the net effect of learning and backsliding appears to be

positive, since fee payments do fall on average with tenure.

23We find the effects of past fee payment on current payment dissipate within a year. It seems likely that
the different economic magnitudes of the costs may play a role in explaining this difference.
24We are grateful to Devin Pope for suggesting this analogy.
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On the other hand, some or all of the data patterns that we observe may be explained by

mechanisms other than learning and forgetting. In this section, we first discuss a few alter-

native explanations; we find that the available evidence does not support these alternatives.

3.1 Potential correlation between financial distress and credit card

tenure

The tendency to observe declining fees may reflect a tendency for new account holders

to experience more financial or personal distress than account holders with high tenure. We

use several approaches to evaluate the likelihood of this mechanism.

First, financial or personal distress may be correlated with behavior that would tend to

depress credit scores. We compute the correlation between the first occurrence of a fee and

FICO and behavior scores (two inverse25 measures of financial distress). We find that the

correlations are close to zero —they are 0.07 for late fees, 0.04 for over limit fees, and 0.06

for cash advance fees.

We also look at the relationship between credit scores (both FICO and behavior scores)

and account tenure over a longer time horizon. Average FICO scores do not vary in an

economically meaningful way as a function of account tenure. Figure 4 plots FICO scores and

behavior scores (along with other variables discussed below) by account tenure, demeaned

and normalized. To calculate the FICO variable, a single FICO mean is calculated for all

accounts over all periods in our sample. This mean is used for the demeaning. A single

FICO standard deviation is calculated for all accounts over all periods in our sample. This

standard deviation is used for the normalization. An analogous method is used for the

behavior score.

No time trend is apparent in the normalized data. To more formally measure the

FICO-tenure relationship, we predict FICO scores with a regression with tenure dummies as

the argument (controlling for account and time fixed effects). The estimated tenure spline

exhibits slopes that bounce around in sign and are all very small in magnitude. For example,

at a horizon of 5 years, the spline predicts a total (accumulated) change in the FICO score

of 18 points since the account was opened. At a horizon of 10 years the spline predicts a

25A high FICO or behavior score implies that the individual is a reliable creditor. A behavior score is a
proprietary measure of credit risk calculated by the card-issuing institution.
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total (accumulated) change in the FICO score of -0.04 units since the account was opened.

Recall that the mean FICO score is 732 and the standard deviation of the FICO score is

81. Hence, financial distress that induces changes in FICO scores does not show significant

variation with account tenure.

Second, if financial distress engenders a need for additional credit, then borrowers who

open new credit card accounts despite already having plenty of unused credit are less likely to

be undergoing financial stress. We reestimate equation 1 for account holders with utilization

rates of less than 50 percent—that is, with half of their credit lines unused. We find that their

initial late fee payments are about 31 percent, and fall to about 7 percent in the first four

years of account tenure—about a 77 percent decline, close to the average for the population

as a whole.

Third, if a substantial number of account holders were opening new accounts and paying

high fees as a result of financial and personal distress, we might expect to see relatively little

reduction in fee payments after several years have elapsed, since borrowers suffering such

distress are likely to have either resolved it by that point, or to have become delinquent

on their accounts and thus dropped out of our sample. However, we continue to see large

reductions in fee payments even several years out. For example, the incidence of late fee

payment drops from about 9 percent after 36 months of account tenure to about 6 percent

after 60 months—a 33 percent drop. So our learning findings are not due only to high

frequency events (like short-lived financial problems) that occur at the time of card adoption

and abate shortly thereafter.

Although the above analysis is strongly suggestive, we cannot definitively rule out the

possibility that there may be borrowers who experience financial and personal distress at low

account tenure and pay higher fees, but who do not experience changes in FICO or behavior

scores, who have sizable amounts of unused credit on other cards, and who continue to

experience declining rates of fee payment associated with declining levels of financial distress

three years after opening the credit card account.

3.2 Movers

Moving to a new home could potentially cause both patterns of fee payment that we see.

Disruptions associated with the move and additional needs for cash could lead to payment of

late, over limit, and cash advance fees. Over time, consumers would revert to their normal
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pattern of fee payment.

To test for this possibility, since we know when account holders move, we examine the

difference between the frequency of fee payment during the move (defined as payment from

two months before to two months after the move date) and fee payment in all other months.

We find that account holders are only about 1 percent more likely to pay late or over limit

fees during the move, and 2 percent more likely to pay cash advance fees. These small

differences are not enough to account for the large reductions in fee payment by tenure or

the recency effects.

3.3 Potential correlation between purchasing patterns and credit

card tenure

The tendency to observe declining fees may reflect a tendency for new account holders to

spend more than account holders with high tenure. To test this hypothesis, we determined if

purchases correlate with account tenure. Figure 4, which plots the demeaned and normalized

level of purchases, again shows no economically significant time trend.

3.4 Non-utilization of the card

The fee dynamics that we observe could be driven by consumers who temporarily or

permanently stop using the card after paying a fee on that card. We look for these effects

by estimating a regression model in which the outcome of “no purchase in the current month”

is predicted by dummies for past fee payments and control variables, including account and

time fixed effects as well FICO, Behavior, and Utilization. We find very small effects of past

fee payments on subsequent card use. For example, (controlling for account fixed effects)

somebody who paid a fee every month for the past six months is predicted to be only 2% less

likely to use their card in the next month relative to somebody with no fee payments in the

last six months. Such small effects cannot explain our learning dynamics, which are over an

order of magnitude larger. Figure 5 also plots the absolute level of utilization (demeaned

and normalized), which exhibits no time-series pattern.
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3.5 Time-varying financial service needs

Time-varying financial service needs may also play an important role in driving fee dy-

namics. To illustrate this idea, let νt represent a time-varying cost of time, so that

(6) Pr (ft = 1) = νt,

where νt is an exogenous process, that causes fee use, but is not caused by it. To explain

our recency effect, one needs νt to be negatively autocorrelated at a monthly frequency. To

see this, consider the regression,

(7) ft = θft−1 + controls.

If (6) holds, then the regression coeffi cient is θ = cov (νt, νt−1) /var (ft−1).

To explore this hypothesis, we run the following regression, including all of our usual

control variables, that is, time- and account-fixed effects, tenure dummies, Purchase, Active,

BillExist, and Util. We also include Behavior and FICO.26

f ji,t = θf ji,t−1 + α + φi + ψtime + Γt

+ η1Purchasei,t + η2Activei,t + η3BillExisti,t−1

+ η4FICOi,t−3 + η5Behavei,t−3 + η6Utili,t + εi,t.

We find that θ is -0.75 for the late fee, -0.52 for the over limit fee, and -0.27 for the cash

advance fee. We call this the “recency effect,”since the payment of a fee last month greatly

reduces the probability that a fee will be paid this month.27

The empirical finding of θ < 0 implies corr (νt, νt−1) < 0. Hence, to explain the “recency

effect”with time-varying financial needs, it would need to be the case that νt is negatively

autocorrelated. The autocorrelation of νt would need to be not only negative, but also greater

26The results do not differ if we instead begin the regressions in month 2 and exclude the behavior and
FICO scores.
27There is a potential small sample bias (Nickell 1981), to which we thank Peter Fishman and Devin

Pope for drawing our attention. To see how large it is, we note that if ft is i.i.d., then in the regression
ft = θft−1+constant, done over a T periods, the expected value of θ is −1/T . With T = 24, the bias is
−0.05. We conclude that, in our study, the small sample bias is very small compared to the large negative
θ that we find.
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than 0.75 (in the case of the late fee) in absolute value: corr (νt, vt−1) ≤ θ = −0.75.28

We think that such a very strong negative autocorrelation of monthly needs is unlikely.29

First, since the regression results include time fixed effects, such autocorrelations could not

occur from events that happen at regular intervals during the year – e.g., from summer

vacations. We separately verify that, in any case, fee payments are not seasonal (although

spending certainly is). Second, the presence of highly negative autocorrelations at a monthly

level would rule out events that last more than one month. For example, if personal crises

raised the opportunity cost of time for two or more months, that would create a non-negative

autocorrelation in time needs and fee payments. Third, the time-varying needs would have

to produce a higher than average fee payment in one month followed by a lower than average

fee payment in the following month. This would rule out episodes of high opportunity cost

of time for one month followed by a return to the status quo.

For most plausible processes, needs are likely to be positively autocorrelated. For exam-

ple, the available evidence implies that income processes are positively autocorrelated ( e.g.

Guvenen (2007)). While we cannot rule out the “negatively autocorrelated needs” story,

existing microeconomic evidence suggests it is highly unlikely to be the right explanation for

the empirical patterns that we observe. We conclude that the finding of θ < 0 in (7) is most

plausibly explained by a recency effect —consumers become temporarily vigilant about fee

avoidance immediately after paying a fee.

3.6 Medical expenses

Negative autocorrelation in fee payments could also be induced by a one-time medical

emergency that is not repeated in subsequent months. In our sample, less than 3% of

account-holder spending is in medical-related categories. Moreover, spending in such cate-

gories does not increase during periods in which a fee is paid.

28It is easy to see that under (6), cov (ft, ft−1) = cov (νt, νt−1), and var (ft) = E [νt] (1− E [νt]) ≥ E
[
ν2t
]
−

E [νt]
2
= var (νt), as νt ∈ [0, 1]. So, θ = cov (ft, ft−1) /var (ft−1) satisfies |θ| ≤ |cov (νt, νt−1)| /var (νt) =

|corr (νt, νt−1)|, and θ and corr (νt, νt−1) have the same sign.
29The least implausible type of negatively autocorrelated process in economics is a “periodic spike”process,

which take a value of a every K periods, and b 6= a otherwise. It has an autocorrelation of −1/ (K − 1). We
fail to find evidence for such a pattern in credit card use other than fees. For instance, expenses across time
are positively autocorrelated.
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4 On the Channels of Learning and Backsliding

In this section, we present ancillary evidence that extends our analysis of learning and

backsliding. Teasing out some of the determinants of learning is challenging, since we do not

observe many of the underlying factors that influence learning dynamics. For example, we

do not see the printed format of the bill that was used during our sample period, and can

not tell how salient the fees were (although we suspect that the credit card company likely

did not go out of its way to call attention to them).

Below, we evaluate several factors that we think might influence the rate of learning and

backsliding in fee payment, including differences across demographic groups.

4.1 Borrower Characteristics

In this subsection, we characterize how fee payment varies by borrower characteristic—

marital status, gender, age, income, and FICO (credit) score Note that most of these

characteristics —e.g. FICO score —are endogenously determined jointly with fee payment,

so our interpretations are not causal.30

Table 3 presents the correlation matrix for the characteristics. The correlations are all

small and positive, ranging between 1 and 15 percent. Gender and marital status have the

lowest correlations with the other characteristics, with correlations ranging between 1 and

7 percent for each category. Age has correlations between 2.5 and 9 percent for all but

one category, but a correlation of 15 percent with income.31 The financial variables show

somewhat higher pairwise correlations, although still small in absolute value.

To measure the impact of particular characteristics, for each characteristic we first divide

the sample, as appropriate, into two sub-categories (in the case of gender and marital status)

or three sub-categories (bottom, middle, and top third for age, income, FICO, credit limit,

and card utilization). For each characteristic, and for each sub-category, we estimate the

same regressions as in section 2—specifically, equations 1 and 5.32

30We have also looked at the association with credit limits and card utilization, with somewhat similar
results.
31The pattern of income with age is an inverse U-shape, as has been found in other samples.
32In principle, we would like to know the marginal effect of varying one borrower characteristic while

holding the other characteristics fixed. In practice, two diffi culties complicate such analysis. First, given
the very large number of observations (4,000,000 account statements), the six-fold expansion in parameters
required to control for all seven demographic characteristics makes estimation computationally diffi cult.
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Estimating a regression for each characteristic sub-category for all three types of fees

leads to a total of 57 account-tenure regressions and 57 fixed-effect autoregressions.33 We

summarize these results as follows. For the tenure regressions (which trace out the decline in

fee payment by account tenure), we regress the estimated coeffi cients on the tenure dummies

on an exponential function, specifically estimating

(8) Γk = a+ be−φ(k−2),

where Γk is the coeffi cient for tenure of month k. At the initial account tenure, k = 2,

estimated fee payment is given by a+ b. As k increases, estimated fee payment declines to

a. Thus, the total percent reduction in fee payment by tenure is given by b/ (a+ b). The

‘half-life’of fee payment—that is, the number of periods after which fee payment will be cut

in half—is given by ln 2/φ; thus φ can be thought of as a measure of the speed of learning

(where larger φ implies faster learning).

For the fixed-effects autoregression on fees, if we denote the coeffi cient on lag k as βk,

then we estimate

(9) βk = a− be−φ(k−1).

Recall that these regressions (and the related Lk calculations) showed a recency effect—so

that at small lags, βk � 0, indicating that having paid a fee recently is associated with a

large reduction in current fee payment frequency. For k = 1, βk = a − b, while as k gets
larger, βk approaches a. So the total value of the recency effect is equal to −b, and the
percent decline associated with the recency effect is -b/ (a− b). As before, ln 2/φ gives the

number of periods after which the recency effect has declined by half—a rough estimate of

the speed of forgetting.

Both sets of regressions show that the net reductions in fee payment and recency effect

seen in the whole dataset are not attributable to any single borrower characteristic; that is,

Second, although this problem could be ameliorated either by throwing out observations or controlling for
smaller sets of characteristics, some parts of the characteristic space are sparse. For example, there are not
many elderly, low-income men in the sample.
33Two characteristics with two sub-categories each added to five characteristics with three sub-categories

equals 19 total sub-categories. Estimating one regression for three fee types for each of these sub-categories
yields 19× 3 = 57 total regressions.
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it is not the case that, for example, the reduction in fee payment is associated with just high

income borrowers, while borrowers with other incomes see little change in fee payment by

account tenure. Rather, across and within all borrower characteristics, we see net reductions

in fee payments and a recency effect.

From the tenure regressions, broadly, two points emerge:

1. The net reduction in fee payment over time is roughly about 70 percent,

regardless of fee type or borrower characteristic.There is some economically

significant variation in initial fee payment across different categories of some borrower

characteristics; for example, borrowers with low credit limits have about a 39 percent

frequency of paying a late fee, while those with high limits have a 29 percent frequency.

However, even in this case, for both categories of credit limit, the net reduction in fee

payment over time is about 70 percent.

2. However, the ‘speed of learning’can vary by a factor of two or more within

borrower characteristic categories. For example, for the late fee the estimated

values of φ for young, middle-aged, and older adults imply half-lives of fee frequency

payment of one year, six months, and eight months, respectively.34 Singles learn

more than twice as fast as couples; the speed of learning is increasing with income,

so that high-income borrowers learn more than twice as fast as low-income borrowers.

Similar comparisons apply to credit limit and card utilization. There is no appreciable

difference by gender. Interestingly, FICO score shows a U-shaped pattern, as fee

reductions occur most quickly for account holders with the middle third of FICO

scores.

These differences can be seen in Figure 5, which plots the estimated exponential regression

of the tenure effects for the five categories An online appendix provides the regression results

for a, b, and φ.

The autoregressions broadly show two points:

1. The size of the recency effect varies strongly with demographics. For ex-

ample, middle-aged borrowers see a 62 percent reduction in late fees, while younger

34This disadvantage of older adults confirms, with a different task, the qualitative findings of Agarwal et
al. (2009).
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borrowers and older borrowers see reductions of 58 percent and 41 percent in the same

fee category, respectively. High-income borrowers see a reduction of about 65 percent

in late fee payment—nearly double that of low-income borrowers.

2. The speed of forgetting also varies strongly with demographics—by more

than a factor of two in some cases. For example, the estimated values of φ

implies that it only takes about two and one-half months for half of the recency effect

to disappear for older account holders, while for middle-aged holders it takes nearly

six months. Similarly, for high income borrowers, it takes nearly six months for half

of the recency effect to disappear, while for low-income borrowers it takes a little over

two months.

Figure 6 plots the estimated exponential regression of the recency effect for several of the

categories, and an online appendix provides the regression results.

Jointly, both sets of results show that a slower pace of net learning is associated with

a smaller recency effect and a faster level of forgetting. For example, as noted above the

rate of tenure-based declines in fees is about half as fast for lower-income borrowers as for

higher-income borrowers; the size of the recency effect is also about half as great for lower-

income borrowers; and the speed of forgetting is more than twice as great for lower-income

borrowers. The same is true for older borrowers, as compared with middle-aged borrowers

and for couples vs. singles.

4.2 Learning from other types of fees

Payment of one kind of fee may alert account holders to the possibility that they may

have to pay other types of fees on their credit card, thereby increasing their general vigilance.

To evaluate this possibility, we compute versions of L1 in which we calculate the conditional

probability of paying a fee of type j after having paid a fee of a different type, normalized

by the unconditional probability of paying a fee of type j at time t. As before, a value of 1

will imply no impact of lagged fee payment on current fee payment, while values much less

than one imply a substantial impact.

Table 4 presents the results. We find the impact of paying other fees to be small, but

not negligible. For the six possible cases, values of L range from 0.90, in the case of the

association between a late fee payment last month and a cash advance fee this month, to
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0.96, in the case of a cash advance fee payment last month to a limit fee payment this

month—that is, the measured reductions in fee payment likelihood range between 4 and 10

percent. These figures are much smaller than the reductions of over 40 percent attributable

to payment of the own type of fee.

We have also tried re-estimating equation 1 for late fee payment, including dummy vari-

ables for payment of other fees. We find essentially no difference in the results.

4.3 Cash advance fees and the availability of other sources of liq-

uidity

Cash advance fee payment may be affected by different factors than payment of other

kinds of fees. Cash advances are an expensive substitute for other kinds of liquidity, and

borrowers may choose to take out cash advances when currency is needed for payment, but

other potential sources of currency are not available. Thus, the availability of ATMs may

affect the frequency of cash advances; account holders in areas with a large number of ATMs

would be more likely to have lower absolute levels of cash advance fee payment and to show

a faster rate of reduction in cash advance fee payment (as consumers successfully seek out

ATMs as an alternative).

We do not directly observe the number of ATM machines in an account holder’s home

market. However, we do observe population density by zip code of the account holder’s

address. This may be a good proxy for ATM coverage.35 Density could be a proxy for other

things besides ATM coverage. However, in the regressions we use our usual set of demo-

graphic characteristics. Estimating the same set of regressions as in the previous subsection

provides some support for this hypothesis. The reduction in initial cash advance fee payment

generated by going from a medium- to a high-density area is about 4 percentage points. The

‘half-life’of fee payment frequency is about 19 months in a medium-density area, as opposed

to 13 months in a high-density one. The recency effect is about 28 percentage points higher

in the higher-density area, with a half-life of about seven months, as opposed to five months

in the medium-density area.

35This relationship may not hold for poorer urban areas, which have traditionally been underserved by
banks. However, few of the borrowers in our sample live in such areas.
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4.4 Other investigations

Any learning effect might be stronger for a consumer’s first credit card. While we do

not know the cardholders in our dataset for whom this may be the first card, we do observe

two types of consumers for whom this is more likely to be true: young consumers and

consumers for whom this is their only credit card. Limiting our sample to these consumers,

we reestimate the relationships between (i) tenure and fee payments and (ii) past fee payment

and current fee payment.

We find no notable differences between those households with only one card and those

who have more than one card.

We have also analyzed fee payments of borrowers who exhibit two other types of behavior.

First, we study borrowers who spend on gambling-related institutions such as casinos. We

find no significant difference for fee payment between this group and the total population

of cardholders. Second we study ‘transactors’—those account holders who pay their balance

in full by the due date, thus enjoying the benefit of the float and avoiding paying interest

charges; this group comprises 27 percent of our sample. We again see no significant differences

in behavior between this group and those account-holders who carry a balance (‘revolvers’).

Finally, experience credit card users can be expected to pay nearer the due date. Accord-

ingly, Figure 7 presents a histogram of the days before (negative numbers) and days after

(positive numbers) the due date the bill is paid for consumers with account tenures of 1-12

months or 25-36 months. A measure of payment timeliness (“day paid - due date”) shifts to

the left with rising account tenure. This can be seen visually, and is confirmed by a formal

Barrett-Donald (2003) test.36 This reflects the net reduction in late fee payment observed

over tenure. The mass of the distribution largely lies within a two-week period before the

due date and a one-week period afterwards. Our users have learned to pay closer to the due

date.

36We consider the distribution of late payments (i.e., we winsorize the early payments at 0) at lag t =
0, 1, ..., for the “recent users”(account tenure 1-12 months) and “experienced users”(account tenure 25-36
months). We cannot reject the hypothesis that the CDF for recent users stochastically dominates the CDF
of experienced users (p = 0.93; note that we can reject the converse hypothesis, that experienced users
dominate recent users, with p < 0.01). The online appendix provides more details.
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4.5 The Channels of Learning and Backsliding

We summarize the evidence we have collected on the channels of learning and backsliding.

Fee avoidance is consistent with a more domain-specific attention. Paying a fee brings

the fee payment to the account holder’s attention, leading him or her to try to be extra

careful the next month by avoiding late payments the following month.

Socio-demographic variables are linked to learning and forgetting in the expected way.

The speed of learning is increasing with income, so that high-income borrowers learn more

than twice as fast as low-income borrowers. They also forget twice as slowly as low-income

borrowers.

We found no evidence for the extrapolation of learning in one domain into another do-

main, in which a paying a fee of one type “alerts”the consumer for a fee of another type.

Learning seems narrowly domain-specific.

One might have that there is more to learn the first time around. However, we found

no evidence that people learn faster (or slower) the first time around. Specifically we took

having just one card as a (rough) proxy for having a first card. Having just one card is not

correlated with a different learning behavior.

People who pay offtheir balance fully each month—‘transactors’– do not appear to behave

differently from non-transactors. Hence, we do not find that conscientiousness, or lack of

liquidity needs, affect learning parameters.

All in all, the evidence is consistent with narrowly domain-specific learning and forgetting,

with no evidence of spillovers, positive or negative, from one domain to the next (i.e., from one

type of fee to the next). It is modulated importantly with socio-demographic characteristics

(income, and, secondarily, age).

5 Conclusion

Our large panel data set enables us to study natural variation —not exogenous variation

— in account characteristics and account holder behavior. Keeping in mind this critical

limitation, our findings are consistent with the following conclusions.

Credit card users appear to learn about add-on fees by paying them. With years of

experience, credit card customers substantially reduce these fee payments. We document

this process using a three-year panel dataset representing 120,000 accounts.
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In our data, new accounts generate direct fee payments of $14 per month. The data

implies that negative feedback – i.e., paying fees – teaches consumers to avoid triggering

fees in the future. Controlling for account fixed effects, monthly fee payments fall by 75%

during the first four years of account life.

We also find that learning is not monotonic. We estimate that knowledge depreciates at

least 10% per month. As previous fee-paying lessons recede into the past, consumers tend

to backslide. However, on net, knowledge accumulation dominates knowledge depreciation.

Over time, fee payments drastically fall.

Our findings are consistent with the view that many consumers have limited attention,

and that knowledge is both gained and lost. Subsequent research should derive the industrial

organization and welfare implications of a market with consumers who are uninformed, slowly

learn, and are prone to partially forget.
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Appendix A: Data Description

The total sample consists of 125,384 accounts open as of January 2002 and 22,392 opened

between January and December of 2002 observed through December 2004. These accounts

were randomly sampled from several million accounts held by the bank. From this sample

of 147,776, we drop accounts that were stolen, lost, or frozen (due to fraud). We also exclude

accounts that do not have any activity (purchases and payments) over the entire period. This

leaves 128,142 accounts. Finally, we also remove account observations subsequent to default

or bankruptcy, as borrowers do not have the opportunity to pay fees in such instances. This

leaves us with an unbalanced panel with 3.9 million account observations.

Table A1 provides summary statistics for variables related to the accounts, including

account characteristics, card usage, fee payment, and account holder characteristics. The

second column notes whether the variable is observed monthly (‘M’), quarterly (‘Q’), or at

account origination (‘O’), the third column reports variable means, and the fourth column

variable standard deviations. Note that the monthly averages for the ‘Fee Payment’variables

imply annual average total fees paid of $141 (=$11.75×12), with about 7.52 fee payments
per year. Higher interest payments induced by paying fees (which raise the interest rate on

purchases and cash advances) average about $226 per year.

The accounts also differ by how long they have been open. Over 31 percent of the

accounts are less than 12 months old, 20 percent are between 12 and 24 months old, 18

percent are between 24 and 36 months old, 13 percent are between 36 and 48 months old,

10 percent are between 48 and 60 months old, and 8 percent are more than 60 months old.
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Table A1: Variable Descriptions and Summary Statistics

Category Description (Units) Freq. Mean Std. Dev.

Interest Rate on Purchases M 14.40 2.44

Account Characteristics Interest Rate on Cash Advances (%) M 16.16 2.22

Credit Limit ($) M 8,205 3,385

Current Cash Advance ($) M 148 648

Payment ($) M 317 952

Card Usage New Purchases ($) M 303 531

Debt on Last Statement ($) M 1,735 1,978

Minimum Payment Due ($) M 35 52

Utilization (Debt/Limit) (%) M 29 36

Total ($) M 10.10 14.82

Fee Amounts Cash Advance ($) M 5.09 11.29

Late Payment ($) M 4.07 3.22

Over Limit ($) M 1.23 1.57

Extra Interest Payments: ... Due to Over Limit or Late Fee ($) M 15.58 23.66

... Due to Cash Advances ($) M 3.25 3.92

Cash Advance M 0.38 0.28

Fee Payment Per Month Late M 0.14 0.21

Over Limit M 0.08 0.10

FICO (Credit Bureau Risk) Score Q 731 76

Behavior Score Q 727 81

Number of Credit Cards O 4.84 3.56

Borrower Characteristics Number of Active Cards O 2.69 2.34

Total Credit Card Balance ($) O 15,110 13,043

Mortgage Balance ($) O 47,968 84,617

Age (Years) O 42.40 15.04

Income ($) O 57,121 114,375

Notes: The FICO score is provided by Fair, Isaac and Co.. The greater the score, the less risky the consumer is. The “

Behavior Score” is a proprietary credit risk measure created by the bank to capture information not on the FICO score. “Q”

indicates the variable is observed quarterly, “M”monthly, and “O”only at account origination.
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Table 1: Monte Carlo Simulations of Fixed Effects Panel Autoregressions

One Lag Twelve Lags Eighteen Lags
Lag Coeffi cient Std. Dev. Coeffi cient Std. Dev. Coeffi cient Std. Dev.
1 —0.029 <.001 —0.060 <.001 —0.101 <.001
2 —0.060 <.001 —0.101 <.001
3 —0.059 <.001 —0.102 <.001
4 —0.057 <.001 —0.101 <.001
5 —0.056 <.001 —0.100 <.001
6 —0.054 <.001 —0.098 <.001
7 —0.052 <.001 —0.096 <.001
8 —0.050 <.001 —0.093 <.001
9 —0.048 <.001 —0.089 <.001
10 —0.046 <.001 —0.085 <.001
11 —0.043 <.001 —0.081 <.001
12 —0.040 <.001 —0.076 <.001
13 —0.070 <.001
14 —0.064 <.001
15 —0.058 <.001
16 —0.051 <.001
17 —0.044 <.001
18 —0.037 <.001

This table reports the results of Monte Carlo simulations of fixed effects panel
autoregressions of a dummy variable drawn from an i.i.d. uniform distribution.

Table 2: Fixed Effects Panel Autoregressions

Late Fee Over Limit Fee Cash Advance Fee
Lag Coeff. Std. Err. Coeff. Std. Err. Coeff Std. Err.
1 —0.512∗∗ 0.004 —0.467∗∗ 0.007 —0.377∗∗ 0.005
2 —0.475∗∗ 0.004 —0.383∗∗ 0.006 —0.328∗∗ 0.004
3 —0.422∗∗ 0.004 —0.326∗∗ 0.005 —0.251∗∗ 0.005
4 —0.362∗∗ 0.004 —0.295∗∗ 0.004 —0.198∗∗ 0.005
5 —0.305∗∗ 0.004 —0.250∗∗ 0.006 —0.152∗∗ 0.001
6 —0.250∗∗ 0.003 —0.146∗∗ 0.006 —0.115∗∗ 0.006
7 —0.198∗∗ 0.003 —0.096∗∗ 0.006 —0.094∗∗ 0.006
8 —0.151∗∗ 0.003 —0.072∗∗ 0.006 —0.064∗∗ 0.006
9 —0.100∗∗ 0.003 —0.016∗ 0.006 —0.025∗∗ 0.006
10 —0.060∗∗ 0.003 0.006 0.007 —0.007 0.007
11 —0.031∗∗ 0.003 0.035∗∗ 0.007 0.003 0.004
12 0.007∗ 0.003 0.092∗∗ 0.007 0.002 0.005
Fixed Effects Yes Yes Yes
Adj. R2 0.05 0.04 0.04
Obs 2.1 Million 2.1 Million 2.1 Million
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Table 3: Correlation Matrix
Marital Status Gender Age Income FICO

Marital Status 1.00
Gender 0.02 1.00
Age 0.05 0.03 1.00
Income 0.06 0.07 0.15 1.00
FICO 0.07 0.01 0.05 0.09 1.00
This table reports cross-correlations of account-holder characteristics.

Table 4: Impact of Other Fees
Cross Correlations

Month (t and t− 1) PFt|PFt−1
PFt

PFt|NPFt−1
PFt

PFt|PFt−1 PFt|NPFt−1 PFt NPFt
LateFeet & LimitFeet−1 0.941 1.016 0.2045 0.2210 0.217 0.783
LateFeet & CashAdvFeet−1 0.929 1.020 0.2020 0.2217 0.217 0.783
CashAdvFeet & Limt Feet−1 0.958 1.022 0.3238 0.3454 0.338 0.662
CashAdvFeet & LateFeet−1 0.903 1.050 0.3054 0.3548 0.338 0.662
LimitFeet & LateFeet−1 0.922 1.010 0.1016 0.1113 0.110 0.890
LimitFeet & CashAdvFeet−1 0.960 1.005 0.1058 0.1108 0.110 0.890
The first column of this table reports the probability of paying a fee of one type in period
t conditional on having paid a fee of another type in period t − 1, normalized by the
unconditional probability of paying a fee of the first type in period t. The second column
reports the (normalized) probability of paying a fee of type t conditional on not having paid
a fee of another type in period t − 1. The next two columns report the non-normalized
versions of these two quantities, and the last two columns the unconditional probabilities of
having paid and not having paid a fee, respectively.

35



 
Notes:  This figure plots the fitted values of regressions of fee frequency (times per month fees are paid) on dummy variables for account tenure, a constant, account- and time-fixed effects, and control 
variables (utilization (debit/limit), purchase amount, and dummy variables for any account activity this month and the existence of a bill last month).  The intercept is computed by summing the constant 
with the product of the estimated coefficients on the control variables and their average values (the account and time-fixed effects sum to zero by construction).  Tenure starts at the second month 
because account holders are, by definition, unable to pay late or over limit  fees in their first month of account tenure. 
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Figure 1: Fee Frequency and Account Tenure

Late Fee Over Limit Fee Cash Advance Fee



 
Notes:  This figure plots the fitted values of regressions of fee value (dollars per month in fees paid) on dummy variables for account tenure, a constant, account- and time-fixed effects, and control 
variables (utilization (debit/limit), purchase amount, and dummy variables for any account activity this month and the existence of a bill last month).  The intercept is computed by summing the constant 
with the product of the estimated coefficients on the control variables and their average values (the account and time-fixed effects sum to zero by construction).  Tenure starts at the second month 
because account holders are, by definition, unable to pay late or over limit  fees in their first month of account tenure. 
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Figure 3: Impact of Fees Paid k Months Ago on Fees Paid Now
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Notes:  This figure plots Lk=E(ft|ft-k=1)/E(ft), the ratio of the conditional mean of fees ft paid now given a fee was paid k months ago to the mean of fees paid now.  If this value is 1, having paid a fee k 
months ago has no effect on current fee payment; if it is less than one, having paid a fee k months ago reduces current fee payment; if it is greater than one, it increases fee payment.
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Figure 5:  Late Fee Frequency and Account Tenure, by Borrower Characteristic
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Figure 6:  Impact of Late Fees Paid k Months Ago on Late Fees Paid Now
by Borrower Characteristic
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