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Abstract

This methodological paper presents a class of stochastic processes with potentially

appealing properties for theoretical and empirical work in finance and macroeconomics,

the “linearity-generating” class. Its key property is that it yields simple exact closed-

form expressions for stocks and bonds, with an arbitrary number of factors. It operates

in discrete and continuous time. Controlling for the covariance with the stochastic

discount factor, the distribution of many disturbances does not affect stock or bond

prices, which simplifies the modeller’s task. The paper presents a series of illustrative

examples, including stocks with stochastic risk premia or stochastic dividend growth

rates, macroeconomic environments with changing trend growth rates, and yield curve

analysis.
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1 Introduction

This methodological paper defines and analyzes a class of stochastic processes that has a num-

ber of potentially attractive properties for economics and finance, the “linearity-generating”

(LG) processes. The LG class generates closed-form solutions for the prices of stocks and

bonds. It is simple and flexible, applies to an arbitrary number of factors with a rich cor-

relation structure, and works in discrete or continuous time. These features make it an

easy-to-use tool for pure and applied financial modelling.

The main advantage of the LG class is that it generates, with little effort, tractable

multifactor stock and bond models, in a way that incorporates stochastic growth rates of

dividends, and a stochastic equity premium. Stock and bond prices are linear in the factors

— hence the name “linearity-generating” processes.

A few moment conditions have to be verified for a process to be in the LG class (see Eq.

8-9). Given only those moments, one can price stocks and bonds (i.e., finite maturity claims

on dividends). Higher order moments (e.g., the distribution of the noise of the factors) do

not matter. In many applications, controlling for the covariance with the stochastic discount

factor, the variance of processes can be changed almost arbitrarily and the prices will not

change. The fact that a few moments are enough to derive prices makes modelling easier.

Linearity-generating processes are meant to be a practical tool for several areas in eco-

nomics. They are likely to be useful in: macroeconomics, with models with stochastic trend

growth rate or probability of disaster; asset pricing, with models with stochastic equity

premium, interest rate, or earnings growth rate.

Several literatures motivate the need for a tool such as LG processes. Many recent

studies investigate the importance of long-term risk for asset pricing and macroeconomics,

e.g., Bansal and Yaron (2004), Croce, Lettau and Ludvigson (2006), Gabaix and Laibson

(2002), Hansen, Heaton and Li (2008), Hansen and Scheinkman (2009), Julliard and Parker

(2004). The LG processes offer a way to model long-term risk, while keeping a closed form

for stock prices. In addition, there is debate about the existence and mechanism of the time-

varying expected stock market returns, e.g., Campbell and Shiller (1988), Cochrane (2008)

and many others. Because of the lack of closed forms, the literature relies on simulations

and approximations. The LG processes offer closed forms for stocks with time-varying equity

premium, which is useful for thinking about those issues.

The motivation for the LG class is inspired by the broad applicability and empirical
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success of the affine class identified by Duffie and Kan (1996), and further developed by

Dai and Singleton (2000) and Duffie, Pan and Singleton (2000), which includes the Vasicek

(1977) and the Cox, Ingersoll, Ross (1985) processes as special cases. Much theoretical and

empirical work is done with the affine class. Some of this could be done with the LG class.

Section 5.3 develops the link between the LG class and the affine class. The two classes

give the same quantitative answers to a first order. The main advantage of the LG class is

for stocks. The LG class gives a simple closed-form expression for stocks, whereas the affine

class needs to express stocks as an infinite sum. Hence, while the affine class can be expected

to be remain for long the central model for options and bonds, one can think that the LG

class may be a auxiliary technique for bonds, but will be particularly useful for stocks.

Closed forms for stocks, or perpetuities, are not available with the current popular

processes, such as the affine models of Ornstein-Uhlenbeck / Vasicek (1977) and Cox, Inger-

soll, Ross (1985), or models in the affine class (Duffie and Kan 1996). Those models simply

generate an infinite sum of terms. Several papers have derived closed forms for stocks. Bak-

shi and Chen (1996) derive a closed form, which is an exponential-affine function of a square

root process. Mamayski (2002) derives another closed form, though in a non-stationary set-

ting. Cochrane, Longstaff and Pedro Santa (2008) contains nice closed form solutions. We

confirm results from Mele (2003, 2007), who obtains general results (particularly with one

factor) for having bond and stock prices that are convex, concave, or linear in the factors.

LG processes satisfy Mele’s conditions for linearity. Mele, however, did not derive the closed

forms for stocks and bonds in the linear case.

Linear expressions in asset prices are in Bhattacharya (1978), Buraschi and Jiltsov (2007),

Veronesi (2000), Menzly, Santos and Veronesi (2004)1, Santos and Veronesi (2006).2 Their

process turns out to belong to the LG class (see Example 9). Indeed, we show that any

process yielding linear expressions for fine-maturity claims has to belong to the LG class.

In view of those earlier findings, the present paper does two things. First, it defines and

analyzes the unified class that underlines disparate results of the literature (as Duffie and

Kan (1996) did for affine processes that unified pockets of tractability exemplified by Vasicek

1It is indeed the Menzly, Santos and Veronesi (2004) paper that alerted me to the possibility of a class
with closed forms for stocks.

2After the initial submission of this paper, Philip Dybvig told me about never-typed notes with Jonathan
Ingersoll that contained other linear expressions. However, they do not seem to have obtained the general
LG structure.
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(1977) and Cox, Ingersoll and Ross (1985)). Second, it proposes what appears to be some

novel processes, such as those using the “linearity-generating twist”.

Finally, we contribute to the vast literature on interest rate processes, by presenting a

new, flexible process. The main advantage is probably that, because the LG processes are so

easy to analyze, they lend themselves easily to economic analysis. Potential disadvantages

are discussed later in the paper. Using the LG class, Gabaix (2009) develops a model of

stocks and bonds, and Farhi and Gabaix (2009) a model of exchange rates and the forward

premium puzzle.

This paper follows a productive literature that (proudly) reverse-engineers processes for

preferences and payoffs, e.g., Campbell and Cochrane (1999), Cox, Ingersoll, Ross (1985),

Liu (2007), Ljungqvist and Uhlig (2000), Pastor and Veronesi (2005), Ross (1978), Sims

(1990), Veronesi (2000), and, particularly, Menzly, Santos and Veronesi (2004). Indeed, the

two LG moment conditions of Definition 2 give a recipe to “reverse-engineer” processes to

ensure tractability.

Section 2 is a gentle introduction to LG processes. Section 3 contains the basic results

of the paper. Section 4 presents a variety of examples illustrating LG processes. Section 5

presents some additional results, notably on the range of admissible conditions, and on the

projection of non-LG processes onto LG processes. Section 6 concludes.

2 A Simple Introduction to Linearity-Generating Processes

To motivate LG processes, this section presents a very simple, almost trivial example — the

Gordon formula in discrete time.3 We want to calculate the price Pt = Et

" ∞X
s=1

Dt+s/ (1 + r)s
#

of a stock with dividend growth:

Dt+1

Dt
= (1 + g∗) (1 + xt) + εt+1, (1)

3This example is so simple that it would not be surprising if it had already been done elsewhere, even
though I did not find it in the previous literature. For instance, a referee pointed out that the process leads
to an ARIMA in Dt, which has been developed e.g. in Hansen and Sargent (1991). Still, process (5) seems
new. In any case, it seems quite certain that the class of LG processes (including the general structure with
several factors, stocks bonds and continuous time), as a class, is identified and analyzed in the present paper
for the first time.
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where r > 0 is the riskless rate (later, we will add risk premia), g∗ ∈ (−1, r) is the trend
growth rate, and xt is a deviation of the growth rate from trend, which may be autocorrelated,

and εt+1 has mean 0. This is a prototypical example of a stock with stochastic trend growth.

Even in this example, the usual processes for xt typically yield infinite sums of exponential

terms, so they are more cumbersome particularly for paper-and-pencil theory.

Let us reverse engineer the process for xt, and see if the price-dividend ratio can have

the form:
Pt

Dt
= A+Bxt (2)

for some constantsA andB. The no-arbitrage equation for the stock is Pt =
1
1+r

Et [Dt+1 + Pt+1]

i.e.
Pt

Dt
=

1

1 + r
Et

∙
Dt+1

Dt

µ
1 +

Pt+1

Dt+1

¶¸
. (3)

Plugging in (1) and (2), and assuming that E [εt+1] = Et [εt+1xt+1] = 0, the no-arbitrage

equation reads:

A+Bxt =
1

1 + r
Et [(1 + g∗) (1 + xt) (1 +A+Bxt+1)] , i.e.

A+Bxt =
1 + g∗
1 + r

((1 + xt) (1 +A) + (1 + xt)Et [xt+1]B) . (4)

If xt is an autoregressive process of order 1 (AR(1)), i.e. Et [xt+1] = ρxt, then (4) cannot

hold: we have linear terms on the left-hand side, and a non-linear term (1 + xt)Et [xt+1]

on the right-hand side. However, (4) can hold if we postulate that xt follows the following

“twisted” AR(1), with |ρ| < 1:

Linearity-generating twist: Et [xt+1] =
ρxt
1 + xt

, (5)

If xt is close to 0, then to the first order, Et [xt+1] ∼ ρxt, so that xt+1 behaves approximately

like an AR(1). It is a twisted AR(1), because of the term 1+xt in the denominator. However,

in many applications, xt will be within a few percentage points from 0, so materially, the

twist is small (more on this later). In any case, process (5) is meant to be a stand-alone

modelling proposal, rather than the approximation of another process. If (5) holds, then (4)

reads:

A+Bxt =
1 + g∗
1 + r

((1 + xt) (1 +A) + ρxtB) ,
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which features only linear terms, and admits a solution. Indeed, identifying the con-

stant and xt terms, we obtain A = 1+g∗
1+r

(1 +A), i.e. A = (1 + g∗) / (r − g∗), and B =
1+g∗
1+r

[1 +A+ ρB], i.e. B = A/
¡
1− ρ1+g∗

1+r

¢
. Finally, plugging those values of A and B back

in (2) gives:
Pt

Dt
=
1 + g∗
r − g∗

Ã
1 +

xt

1− ρ1+g∗
1+r

!
. (6)

We conclude that (6) solves (3). It is actually easy to show that the stock price satisfies

(6): by induction on T , one shows that for all T ≥ 0, Et [Dt+T ] = (1 + g∗)
T
³
1 + 1−ρT

1−ρ xt
´
Dt,

and direct calculation yields (6). We note that (6) is a generalization of the Gordon growth

formula with constant growth rate (which is simply Pt
Dt
= 1+g∗

r−g∗ ) to the case of time-varying

growth rate. 4 We gather our result in Example 1.

Example 1 (Simple stock example with LG stochastic trend growth rate). Consider a stock

with dividend growth rate xt, with Dt+1/Dt = (1 + g∗) (1 + xt) + εt+1, where εt+1 has mean

0 and is uncorrelated with xt+1, with the linearity-generating “twist” for the growth rate,

Et [xt+1] = ρxt/ (1 + xt), and price Pt = Et

" ∞X
s=1

Dt+s/ (1 + r)s
#
. Suppose that, with proba-

bility 1, ∀t, xt > −1. Then, the price-dividend ratio, Pt/Dt is given by (6). The rest of the

paper develops this systematically.

This example illustrates several general traits of LG processes. Eq. 5 imposes just one

moment condition. Higher order moments do not matter for the price. For instance, we

could have a complicated nonlinear function for the variance of the growth rate, but it would

not affect the stock price. Likewise, the distribution of the noise does not matter, so that

one can have jumps and the like, without changing the price. This may be useful in many

cases, though there might be drawback to that, as discussed in section 5.3. In LG models

with risk premia, the covariance of variables with the stochastic discount factor will of course

matter for the price, but most other moments (i.e., those that do not explicit figure in the

LG moments (8)-(9) below) will not matter.

We need restrictions on the domain of xt. Mostly obviously, one needs xt > −1. Actually,
the stronger condition xt > ρ − 1 is needed (see section 5.1). In particular, the variance of

4The economic interpretation of (6) is straightforward. A stock with an unually high current growth rate
xt should have a high price. The effect is larger the growth rate is more persistent (high ρ), and the future
is discounted less (low r or high g∗).
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xt has to go to 0 near that boundary.

With the affine models of Duffie and Kan (1996), we might model: Dt+1/Dt = eg∗+xt,

xt+1 = ρxt + εt+1. That would lead to Et [Dt+T/Dt] = ea(T )+b(T )xt, for some functions a (T ),

b (T ), and finally: Pt
Dt
=
P

T≥1 e
a(T )+b(T )xt. We get an infinite sum over maturities, rather

than the compact expression (6). Hence, LG processes are particularly tractable for stocks.

The twisted process (5) is similar to an AR(1), Etxt+1 = ρxt, up to second order terms.

Hence, the behavior is likely to be close to an AR(1). To illustrate this, the online appendix

to this paper reports the simulation of the above example, with and without the twisted

terms. The values for the growth rates are quite close, and hard to distinguish visually.

Likewise, the associated price-dividend ratios are quite close. Of course, even if they had

been quite different, this would not have been an important drawback for LG processes. We

do not want to say that the true model is an AR(1), that a LG process approximates. It

could as well be that the true model is a LG process, than an AR(1) model approximates. Or

rather, as a model is just idealization of a complex economic reality, the respective advantage

of LG vs. affine models depends on the specific task at hand. The modeler should be able

to pick whichever modelling idealization is most expedient, and LG processes offer one such

choice.

Finally, from the regular Gordon formula, the reader might expect the stock price at time

t to be a convex function of xt. It is true that it is a convex function of the future growth

rates (xt+s)s≥1. However, the LG twist (5) makes future growth rates be a concave function

of the initial growth rates xt. That is how the LG stock price, as it compounds a concave

and a convex relation, might a priori be concave or convex function of xt (see Mele 2003,

2007). With the LG twist, it is exactly a linear function of the initial growth rate.

We now start our systematic treatment of LG processes.

3 Basic Theory

We fix a probability space
¡
ΩP ,F , P

¢
and an information filtration Ft satisfying the usual

technical conditions (see, for example, Karatzas and Shreve 1991). A process (xt)t≥0 is L
1

if it is integrable and (i) in discrete time, ∀T > 0, E0
hPT

t=0 |xt|
i
<∞, or (ii) in continuous

time, ∀T > 0, E0
hR T
0
|xt| dt

i
<∞.
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We want to price an asset with dividend process Dt, given a discount factor processMt.5

The price at time t of a claim yielding a stochastic dividend Dt+T at maturity T > 0 is

Pt = E

" ∞X
T=1

Mt+TDt+T

#
/Mt if time is discrete, Pt = Et

£R∞
0

Mt+TDt+TdT
¤
/Mt if time is

continuous. For instance, the price at t of a (“zero coupon”) bond yielding 1 in T periods is:

Zt (T ) = Et [Mt+T ] /Mt. Throughout the paper, the number of factors n is a positive integer.

3.1 Linearity-Generating Processes in Discrete Time

We start with the following definition.

Definition 1 (Abstract version of LG processes). A LG process is quadruplet
¡
Ω, ν, (Yt)t≥0 , (MtDt)t≥0

¢
with Ω a (n+ 1) × (n+ 1) matrix (called the generator of the process), ν = (1, 0, . . . , 0)0 ∈
Rn+1, a L1 state vector process (Yt)t=0,1,... with values in Rn+1, and a process MtDt with

non-zero values such that for all t ∈ N, MtDt = ν 0Yt and

Et [Yt+1] = ΩYt. (7)

Hence, the (dividend-augmented) stochastic discount factor of a LG process is simply

the first component of an autoregressive process, Yt. The tractability of LG processes comes

from the tractability of autoregressive processes.

Definition 1 is a bit abstract. In practice, it is often easier to apply the following (and,

we will see, equivalent) definition. We consider a state vector Xt ∈ Rn which can generally

be thought of as stationary, while MtDt generally has a trend, and is not stationary. The

definition of the LG process is the following.

Definition 2 (Concrete version of LG processes). The process MtDt (1,X
0
t)t=0,1,2,..., with

MtDt ∈ R r {0} and Xt ∈ Rn, is a linearity-generating process if it is L1 and there are

5The simplest example is Mt = (1 + r)
−t. If a consumer with utility

P
t δ

tU (Ct) prices assets, then
Mt = δtU 0 (Ct). Also, some authors call Mt+1/Mt the “stochastic discount factor”. In the present article,
there is no confusion.
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constants α ∈ R, γ, δ ∈ Rn,Γ ∈ Rn×n, such that the following relations hold at all t ∈ N:

Et

∙
Mt+1Dt+1

MtDt

¸
= α+ δ0Xt, (8)

Et

∙
Mt+1Dt+1

MtDt
Xt+1

¸
= γ + ΓXt. (9)

To interpret (8), consider first the case of bonds, Dt ≡ 1; Eq. 8 says that the properly-
defined interest rate is linear in the factors. When Mt = (1 + r)−t with general Dt, (8)

says that expected dividend growth is linear in the factors. In general, (8) means that the

expected value of the (dividend augmented) stochastic discount factor growth is linear in

the factors.6

Condition (9) means that Xt follows a “twisted” AR(1). It behaves in some sense like

Et [Xt+1] = γ + ΓXt, but it is twisted by the
Mt+1Dt+1

MtDt
term.

What kinds of models are compatible with Definition 2? As the examples below show,

it is not difficult to write toy economic models satisfying conditions (8)-(9), e.g. in Lucas

(1978) and Campbell-Cochrane (1999) economies with exogenous consumption, dividend or

marginal utility processes, or models with learning. Farhi and Gabaix (2009) and Gabaix

(2009) present fully worked-out general-equilibrium macroeconomic models satisfying the

LG conditions.7 Indeed, conditions (8)-(9) give a prescription to “reverse-engineer” macro

or micro fundamentals, so as to make the model tractable: The modeler has to make sure

that the endowment, technology etc. is such that (8)-(9) hold.8

To see the link between the two definitions, consider the elements of Definition 2, and

define

Ω ≡
Ã

α δ0

γ Γ

!
, (10)

Yt ≡
Ã

MtDt

MtDtXt

!
= (MtDt,MtDtX1t, · · · ,MtDtXnt)

0 , (11)

6Hence, if the interest rate is constant, yt = Dt (1, Xt) is an autoregressive process under the risk-neutral
probability induced by Mt.

7So cash-flows and discount factors may be intertwined (as they typically are in general equilibirum), or
not with LG models. The present work and Gabaix (2009) contains examples of both situations.

8In addition, models that do not directly fit into the conditions of Definition 2, could be approximated
by projecting linearly in (8)-(9), as we will discuss later.
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so that the vector Yt stacks all the information relevant to the prices of the claims derived

below.9 Conditions (8)-(9) can be written (7). Hence, Definition 2 implies Definition 1.

Conversely, Definition 1 implies Definition 2 by defining α, γ, δ and Γ as in (10).10 The two

definitions are equivalent.

The basic pricing properties are the following two theorems.

Theorem 1 (Bond prices, discrete time). The price-dividend ratio of a zero-coupon equity

or bond of maturity T , Zt (T ) = Et [Mt+TDt+T ] / (MtDt), is

Zt (T ) =
³
1 0n

´
ΩT

Ã
1

Xt

!
. (12)

When γ = 0 (i.e., when the process Xt is centered around 0) this simplifies to

Zt (T ) = αT + δ0 (αIn − Γ)−1
¡
αT In − ΓT

¢
Xt. (13)

In the above expressions, In is the identity matrix of dimension n, and 0n is the row vector

with n zeros.

For instance, when Dt ≡ 1, the above theorem can price bonds, with n factors, in closed

form. Theorem 1 highlights that when γ = 0, a simplification arises. The case γ = 0 means

the state variables are re-centered around 0, which is easy to do in practice, as the examples

below will illustrate.

The second main result is the most useful property of LG processes: the existence of a

closed-form formula for stock prices.

Theorem 2 (Stock prices, discrete time). Suppose that Ω’s eigenvalues have modulus less

than 1 (finiteness of the price). Then, the price-dividend ratio of the stock, Pt/Dt =

9Other assets, e.g. options, require of course to know more moments.
10In addition, Definition 2 can be used with a different ν, which is sometimes useful. But it is equivalent

to the definition with ν = (1, 0, ..., 0)0 by reordering the basis for the vector of Yt.
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Et

£P∞
s=t+1MsDs

¤
/ (MtDt), is

Pt/Dt =
1

1− α− δ0 (In − Γ)−1 γ

¡
α+ δ0 (In − Γ)−1 (Xt + γ)

¢
(14)

=
³
1 0n

´
Ω (In+1 − Ω)−1

Ã
1

Xt

!
. (15)

Theorem 2 allows to generate stock prices with an arbitrary number of factors, includ-

ing time-varying growth rate and time-varying risk premia. Formula (14) may look a bit

complicated a first, but in Example 1 and the examples below, it typically gives simple ex-

pressions. Indeed, to make formulas concrete, consider the case where Γ is a diagonal matrix:

Γ = Diag (Γ1, . . . ,Γn). Then, αT In−ΓT
αIn−Γ = Diag

¡¡
αT − ΓTi

¢
/ (α− Γi)

¢
,11 so that (13) and

(14) read:

Zt (T ) = αT +
nX
i=1

αT − ΓTi
α− Γi

δiXit if γ = 0, (16)

Pt/Dt =
α+

Pn
i=1

δi(Xi+γi)
1−Γi

1− α−
Pn

i=1
δiγi
1−Γi

. (17)

In applications, it is useful to have the price of a claim yielding not just Dt, but any

linear functional DtXt. For instance, in a bond model, a futures price has this form. The

following two propositions show how to do that. The proofs are exactly identical to those of

the previous two theorems.

Proposition 1 (Value of a single-maturity claim yielding Dt+Tf
0Xt+T ). Given the LG

process MtDt (1,X
0
t), the price of a claim yielding a dividend dt+T = Dt=T

nX
i=1

fiXit+T =

Dt+T (f
0Xt+T ), Pt = Et [Mt+Tdt+T ] /Mt, is Pt =

Ã
0

f

!0
ΩT

Ã
1

Xt

!
Dt, and

Pt = f 0ΓTXtDt when γ = 0. (18)

11If A is a matrix, and f (x) =
P∞

n=0 fnx
n is an analytic function of a real variable x, then f (A) ≡P∞

n=0 fnA
n. If A = Diag (a1, .., an), f (A) = Diag (f (a1) , ..., f (an)).
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Proposition 2 (Value of an asset yielding Dtf
0Xt at each period). Under the conditions

of Theorem 2, the price of a claim yielding a dividend dt = Dt

nX
i=1

fiXit = Dtf
0Xt, Pt =

Et

£P∞
s=t+1MsDs

¤
/Mt satisfies: Pt/Dt =

Ã
0

f

!0
Ω (In+1 − Ω)−1

Ã
1

Xt

!
, i.e.

Pt

Dt
=

f 0(I − Γ)−1γ

1− α− δ0(I − Γ)−1γ
+ f 0

µ
Γ+

1

1− α
γδ0
¶µ

I − Γ− 1

1− α
γδ0
¶−1

Xt. (19)

For instance, when Γ = Diag (Γ1, . . . ,Γn) and γ = 0, (18) reads Pt/Dt =
nX
i=1

fiΓ
T
i Xit,

and (19) reads Pt/Dt =
1
1−α

nX
i=1

fi
Γi
1−ΓiXit.

We next turn to the continuous time version of what we have seen so far. The reader

may wish to skip directly to the examples of section 4.

3.2 Linearity-Generating Processes in Continuous Time

The following notation is useful when using LG processes. For xt, μt processes in a vector

space V , we say Et [dxt] = μtdt, or Et [dxt] /dt = μt, to signify that there exists a martingale

Nt with values in V such that: xt = x0 +
R t
0
μsds+Nt.

The definition in continuous time is analogous to the definition in discrete time.

Definition 3 (Abstract version of LG processes, continuous time). A LG process is quadru-

plet
¡
ω, ν, (Yt)t≥0 , (MtDt)t≥0

¢
with ω a (n+ 1)× (n+ 1) matrix (called the generator of the

process), ν = (1, 0, . . . , 0)0 ∈ Rn+1, a L1 state vector process (Yt)t≥0 with values in Rn+1, and

a process (MtDt)t≥0 with non-zero values, such that for all t ∈ R+, MtDt = ν0Yt and

Et [dYt] = −ωYtdt. (20)

In the “concrete” version of the definition, the vector of factors is Xt.

Definition 4 (Concrete version of LG processes, continuous time). The processMtDt (1,X
0
t)t∈R+,

with MtDt ∈ Rr {0} and Xt ∈ Rn, is a linearity-generating process if it is L1 and there are
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constants a ∈ R, b, β ∈ Rn,Φ ∈ Rn×n, such that the following relations hold at all t ∈ R+,

Et [d (MtDt)] = − (a+ β0Xt)MtDtdt (21)

Et [d (MtDtXt)] = − (b+ ΦXt)MtDtdt. (22)

The interpretation is exactly the same as for Definition 2. Eq. 21 means that the expected

growth rate of MtDt is linear in the factors. Eq. 22 means that Xt follows a twisted AR(1).

For instance, in the case Dt ≡ 1 and dMt/Mt = − (a+ β0Xt) dt, Eq. 22 gives

dXt + hdXt, dMt/Mti = −bdt− (Φ− aIn)Xtdt+ (β
0Xt)Xtdt+ dNt, (23)

where Nt ∈ Rn is a martingale, and hdXt, dMt/Mti is the usual bracket, cov (dXt, dMt/Mt).

Hence, the process contains an AR(1) term, −b−(Φ− aIn)Xt, plus a “twist” quadratic term,

(β0Xt)Xt. It is a “twisted” AR(1). In many applications, Xt represents a small deviation

from trend, and the quadratic term (β0Xt)Xt is small. The term hdXt, dMt/Mti indicates
that it could be absent in the physical probability, but present under the risk-neutral measure.

So Et [dNt] = 0, but its components dNit, dNjt can be correlated. The simplest type of

martingale is dNt = σ (Xt) dBt, for Bt a Brownian motion, but richer structures, e.g. with

jumps, are allowed. As in the one-factor process, the volatility of dNt must go to zero in

some limit regions for the process to be well-defined. We defer this more technical issue until

section 5.1.

As in discrete time, the two definitions, abstract and concrete, are equivalent, with the

generator

ω =

Ã
a β0

b Φ

!
, (24)

and with Yt defined as in (11). Conditions (21)-(22) are then equivalent to (20). The

above process leads to a LG discrete-time process with time increments ∆t, with a generator

Ω = e−ω∆t.

The next theorem prices claims of finite maturity.

Theorem 3 (Bond prices, continuous time). The price-dividend ratio of a claim on a divi-

13



dend of maturity T , Zt (T ) = Et [Mt+TDt+T ] / (MtDt), is

Zt (T ) =
³
1 0n

´
exp (−ωT )

Ã
1

Xt

!
. (25)

When b = 0 (i.e., when the process is centered around 0) this simplifies to

Zt (T ) = e−aT + β0 (Φ− aIn)
−1 ¡e−ΦT − e−aT In

¢
Xt. (26)

As an example, bond prices come from Dt = 1. In many applications, b = 0, which

can generically be obtained by re-centering the variables. The next theorem gives the stock

price.

Theorem 4 (Stock prices, continuous time). Suppose that ω’s eigenvalues have positive real

part (finite stock price). Then, the price-dividend ratio of the stock, Pt/Dt = Et

£R∞
t

MsDsds
¤
/ (MtDt) ,

is

Pt/Dt =
³
1 0n

´
ω−1

Ã
1

Xt

!
=
1− β0Φ−1Xt

a− β0Φ−1b
. (27)

To make things more concrete, consider the case where Φ = Diag (Φ1, . . . ,Φn). Then,

e−ΦT = Diag
¡
e−ΦiT

¢
, and then (26) and 27) read:

Zt (T ) = e−aT +
nX
i=1

e−ΦiT − e−aT

Φi − a
βiXit if b = 0 (28)

Pt/Dt =
1−

Pn
i=1

βiXit

Φi

a−
Pn

i=1
βibi
Φi

. (29)

Finally, the following propositions show that one can price claims that have dividend a

linear function of DtXt.

Proposition 3 (Value of a single-maturity claim yielding Dt+Tf
0Xt+T ). Given the LG

process MtDt (1, Xt), the price of a claim yielding a dividend dt+T = Dt+T (f
0Xt+T ), Pt =

Et [Mt+Tdt+T ] /Mt, is Pt =

Ã
0

f

!0
exp (−ωT )

Ã
1

Xt

!
Dt, and Pt = f 0e−ΦTDtXt when b = 0.

14



Proposition 4 (Value of an asset yielding Dtf
0Xt at each period). Under the conditions of

Theorem 4, the price of a claim yielding a dividend dt = Dtf
0Xt, Pt = Et

£R∞
t

Msdsds
¤
/Mt,

satisfies: Pt/Dt =

Ã
0

f

!0
ω−1

Ã
1

Xt

!
= − 1

α−β0Φ−1bf
0Φ−1b+ f 0

¡
Φ− 1

α
bβ0
¢−1

Xt.

4 Some Examples

We present some examples illustrating the use of LG processes. Some derivations are in the

Appendix.

4.1 Examples: Stocks

Example 2 Gordon growth formula with time-varying dividend growth.

In this example, we apply the general mechanics of LG processes to our introductory

example. The discount factor is Mt = (1 + r)−t. We calculate the two LG moments (8)-(9):

Et

∙
Mt+1Dt+1

MtDt

¸
=

1 + g∗
1 + r

(1 + xt)

Et

∙
Mt+1Dt+1

MtDt
xt+1

¸
= Et

∙
Mt+1Dt+1

MtDt

¸
Et [xt+1] =

1 + g∗
1 + r

(1 + xt)
ρxt
1 + xt

=
1 + g∗
1 + r

ρxt.

In the above equation, the 1 + xt terms cancel out, because of the 1 + xt term in the

denominator of (5). We designed the process so that the LG equation (9) holds.

ThereforeMtDt (1, xt) is LG, with generator Ω =

Ã
1+g∗
1+r

1+g∗
1+r

0 1+g∗
1+r

ρ

!
=

Ã
α δ0

γ Γ

!
. Hence,

we apply Theorem 2, with a dimension n = 1, γ = 0, α = δ = 1+g∗
1+r

, Γ = αρ. We obtain

Pt/Dt =
1
1−α

¡
α+ δ0 (In − Γ)−1Xt

¢
, i.e. Pt/Dt =

α
1−α

³
1 + 1

1−αρxt
´
, i.e. (6). Hence we see

how Example 1 comes from the general structure of LG processes.

We use this example to illustrate LG processes in continuous time. Suppose MT = e−rT ,

DT = D0 exp
³R T

0
gtdt

´
, gt = g∗ + xt, where xt follows what is, formally at least, the

continuous time limit of (5) when ρ = 1− φ∆t and ∆t→ 0:

dxt =
¡
−φxt − x2t

¢
dt+ σ (xt) dWt. (30)
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where Wt is a standard Brownian motion. In the equation above, the coefficient on x2t has

to be −1. The Appendix calculates the LG moments, and Theorem 4 yields:12

Pt/Dt =
1

r − g∗

µ
1 +

xt
r − g∗ + φ

¶
. (31)

We see that (31) is the limit of (6) when ρ = 1 − φ∆t and ∆t → 0. Section 5.1 will

present the condition xt ≥ −φ for the process to be well defined.

Example 3 Stock price with stochastic equity premium.

Consider a discount factor and dividend process:

Mt+1

Mt
=

1

1 + r

¡
1 + εMt+1

¢
,

Dt+1

Dt
= (1 + g∗)

¡
1 + εDt+1

¢
,

and the risk premium πt = −covt
¡
εMt+1, ε

D
t+1

¢
is modelled to follow a twisted AR(1):

πt+1 = π∗ +
1− π∗
1− πt

ρπ (πt − π∗) + επt+1, (32)

where Et

£
εxt+1

¤
= 0 for x = M,D, π and Et

h
Mt+1Dt+1

MtDt
επt+1

i
= 0. The term 1−π∗

1−πt will be

close to 1 in many applications, as πt is close to π∗. So, we have πt+1 = π∗ + ρπ (πt − π∗) +

επt+1 up to second-order terms, which is the simple AR(1). However, the LG twist allows

for computation of many interesting quantities, such as the stock price. Defining α =

(1 + g∗) (1− π∗) / (1 + r), simple calculations in the Appendix show that

Pt/Dt =
α

1− α

µ
1− πt − π∗

(1− π∗) (1− αρπ)

¶
. (33)

When πt = π∗, this is simply the traditional Gordon growth formula, Pt/Dt = α/ (1− α).

The economics of this generalized formula is intuitive: a temporarily high level of the equity

12The Fisher-Wright process contains a quadratic term, but it does not highlight the tractability coming
from the unit coefficient on the quadratic term in a LG context. In addition, it is more special than the LG
class, because it imposes a specific functional form on the variance. Cochrane, Longstaff, and Santa-Clara
(2008) apply the Fisher-Wright process. Mele (2003, 2007) identifies a condition for the process to be linear
in the factor, but does not derive stocks and bond prices such as (31). Other papers introduce different
quadratic terms in stochastic process, for instance Ahn et al. (2002), and Constantidines (1992) but they do
not take the form of this paper.
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premium leads to a low price, particularly this level is persistent. Note that the PD ratio

is independent of the variance of the dividend shock εDt+1 per se, but it is depends on the

covariance with the cov
¡
εMt+1, ε

D
t+1

¢
= −πt.

Example 4 Stock price with stochastic growth rate and stochastic equity premium.

Discrete time. Consider a discount factor and dividend process, Mt+1

Mt
= 1

1+r

¡
1 + εMt+1

¢
,

Dt+1

Dt
= 1 + gt + εDt+1, where gt is the stochastic trend growth rate of the dividend, and

πt = −covt
¡
εMt+1, ε

D
t+1

¢
is a risk premium.13 We postulate:

gt+1 = g∗ +
1 + g∗ − π∗
1 + gt − πt

ρg (gt − g∗) + εgt+1

πt+1 = π∗ +
1 + g∗ − π∗
1 + gt − πt

ρπ (πt − π∗) + επt+1,

where Et

£
εxt+1

¤
= 0 (x = M,D, g, π) and Et

h
Mt+1Dt+1

MtDt
εxt+1

i
= 0 (x = g, π). So, the growth

rate and the risk premium hover around their trend, g∗ and π∗. The term
1+g∗−π∗
1+gt−πt will be

close to 1 in many applications. So, we have gt+1 = g∗ + ρg (gt − g∗) + εgt+1 up to second-

order terms, an AR(1). However, the LG twist allows for computation of many interesting

quantities, such as the stock price. Defining α = (1 + g∗ − π∗) / (1 + r), the Gordon discount

factor, Theorem 2 yields:

Pt/Dt =
1

1− α

µ
α+

1

1 + r

gt − g∗
1− αρg

− 1

1 + r

πt − π∗
1− αρπ

¶
. (34)

In the limit of small time intervals, with ρg = 1 − φg, ρπ = 1 − φπ, with r and φg, φπ

small (φg is the speed of mean-reversion of g to its trend), we obtain:

Pt/Dt =
1

R

µ
1 +

gt − g∗
R+ φg

− πt − π∗
R+ φπ

¶
, R ≡ r + π∗ − g∗ (35)

Equation (35) nests the three main sources of variations of stock prices in a simple and

natural way. Stock prices can increase because the level of dividends increases (that’s the

Dt terms), because the expected future dividend growth rate increases (the gt− g∗ term), or

13The risk premium is on the innovations to dividends. One could also have a risk premium on the
innovation to the expected dividend growth rate (as in Bansal and Yaron 2004), an exercise that we leave
to the reader.
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because the equity premium decreases (the πt−π∗ term). The two growth or discount factors
(gt and πt) enter linearly, weighted by their duration (e.g., 1/ (R+ φπ)), which depends on the

speed of mean-reversion of each process (parametrized by φπ, φg), and the effective discount

rate, R. The volatility terms do not enter in (34), and the price does not change if one

changes the correlation between the instantaneous innovation in gt and πt.

Continuous time. The analogue is dMt/Mt = −rdt− πt
σ
dWt and dDt/Dt = gtdt+σdWt.

We assume that πt (which will be the risk premium on the whole stock) and gt follow

the following LG processes, best expressed in terms of their deviation from trend, bπt =
πt − π∗,bgt = gt − g∗:

dbgt = −φgbgtdt+ (bπt − bgt)bgtdt+ σg (bgt, bπt) · dBt

dbπt = −φπbπtdt+ (bπt − bgt) bπtdt+ σπ (bgt, bπt) · dBt,

where the Bt is a multidimensional Brownian process independent of Wt, and σg and σπ are

vector-valued functions. The term (bπt − bgt) bgtdt is a (in practice often small) LG twist term.
The stock price Pt = Et

£R∞
t

MsDsds
¤
/Mt is exactly given by (35).

Example 5 Dividend growth rate as a sum of mean-reverting processes (e.g., a slow and a

fast process).

Suppose MT = e−rT , DT = D0 exp
³R T

0
gtdt

´
, with gt = g∗ +

Pn
i=1 xit and Et [dxit] /dt =

−φixit + (g∗ − gt)xit. The growth rate gt is a steady state value g∗, plus the sum of mean-

reverting processes xit. Each xit mean-reverts with speed φi, and also has second-order LG

perturbation (g∗ − gt)xit. The price-dividend ratio is

Pt/Dt =
1

r − g∗

Ã
1 +

nX
i=1

xit
r − g∗ + φi

!
. (36)

Each component xit perturbs the baseline Gordon expression 1/ (r − g∗). The perturbation

is xit, times the duration of xi, discounted at rate r− g∗, which is the term 1/ (r − g∗ + φi).

Terms that mean-revert more slowly have a higher impact on the price. Finally, Theorem 3

yields Et [Dt+T ] = eg∗T
³
1 +

Pn
i=1

1−e−φiT
φi

xit
´
Dt. Hence the model could be extended (see

Gabaix 2009) to different their risk premia for the frequency — which may be a good way to

represent asset prices (see e.g. Hansen, Heaton and Li (2008)).
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4.2 Examples: Bonds

We next turn to LG models of bonds.

Example 6 A one-factor bond model, with an always positive nominal rate.

Discrete time. The following example merely illustrates LG processes. It has just one

factor, whereas multifactor models (presented in the next example) are necessary to capture

the yield curve. The stochastic discount factor is Mt+1

Mt
= 1

1+r∗
(1− brt) where the constant

r∗ > 0 can be interpreted as a central tendency for interest rates, and brt is a deviation of
the interest from trend. The short term rate is rt = 1/Et

h
Mt+1

Mt

i
− 1 ' r∗ + brt if the r’s are

small. We postulate the LG-twisted process:

brt+1 = (1− φ) brt + σ (brt) ηt+1
1− brt , (37)

where Et

£
ηt+1

¤
= 0. Using Theorem 1 with Dt ≡ 1, the bond price is:

Zt (T ) =
1

(1 + r∗)
T

Ã
1− 1− (1− φ)T

φ
brt! . (38)

We can ensure that interest rates remain positive, i.e. brt > −r∗: this way, we have
a discrete-time one factor model with always positive rate. To ensure that the process is

well-defined, we need to ensure brt < φ. This is ensured if ηt+1 has support in a bounded

interval
£
η, η
¤
, and σ (brt) is enough near boundaries. For the interest rate to remain in (r, r) =

(−r∗, φ), the condition is that σ (br) is between [r − (1− φ+ r) br] / ¯̄η¯̄and [r − (1− φ+ r) br] /η.
Continuous time. Suppose Mt = exp

³
−
R t
0
rsds

´
, with rt = r∗ + brt, with dbrt =

− (φ− brt) brtdt + dNt, where φ > 0, brt ≤ φ, and Nt is a martingale, which could include a

diffusive part and a jump part, a rich stochastic volatility structure. The bond price is:

Zt (T ) = e−r∗T
µ
1− 1− e−φT

φ
brt¶ . (39)

The independence of bond prices from volatility greatly simplifies the analysis. In par-

ticular, dNt could have jumps, which model a decision by the central bank, or fat-tailed

innovations of other kinds (Gabaix et al. 2006). One does not need to specify the volatility

process to obtain the prices of bonds: only the drift part is necessary. This leaves a high
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margin of flexibility to calibrate volatility, for instance on interest rate derivatives, a topic

we do not pursue here.

How can we ensure that the interest rate always remains positive? That is very easy

(with r∗ > 0). For instance, we could have dNt = σ (rt) dWt, with σ (r) ∼ k0rκ
0
, κ0 > 1/2

for r in a right neighborhood of 0, and k0 > 0, so that the local drift at rt = 0 is positive.

By the usual Feller conditions on natural boundaries, the process admits a strong solution,

and rt ≥ 0 always (Cheridito and Gabaix (2008) spells out the technical conditions). And,
the bond price (39) is not changed by this assumption about the volatility process. One can

indeed change the lower bound for the process (if it is less than r∗) without changing the

bond price.

Section 5.1 will detail the conditions for the existence of the process. The interest rate

needs to remains below some upper bound r ∈ (r∗, r∗ + φ], so as to not explode. One way is

to assume that σ (r) ∼ k (r − r)κ, for r in a left neighborhood of r, κ > 1/2 and k > 0. Given

the drift is negative around r, that will ensure that r is a natural boundary, and {∀t, rt ≤ r}
almost surely, as detailed in Cheridito and Gabaix (2008). We next turn to a multifactor

bond model.

Example 7 A multifactor bond model with bond risk premia.

Discrete time. The stochastic discount factor evolves as Mt+1

Mt
= 1

1+r∗

³
1−

Pn
j=1 rjt

´
where the constant r∗ is the central value of the interest rate, and the rjt are factors centered

around 0. The short term rate is rt = 1/Et

h
Mt+1

Mt

i
− 1 ' r∗+

P
rit if the r’s are small. Each

factor rit is postulated to evolve as:

ri,t+1 =
ρiri,t

1−
Pn

j=1 rjt
+ ηi,t+1, (40)

where Et

£
ηi,t+1

¤
= 0, but the ηi,t+1 can have any correlation structure. This is a LG process.

The bond price is:

Zt (T ) =
1

(1 + r∗)
T

Ã
1−

nX
i=1

1− ρTi
1− ρi

rit

!
. (41)

This expression is quite simple, and accommodates a wide variety of specifications for the

factors, Eq. 40, and work with both nominal and real interest rates or stochastic discount

factors. Furthermore, it accommodates bonds with risk premia. Just take a stochastic

discount factor: Mt+1

Mt
= 1

1+r∗

³
1−

Pn
j=1 rjt

´
− εt+1, where Etεt+1 = 0, but otherwise εt+1 is
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unspecified, and can be heteroskedastic, and postulate: ri,t+1 =
ρiri,t

1− rjt
+ηi,t+1+

Et[εt+1ηi,t+1]
Et[Mt+1/Mt]

,

which means that rit follows the process (40) under the risk-neutral measure. Then, Eq. 41

holds. The risk premium on the T maturity bond is:

Risk premium =
cov (εt+1, Zt+1 (T − 1))

Zt (T )
=
(1 + r∗)

P
i
1−ρT−1i

1−ρi
cov

¡
εt+1, ηi,t+1

¢
1−

P 1−ρTi
1−ρi

rit
(42)

Hence the linear bond models from the LG class could complement the search for tractable

bond models with economic microfoundations (see Buraschi and Jiltsov (2007) for a recent

example).

Continuous time. Suppose dMt/Mt = −rtdt + dNt, where Nt is a martingale, and

rt = r∗ +
Pn

i=1 rit, with:

Et [drit] + hdrit, dMt/Mti = [−φirit + (rt − r∗) rit] dt,

Then Mt (1, r1t, . . . , rnt) is LG, and the bond price is

Zt (T ) = e−r∗T

Ã
1−

nX
i=1

1− e−φiT

φi
rit

!
. (43)

This LG framework gives the (see Proposition 6) extension of previous models with that

have linear bond prices,

4.3 Other Examples of Potential Methodological Interest

We next conclude with a few examples that may be of methodological interest.

Example 8 Lucas economy where stocks, bonds, and a continuum of moments can be cal-

culated.

We consider a Lucas economy with: dCt
Ct
= (g∗ + bgt) dt + dNC

t , var
¡
dNC

t

¢
= σ2dt, dbgt =

−φbgtdt + dNg
t ,
D
dbgt, dCtCt

E
= −bgt (bgt −A) dt with A > 0,

¡
Ng

t , N
C
t

¢
is a martingale, and

gt ≤ A. Then:

∀α ≤ 0,∀T ≥ 0, Et

£
Cα
t+T

¤
= Cα

t e
α g∗+(α−1)σ

2

2
T

µ
1 +

1− e−(φ−αA)T

φ− αA
αbgt¶ . (44)
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The first part of the right-hand side is the traditional term. The novel term is the bgt term.
This way, if the agent has marginal utility Mt = e−ρtC−γt , one can calculate bond and stock

prices. The price Et [Mt+T ] /Mt of a zero coupon bond with maturity T is

Zt (T ) = e
−ρT−γ g∗−(γ+1)σ

2

2
T

µ
1− 1− e−(φ+γA)T

φ+ γA
γbgt¶ .

The price of a leveraged claim on consumption yielding dividends Cλ
t is (when R > 0):

Pt =
Cλ
t

R

µ
1 +

(λ− γ)bgt
R+ φ+ (γ − λ)A

¶
, R ≡ ρ+ (γ − λ)

µ
g∗ + (λ− γ − 1) σ

2

2

¶
.

Example 9 The aggregate model of Menzly, Santos and Veronesi (2004), and the Bhat-

tacharya (1978) mean-reverting process, belong to the linearity-generating class.

The following point is simple and formal. Menzly, Santos and Veronesi (MSV, 2004)

rely on an Ornstein-Uhlenbeck process. The inverse of their consumption-surplus ratio,

yt, follows: Et [dyt] = k (y − yt) dt. The price-consumption ratio in their economy is Vt =

y−1t Et

£R∞
0

e−ρsyt+sds
¤
. In terms of the LG process, the state variable is yt, and Mt =

e−ρt. We have Et [dMt/dt] /Mt = −ρdt, and Et [d (Mtyt) /dt] /Mt = −ρyt + k (y − yt). So

Mt (1, yt) is a LG process with generator ω =

Ã
ρ 0

−ky ρ+ k

!
. The MSV pricing equation

17 comes directly from Proposition 4 of the present article (with yt as the payoff), ytVt =

(ky + ρyt) / [ρ (ρ+ k)]. Hence, in retrospect, the MSV (2004) process is tractable because

it belongs to the LG class. The same remark holds about Veronesi (2000) and Santos and

Veronesi (2006) (see also Proposition 6). In a more elementary context, Bhattacharya (1978)

models the dividend yt as an Ornstein-Uhlenbeck process, yielding the same closed form

solution for the price. Also, Ljungqvist and Uhlig (2000) postulate an AR(1) process for the

unit labor cost, which allows them to solve their model in closed form. These remarks allow

for extensions of those models. For instance, they immediately suggest a way to formulate

MSV (2004) in discrete time.

5 Discussion

This section presents additional results and remarks on LG processes.
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5.1 Conditions to Keep the Process Well-Defined

This paper requires that the process be defined for t ≥ 0, and in particular that MtDt > 0,

which ensures that prices are positive. This section provides simple sufficient conditions to

ensure that. We start in discrete time, with Example 1. Write bgt+1 = ρgt+σ(gt)ηt+1
1+gt

with

Et

£
ηt+1

¤
= 0. First, take the deterministic case, σ (bgt) ≡ 0. Function bg 7→ ρbg/ (1 + bg) has

two fixed points, an attractive one bg = 0, and a repelling one, bg = ρ− 1. To ensure that the
process is stable, we require that bgt stays on the right side of the repelling fixed point, i.e.

bgt > g ≡ ρ− 1. (45)

This implies that the volatility σ (bg) of the noise should go to 0 fast enough near the boundary
g. Indeed, it is easy to show that if (i) there is an m > 0 such that for all t, ηt+1 > −m, (ii)
0 ≤ σ (bg) ≤ g−g

m
and (iii) bg0 > g, then for all t ≥ 0, bgt > g, and the process is well-defined at

all times.

We next present the generalization of this idea to several factors. Consider the discrete-

time case where the generator (10) has γ = 0, Γ = Diag (Γ1, . . . ,Γn) with α > 0 and

α > maxi Γi, and consider the process Yt+1 = ΩYt + ν 0Ytut+1, where ν0 = (1, 0, . . . , 0) and

Et [ut+1] = 0. The n−factor version of criterion (45) is the following:

Proposition 5 (Condition to ensure a well-behaved process, with positive stochastic discount

factor, discrete time). Define the following condition:

Condition Ct (discrete time): 1 +
nX
i=1

min (δiXit, 0)

α− Γi
> 0. (46)

Suppose that M0D0 > 0, and that at t = 0, condition C0 is satisfied. Suppose also that the
noise ut+1 is bounded and goes to 0 fast enough near the boundary of (46). Then, for all

times t ≥ 0, MtDt > 0, and condition Ct holds.

The first part of the proposition implies that, if the noise is small enough, then all prices

derived above will be positive. The second part means that if condition Ct is satisfied at
time t = 0, then it will be satisfied for all future times t, i.e. it is “self-perpetuating.” It

means that δiXit terms should not be too negative: growth rates should not be too low,

and interest rate and risk premia terms should not be too high. This makes sense, because

otherwise prices could threaten to be negative.
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To illustrate the condition, consider first Example 2. There, α = δ = (1 + g∗) / (1 + r),

Γ1 = ρα, and the condition reads: 1 + min (bgt, 0) / (1− ρ) > 0, i.e. bgt > ρ − 1: this is
equation (45). Next, for Example 4, the condition reads: 1 + min (gt − g∗, 0) /

¡
1− ρg

¢
−

max (πt − π∗, 0) / (1− ρπ) > 0. We see that condition (46) is quite easy to verify in practice.

Before concluding, we express it in continuous time.

Continuous Time. In the case where b = 0, Φ = Diag (Φ1, . . . ,Φn) , and a < miniΦi, the

condition is:

Condition Ct (continuous time): 1−
nX
i=1

max (βiXit, 0)

Φi − a
> 0. (47)

For instance, for the simple growth model of Example 2, we have Xt = xt, a = r − g∗,

β = −1, Φ = a + φ, so the condition is: 1 − max (−xt, 0) /φ > 0, i.e. xt > −φ. This is
the continuous time limit of (45). Likewise, in the multi-factor model of Example 7, a = r∗,

βi = 1,Φi = r∗ + φi, so Condition Ct is: 1−
Pn

i=1max (rit, 0) /φi > 0.

We conclude that we have simple sufficient conditions to ensure that LG processes are

well-defined, and prices are positive. Cheridito and Gabaix (2008) provide more general

conditions.

5.2 Approximating Processes with LG Processes

We will show how to use LG processes to calculate approximate expressions for stock and

bond prices, in more general models. Consider a state vector xt (for simplicity, we use a

unidimensional notation, but it will be clear that everything goes through with multidimen-

sional vectors), which follows a time-homogenous diffusion: dxt = μ (xt) dt+σ (xt) dWt, and

a “bond” (really, a finite-maturity asset) with price: ZT (x) = Ex0=x

h
e

T
0 a(xs)dsq (xT )

i
and

a stock with price V (x) =
R∞
0

ZT (x) dT . For instance, in a basic stock model, we have

a (x) = −R+ x and q (x) = 1.

Heuristic Motivation: Infinite-Dimensional LG Processes. We proceed heuris-

tically and informally first. The basic idea is to form the infinite-dimensional state vector

Yt = e
t
0 a(xs)ds (1, xt, x

2
t , . . .)

0, and study its LG moments. Denoting the i-th coordinate of Yt
by Yit we have:

E [dYit] /dt = e
t
0 a(xs)ds

¡
a (xt)x

i
t +Axit

¢
= e

t
0 a(xs)ds

¡
Bxit

¢
= −

X
j≥0

ωijYjt,
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where we define the operators A = μ (x) ∂x +
σ2(x)
2

∂xx, and B = A+ a (x), we define ω by:

Bxi = −
∞X
j=0

ωijx
j. (48)

We assume that a (x), μ (x) and σ2 (x) are analytic, so the the expression converges. So Yt
satisfies Et [dYt] = −ωYtdt with the infinite matrix ω. Hence, Yt is an infinite-dimensional

LG process. We have projected (at least informally) our regular process onto a LG space.

Hence E0 [Yt] = e−ωtY0. Decomposing q (x) =
P

n qnx
n, we have

ZT (x) = E0
h
e

T
0 a(xs)dsq (xT )

i
= E0

"X
n

qnYnT

#
= E0 [q

0YT ] = q0E0 [YT ] = q0e−ωTY0

For instance, for a simple bond, we have q (x) = 1, hence q0 = (1, 0, 0, . . .). This expression is

the “infinite-dimensional” LG version of the bond price. Likewise, the stock price is, formally

V (x) =
R∞
0

ZT (x) dT = q0ω−1Y0.

To obtain a finite-dimensional expression, we simply truncate. Formally, this leads to

the following definition.

Definition 5 The LG projection of the bond and stock values up tom terms are, respectively:

Z
[m]
T (x) = q[m]0e−ω

[m]T
¡
1, x, x2, . . . , xm

¢0
(49)

V [m] (x) = q[m]0
¡
ω[m]

¢−1 ¡
1, x, x2, . . . , xm

¢0
, (50)

where ·[m] is the truncation operator on the m + 1 first coordinates (e.g., (y1, y2, . . .)
[m] =

(y1, . . . , ym+1) and ω[m] = (ωij)i,j≤m+1).

Before stating a result on the convergence, we illustrate an example, an Ornstein-Uhlenbeck

process: dxt = −φxtdt+σdWt, where xt is the growth rate of the dividend gt−g∗, or minus a
risk premium, xt = π∗ − πt. The price-dividend ratio is V (x) = Ex0=x

hR∞
0

e−RT+
T
0 xsdsdT

i
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and is stated in (52) below (changing x into −x). Its generator is:

ω =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

R −1 0 0 · · ·
0 R+ φ −1 0 · · ·
−σ2 0 R+ 2φ −1 · · ·
0 −3σ2 0 R+ 3φ · · ·
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(51)

(the subdiagonal term is − (i− 1) (i− 2) σ2/2). The LG projection of order 1 is:

V [1] (x) = (1, 0)

Ã
R −1
0 R+ φ

!−1Ã
1

x

!
=
1

R

µ
1 +

x

R+ φ

¶
.

We now state a rigorous result.

Theorem 5 (Convergence of the LG projection to the exact value). Suppose (i) the bond

price is analytic in x: the bond price Z(x, T ) (which satisfies ∂TZ(x, T ) = BZ(x, T ), Z(x, 0) =
q(x) and growth condition supx,t≤T |Z(x, t)| ≤ Kecx

2
for some K, c < T/2) can be represented

as Z(x, T ) =
P

n≥0 an (T )x
n with supT,n |an (T )|Qn <∞ for all Q; and (ii) coefficients ωij

defined by (48) satisfy ωij ≤ 0 for i 6= j. Then, we have:

lim
m→∞

Z
[m]
T (x, T ) = Z(x, T ).

Suppose further that (iii) (analytic stock price) for all Q, supn
¯̄R∞
0

an (T ) dT
¯̄
Qn < ∞ .

Then,

lim
m→∞

V [m] (x) = V (x).

In both cases, the convergence is uniform in x on any compact subset.

Assumption (i) that the bond price is analytic (entire, to be precise) is easy to satisfy. For

instance, affine-yield models and LG models satisfy it. Assumption (ii) though restrictive,

is satisfied in natural cases, such as the basic Ornstein-Uhlenbeck case (51). We conjecture

that convergence holds under much broader assumptions. Finally, Theorem 5 also holds for

a multidimensional xt.14

14The only cost is one of greater notational complexity. Call x = (x1, ..., xk), and use the multi-indices
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The online appendix studies numerical examples, and proposes related decompositions

(e.g., using Hermite polynomials) that increase the accuracy. In the Ornstein-Uhlenbeck case,

even with one factor the accuracy is quite good. We obtain closed-form approximations to

asset prices quite easily. Theorem 5 tells us the process will converge, but perhaps even

more importantly, for some examples, the LG linear projection is quite good with just a few

terms, which is useful for paper-and-pencil. In conclusion, LG processes might be as a way to

linearize non-LG models. This is analogous to the Campbell-Shiller (1988) loglinearization,

a comparison we proceed to detail further.

5.3 Comparison with Other Modelling Approaches

To handle processes with time-varying risk premia, interest rate or growth rate, the two most

used techniques are the affine-yield models (AY, Duffie and Kan 1996; Dai and Singleton

2000; Duffie, Pan and Singleton 2000; Duffee 2002; Cheridito, Filipovic and Kimmel 2007),

and the Campbell-Schiller (CS, 1998) decomposition. Denoting the state vector by Xt,

AY models have zero-coupon bond prices of the form ZAYt (T ) = eaT+bTXt, where aT and

bT follow difference equations that typically are solved numerically. The Campbell-Shiller

decomposition expression log linearizes the stock price and stock returns, and postulate

an AR(1) structure for disturbances such as the equity premium or the expected dividend

growth rate. It leads to expressions such as as (Pt/Dt)
CS ' eA+BXt, where B is linked to the

approximate vector of factors.

For instance, suppose we have a stock with an equity premium varying as: π∗+xt, where

xt being an AR(1) or a twisted AR(1), we obtain the decompositions (taking the continuous

time limit, which is simpler)

AY:
Pt

Dt
=

Z ∞

0

exp

∙
−RT − 1− e−φT

φ
xt +

σ2

2φ3

µ
φT + 2e−φT − e−2φT + 3

2

¶¸
dT (52)

CS:
Pt

Dt
' 1

R
e−xt/(R+φ), LG:

Pt

Dt
=
1

R

µ
1− xt

R+ φ

¶
We can see that the three expressions are the same up second order terms in xt and σ. This

α = (α1, ..., αk), αj nonnegative integers. For instance, we decompose φ as a sum of terms xα = xα11 ...xαkk ,
φ =

P
α φαx

α. The same condition holds with supT,α sup |aα (T )|Q|α| <∞. It is straightforward to see that
the proofs go through.
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is general: all models are the same up to first order approximation.

The relative advantages of LG, AY and CS models may be provisionally assessed as

follows.

Ease of handling different distributions: Distributions are tightly constrained for AY

models (roughly, the noise follows a Gaussian diffusion process augmented by jumps), while

to use LG and CS, there is no need to specify the noise: they allow for jumps and non-

Gaussian behavior, and a free type of heteroskedascity. However, with LG, one sometimes

needs to take care of boundary conditions (e.g., in some empirical analysis).

Stocks: The LG model yields simple closed forms for stocks (and stock-like assets such

as exchange rates, see Farhi and Gabaix (2009)). AY models are more cumbersome: a

stock price can only be expressed PAY
t /Dt =

R∞
0

ZAYt (T ) dT . Those are infinite sums of

exponentials, which is a great progress over stochastic sums, but are still a bit complicated,

especially for paper-and-pencil work. CS is tractable, but approximate. CS is very versatile,

as one can always make an log-linear approximation. LG models can also linearize non-LG

models.

Bonds: AY models have been very useful (perhaps as a result, CS has been less used

for bonds). AY give a closed form (up to a numerically solved difference equation), LG give

a fully solved closed form. With AY modelling, the yields and log returns of zero coupon

bonds (but not of coupon bonds) are linear in the factors, which is very convenient. With

LG modelling, prices are linear, but the yields and returns are not (however, closed forms for

yields and returns obtain easily). Economically, LG bond prices are independent of volatility

(controlling for the covariances, see Eq. 43), LG processes naturally generate “unspanned

volatility,” which some authors propose is a relevant feature of the data (Collin-Dufresne

and Goldstein (2002), Andersen and Benzoni (2007)), although there is no unanimity about

the importance of this feature (Joslin (2007)). By contrast, affine models typically impose

a tight link between bond prices and volatility. On the other hand, a potential drawback of

pricing bonds with the LG process, is that, in the simplest version at least, bonds have no

mechanically-induced convexity in the LG framework.15 However, this may not be such a

problem, as Joslin (2007) estimates that bond convexity plays a small role in bond prices.

All in all, for bonds, affine models will continue to be tremendously useful, but LG models

15Convexity effects can arise in LG models. The online appendix contains an illlustrative example where
the stock price is a convex function of the expected dividend growth rate.
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may complement them, particularly in theoretical research.

Options: AY have proven very useful there, while the analysis of LG models is just

beginning (Carr, Gabaix and Wu 2009). So, for now, using the AY class for options is the

most efficient thing to do.

In sum, no technology dominates. This is as in a toolbox, where many tools are useful,

though none dominates. It seems that LG processes are especially convenient for stocks,

affine-yield models for bonds, and the Campbell-Shiller linearization for approximations.

5.4 LG Processes are the Only Ones that Yield Linearity

We show that, in a certain sense, if bond prices are linear in the factors, then they come

from an LG process. Hence all models generating bond prices linear in factors (including

the papers mentioned in the introduction) turn out to belong to the LG class.

Proposition 6 (LG processes are the only processes generating linear bond prices). Suppose

that there are coefficients (αT , βT , )T≥0, with {(αT , βT ) , T = 1, 2..} spanning Rn+1
. , such that

∀t, T ≥ 0, Et [Mt+T/Mt] = αT + β0TXt, Then, Mt (1,Xt) is a LG process, i.e. there is a

matrix Ω, such that Yt =Mt (1,Xt)
0 follows Et [Yt+1] = ΩYt.

6 Concluding Remarks

Linearity-generating processes are quite tractable, as they yield closed forms for stocks and

bonds, and prices that are linear in factors. They are likely to be useful in several parts of

economics, when trend growth rates, or risk premia, are time-varying. The results of this

paper suggest the following research directions.

Most importantly, LG processes allow the construction of paper and pencil tractable

general equilibrium models, with closed forms for stocks and bonds. Indeed they suggest a

way to “reverse engineer” the processes for endowments and technology, so that the model

is tractable. Farhi and Gabaix (2009) and Gabaix (2009) present such models.

The flexibility and closed forms of LG processes may be useful for empirical work, as

some recent papers illustrate. Binsbergen and Koijen (2009) estimate a LG stock model

with time-varying equity premium and dividend growth rate. Bekker and Bouwman (2009)

estimate a three-factor LG term structure model. Carr, Gabaix and Wu (2009) show how
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to calculate options in closed form in a LG term structure model, and perform an empirical

analysis of bonds and fixed-income options.

Third, LG processes suggest a new way to linearize models. Given a model, one could do a

Taylor expansion expressing moments Et [Mt+1Dt+1/MtDt] and Et [Mt+1Dt+1Xt+1/MtDt] as

a linear function of the factors, thereby making Eq. 8-9 hold to a first order approximation.

The projected model is then in the LG class, and its asset prices are approximations of the

prices of the initial problem. Hence the LG class offers a way to derive linear approximations

of the asset prices of more complicated models.

Fourth, LG processes can be enriched by a decision variable, and offer a way to do

multifactor, closed-form dynamic programming. Ongoing research explores this issue.

In conclusion, LG processes may be a useful addition to the economist’s toolbox.

Appendix. Additional Derivations

The following standard results are often useful. We take n > 0, a ∈ R, b, c ∈ Rn, d ∈ Rn×n.

If real numbers a and a− b0d−1c are non-zero, and matrices d and d− 1
a
cb0 are invertible:

Ã
a b0

c d

!−1
=

Ã
D −Db0d−1

−Dd−1c (d− 1
a
cb0)−1

!
, D ≡ 1/

¡
a− b0d−1c

¢
(53)

If aIn − d is invertible:

∀T ∈ N,
Ã

a b0

0n d

!T

=

Ã
aT b0 (aIn − d)−1

¡
aT In − dT

¢
0n dT

!
. (54)

∀T ∈ R, exp
"Ã

a b0

0n d

!
T

#
=

Ã
eaT b0 (aIn − d)−1

¡
eaT In − edT

¢
0n edT

!
. (55)
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6.1 Derivation of Theorems and Propositions

Proof of Theorem 1 Recall (7), Et [Yt+1] = ΩYt. Iterating on T , it implies that for

all T ≥ 0, Et [Yt+T ] = ΩTYt. Given Mt+TDt+T = ν 0Yt+T ,

Zt (T ) = (MtDt)
−1Et [Mt+TDt+T ] = (MtDt)

−1Et [ν
0Yt+T ] = (MtDt)

−1 ν 0Et [Yt+T ]

= (MtDt)
−1 ν 0ΩTYt = ν 0ΩT

¡
(MtDt)

−1 Yt
¢
= ν0ΩT

Ã
1

Xt

!
=
³
1 0n

´
ΩT

Ã
1

Xt

!
,

i.e. (12). The formula for γ = 0 uses (54).

Proof of Theorem 2 We use (12), which gives the perpetuity price:

Pt/Dt =
∞X
T=1

Zt (T ) = ν 0

Ã ∞X
T=1

ΩT

!Ã
1

Xt

!
= ν 0Ω (In+1 − Ω)−1

Ã
1

Xt

!
.

P∞
T=1Ω

T is summable because all eigenvalues of Ω have a modulus less than 1. We use (53)

to calculate (In − Ω)−1, and conclude.

Proof of Theorem 3 Recall the definition of ω in (24), and Et [dYt] = −ωYtdt. This
implies: ∀T ≥ 0, Et [Yt+T ] = e−ωTYt. Given Mt+TDt+T = ν 0Yt+T ,

Zt (T ) = (MtDt)
−1Et [Mt+TDt+T ] = (MtDt)

−1Et [ν
0Yt+T ] = (MtDt)

−1 ν 0Et [Yt+T ]

= (MtDt)
−1 ν 0e−ωTYt = ν 0e−ωT

¡
(MtDt)

−1 Yt
¢
= ν 0e−ωT

Ã
1

Xt

!
=
³
1 0n

´
e−ωT

Ã
1

Xt

!
.

i.e. Eq. 25. The formula for b = 0 uses (55).

Proof of Theorem 4 We use (25). The perpetuity price is:

Pt/Dt =

Z ∞

0

Zt (T ) dT = ν 0
µZ ∞

0

e−ωTdT

¶Ã
1

Xt

!
= ν 0ω−1

Ã
1

Xt

!
.

We use (53) to calculate ω−1, and conclude.
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Proof of Proposition 5 Write Yt = (Y0t, . . . , Ynt), with Y0t =MtDt, and define Ht =

Y0t +
Pn

i=1
min(δiYit,0)

α−Γi . Start with the case of where there is no noise, i.e. ∀t, Yt+1 = ΩYt.

Given Ω, this means Y0,t+1 = αY0t +
P

i δiYit, and for i ≥ 1, Yi,t+1 = ΓiYi,t. So:

Ht+1 = αY0t +
X
i

δiYit +
X
i

min (δiΓiYit, 0)

α− Γi

= αY0t +
X

i s.t. δiYit>0

δiYit +
X

i s.t. δiYit≤0

µ
1 +

Γi
α− Γi

¶
δiYit

≥ αY0t +
X

i s.t. δiYit≤0

α

α− Γi
δiYit = αHt.

Hence, Ht+1 ≥ αHt. Hence, if H0 > 0, then ∀t ≥ 0, Ht > 0, and so that MtDt = Y0t ≥ Ht >

0.

In the case with noise, say that Yt+1 = ΩYt + ut+1, for some mean 0 noise ut+1, and

suppose that ut+1 is bounded. By continuity, if Ht > 0, Ht+1 is positive with probability 1,

if ut+1 is small enough. And again, MtDt = Y0t ≥ Ht > 0.

Proof of Theorem 5 Step 1. We put the basic objects in place. We define L = −ω0,
a matrix in RN×N. We observe that for

P
j ajx

j an entire series,

B
X
j

ajx
j =

X
j

ajBxj =
X
j

aj
X
i

(−ωji)x
i =

X
i

ÃX
j

Lijaj

!
xi,

so ∂tZ (x, t) = BZ (x, t) writes: ȧi (t) = Lijaj (t), using the dot for time derivatives. Defining

A (t) = (a0 (t) , a1 (t) , . . .)
0 ∈ RN, Ȧ (t) = LA (t), with A (0) = q = (q0, q1, . . .)

0. Likewise,

calling Lm = (Lij)0≤i,j≤m the restricted matrix (we omit the brackets in the proof), Ȧ
m (t) =

LmAm (t), and Am (0) = qm = (q0, . . . , qm)
0. Finally, we use the notation a ¹ b if ai ≤ bi

for all components i. Without loss of generality, we will assume that q º 0. (If need be, we
can decompose q as the difference of two functions with nonnegative coefficients q+n and q−n

respectively, and prove the result for each function).

Step 2. We will use the following well-known fact:

Lemma 1 Consider a solution of a Cauchy problem for a linear ordinary differential equa-

tion Ẏ (t) = PY (t) + b(t) with Y (0) = y, where Y (t) ∈ RN , P ∈ RN×N , y ∈ RN , b(t) ∈ RN ,
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with initial vector y º 0, P such that Pij ≥ 0 for all i 6= j, and b(t) º 0 is continuous. Then,
Y (t) º 0 for all t ≥ 0.

Proof. Write P = D+ J , with D diagonal, J has zero-diagonal elements, and non-negative

non-diagonal elements. Define X (t) = e−DtY (t). Then,

Ẋ (t) = e−DtẎ (t)−De−DtY (t) = e−Dt (DY (t) + JY (t))−De−DtY (t)+e−Dtb (t) = JtX (t)+Bt

with Jt ≡ e−DtJeDt º 0 and Bt ≡ e−Dtbt º 0. Consider the Picard iterates Xn (t) of the

ODE, defined by X0 (t) = y and Xn+1(t) = y +
R t
0
(JτXn(τ) +Bτ ) dτ . By induction on

n, Xn (t) º 0. Because X (t) = limn→∞Xn (t), we have X (t) º 0, which implies Y (t) =

eDtX (t) º 0. A similar argument would prove the Lemma for infinite N .
We will show that for all t ≥ 0,

0 ¹ Am (t) ¹ An (t) ¹ A (t) for m < n. (56)

Because Ȧm (t) = LmAm (t), Lemma 1 proves that Am(t) º 0. Next, supposem < n. Denote

Âm = (Am0 00n−m)
0, and likewise extend Lm by adding n−m zero rows and columns after the

last ones to get L̂m. Observe d
dt
(An− Âm) = LnAn− L̂mÂm = Ln(An− Âm)+(Ln− L̂m)Âm.

Decompose L̂m = D̂m+Ĵm, where D̂m contains the diagonal terms, and Ĵm the non-diagonal

terms, and note that (Ln − L̂m)Âm = (Dn − D̂m + Jn − Ĵm)Âm = (Jn − Ĵm)Âm because

Âm contains zeros in the last n−m positions. Since (Jn− Ĵm)Âm º 0, Lemma 1 establishes
that An − Âm º 0. A similar argument shows A−Am º 0.
Step 3. By (56), for component i and each t, Am

i (t) is weakly increasing in m and

≤ Ai (t). So, define A∞i (t) = limm→∞Am
i (t). We have 0 ≤ A∞i (t) ≤ Ai (t), so the

Z∞ (x, t) =
P

iA
∞
i (t)x

i is an entire function of x. We next check that it satisfies the basic

PDE. Because Ȧm (t) = LmA (t), we have: Am
i (t) = Ai (0) +

R t
0

P
j≤m LijA

m
j (s) ds. Con-

sidering positive and negative terms separately, the monotone convergence theorem implies,

limm→∞
R t
0

P
j≤m,j 6=i LijA

m
j (s) ds =

R t
0

P
j,j 6=i LijA

∞
j (s) ds, and limm→∞

R t
0
LiiA

m
i (s) ds =R t

0
LiiA

∞
i (s) ds. So A∞i (t) = Ai (0) +

R t
0

P
j LijA

∞
j (s) ds, which implies that Z

∞ (x, t) =

q (x) +
R t
0
BZ∞ (x, s) ds. Also, |Z∞(x, t)| ≤ Z∞(|x|, t) ≤ Z(|x|, t) ≤ Kecx

2
. So, by the

uniqueness part of the Feynman-Kac theorem (Karatzas and Shreve 1991, Theorem 4.4.2),

Z∞ (x, t) = Z (x, t). This concludes the “bond” part of the Theorem. The uniform con-

vergence comes from the fact the coefficients 0 ≤ Am
n ≤ an for all n,m. We next turn to
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stocks.

Step 4: Stocks. Call vi =
R∞
0

Ai (T ) dT , assumed to be finite, and define vm ∈ Rm by vmi =R∞
0

Am
i (T ) dT ≤ vi. By monotone convergence, limm→∞ vmi = vi. Also, as limT→∞Ai (T ) =

0 and 0 ≤ Am
i (T ) ≤ Ai (T ), we have limT→∞Am

i (T ) = 0. Also:

Lmvm = Lm

Z ∞

0

Am (T ) dT =

Z ∞

0

LmAm (T ) dT =

Z ∞

0

Ȧm (T ) dT = [Am (T )]∞0 = −Am (0) = −qm,

so vm is a solution of Lmv = −qm. Furthermore, V m (x) =
P

n≤m vmn x
n satisfies V m (x) =R∞

0

P
n≤mAm

n (t)x
ndt. By dominated convergence, V m (x)→

R∞
0

P
nAn (t)x

ndt = V (x).

Proof of Proposition 6 Call Yt = Mt (1,Xt)
0, γT = (αT , βT )

0, so that Et [Mt+T ] =

γ0TYt. That implies γ
0
T+1Yt = Et [Mt+T+1] = Et [Et+1 [Mt+T+1]] = Et [γTYt+1], hence: γ

0
T+1Yt =

Et [γTYt+1]. Call ek ∈ Rn+1, the vector with k−th coordinate equal to 1, and other coor-
dinates equal to 0. As {γT , T = 1, 2, ..} spans Rn+1

. , there are reals λkT (with at most

n + 1 non-zero values) such that: ek =
P

T λkTγT . Define Ω =
P

k,T ekλkTγ
0
T+1. Given

In+1 =
n+1X
k=1

eke
0
k, we have:

Et [Yt+1] = (
X
k

eke
0
k)Et [Yt+1] = (

X
k

ek(
X
T

λkTγ
0
T ))Et [Yt+1]

=
X
k,T

ekλkTEt [γ
0
TYt+1] =

X
k,T

ekλkTγ
0
T+1Yt = ΩYt.

6.2 Derivations of Examples

Example 2 Et [d (MtDt) / (MtDt)] = (−r + g∗ + xt) dt and

Et

∙
d (Mtxt)

Mt

¸
= xtEt

∙
dMt

Mt

¸
+Et [dxt] = xt (−r + g∗ + xt) dt+

¡
−φxt − x2t

¢
dt = − (r − g∗ + φ)xtdt.

We note that the x2t terms cancel out, which is their raison d’être in (30). So Mt (1, xt) is a

LG process with generator ω =

Ã
r − g∗ −1
0 r − g∗ + φ

!
. Theorem 4 yields (31).

Example 3 We define bπt = πt − π∗, and form the LG moments (8)-(9):
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Et

∙
Mt+1

Mt

Dt+1

Dt

¸
=
1 + g∗
1 + r

(1− πt) =
1 + g∗
1 + r

(1− π∗)

µ
1− bπt

1− π∗

¶
= α

µ
1− bπt

1− π∗

¶

Et

∙
Mt+1

Mt

Dt+1

Dt
bπt+1¸ = Et

∙
Mt+1

Mt

Dt+1

Dt

¸
Et [bπt+1] = 1 + g∗

1 + r
(1− πt)

1− π∗
1− πt

ρπbπt = αρπbπt.
So MtDt (1, bπt) is a LG process with generator αÃ1 −1

1−π∗
0 ρπ

!
. Theorem 2 concludes.

Example 4 Define bπt = πt − π∗,bgt = gt − g∗, so that:

Et

∙
Mt+1

Mt

Dt+1

Dt

¸
=

1

1 + r
(1 + gt − πt) = α+

bgt − bπt
1 + r

Et

∙
Mt+1

Mt

Dt+1

Dt
bgt+1¸ = Et

∙
Mt+1

Mt

Dt+1

Dt

¸
Et [bgt+1] = 1

1 + r
(1 + gt − πt)

1 + g∗ − π∗
1 + gt − πt

ρgbgt = αρgbgt
and likewise for bπt. HenceMtDt (1,bg, bπt) is LGwith generator

⎛⎜⎜⎝
α 1/ (1 + r) −1/ (1 + r)

0 αρg 0

0 0 αρπ

⎞⎟⎟⎠.
In continuous time, the LG moments are:

Et

∙
d (MtDt)

MtDt

¸
/dt = −r − πt + gt = −R− bπt + bgt

Et

∙
d (MtDtbgt)

MtDt

¸
/dt = Et

∙
d (MtDt) /dt

MtDt

¸ bgt +Et [bgt] /dt
= (−R− bπt + bgt)bgt − ¡φg − bπt + bgt¢ bgt = − ¡R+ φg

¢ bgt
and likewise for bπt. So MtDt (1,bg, bπt) is LG with generator

⎛⎜⎜⎝
R −1 1

0 R+ φg 0

0 0 R+ φπ

⎞⎟⎟⎠.

Example 5 MtDt (1, x1t, . . . , xnt)
0 is a LG with generator

Ã
r∗ −1n
0 Diag (r∗ + φi)

!
.
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Example 6 We calculate the LG moments: dMt/Mt = −rtdt = − (r∗ + brt) dt, and:
Et

∙
d (Mtbrt)

Mt

¸
= brtEt

∙
dMt

Mt

¸
+Et [dbrtt] = −brt (r∗ + brt) dt− (φ− brt) brtdt = − (r∗ + φ) brtdt

Importantly, the br2t terms cancel out. Hence we have the LG moments:
Et [dMt/Mt] /dt = −r∗ − brt, Et [d (Mtbrt) /Mt] /dt = − (r∗ + φ) brt

So Yt =Mt (1, brt) is LG with generator Ãr∗ 1

0 r∗ + φ

!
.

Example 7 We have Et

h
Mt+1

Mt
ri,t+1

i
= 1

1+r∗
ρiri,t. So the process Mt (1, r1t, . . . , rnt) has

generator: 1
1+r∗

Ã
1 −1n
0 Diag (ρi)

!
. In continuous time, the generator is

Ã
1 1n

0 Diag (r∗ + φi)

!
.

Example 8 With v ≡ αg∗ + α (α− 1)σ2/2, we calculate Et

h
dCα

t

Cα
t

i
/dt = v + αbgt and

Et [d (C
α
t bgt)]

Cα
t dt

= (v + αbgt) bgt − φbgt + α

¿
dbgt, dCt

Ct

À
/dt

= (v + αbgt) bgt − φbgt − αbgt (bgt −A) = (v − φ+ αA)bgt.
Hence e−ρtCα

t (1,bgt) is LG with generator ω = (ρ− v) I2 +

Ã
0 −α
0 φ− αA

!
. The statements

follow from Theorems 3 and 4.
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