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This online appendix discusses a few additional issues related to LG processes. Section

7 provides a simple way to estimate a LG stock process. Section 8 brings theoretical com-

plements, including some additional examples. Section 9 expands the paper’s discussion of

the use of LG processes to analyze non-LG models.

7 A Simple Estimation of an LG Stock Process

A few papers develop full-fledged methods to estimate LG models. Binsbergen and Koijen

(2009) study a LG model with time-varying risk premium and growth rate of stocks. Bekker

and Bouwman (2009) estimate a three-factor LG term structure model. Carr, Gabaix and

Wu (2009) show how calculate options in closed form in a LG term structure model, and

perform an empirical analysis of bonds and fixed-income options.

The present section has the modest goal of presenting a transparent way of estimating a

simple, one-factor LG process.

7.1 Method

Here we sketch a simple way to estimate LG processes for stocks. Consider the model of a

stock with time-varying risk premium in Example 3. We take xt = − (πt − π∗) / (1− π∗) to

be the state variable. This makes the estimation easier, because it follows a LG process

xt+1 = ρ
xt

1 + xt
+ εt+1, (57)

where Et [εt+1] = 0. The LG moments are:

Et

∙
Mt+1Dt+1

MtDt

¸
= α (1 + xt) , Et

∙
Mt+1Dt+1

MtDt
xt+1

¸
= ραxt,
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and by Theorem 2, the P/D ratio is

Vt = Pt/Dt =
α

1− α

µ
1 +

xt
1− αρ

¶
. (58)

The goal is to estimate the two parameters α and ρ, and do to goodness of fit tests of the

model. We note that we estimate a process, not a full economic model: the LG moments

are silent about the nature of the pricing kernel Mt, e.g. which risk factors are priced.

They simply present a modelling structure on the dynamics of the factor xt and its link to

observables — here the price-dividend ratio.

We propose two procedures, one via GMM and one via OLS. The GMM procedure is

more compact, the OLS procedure is very transparent.

GMM Procedure The factor xt is a latent variable. Still, it can be expressed xt =

(1− αρ)
¡
1−α
α
Vt − 1

¢
. Hence, its equation of motion (57) can be rewritten Et [Kt+1] = 0,

where we define:

Kt+1 =
1− α

α
Vt+1 − 1− ρ

1−α
α
Vt − 1

1 +
¡
1−α
α
Vt − 1

¢
(1− αρ)

. (59)

So, we obtain an estimate of α and ρ via GMM. For instance, moment conditions can take

the form Et [Kt+1f (Vt)] = 0 for some function f .

OLS procedure This procedure is a bit approximate, but may be useful as it is trans-

parent. In the continuous-time limit, (58) writes

Vt =
1

R

µ
1 +

xt
R+ φ

¶
, R ≡ r + π∗ − g∗, (60)

with ρ = 1− φ∆t.

Step 1 : Estimate Vt+1 = c + ρ1Vt+noise, which gives a first estimate of ρ, valid when

the nonlinearity is not very important (because (57) then implies Et [xt+1] ' ρxt, hence

EtVt+1 ' c+ ρ1Vt).

Next, estimate bR = 1/Vt ' (1− α) /α, and, inspired by (60), form:

yt ≡
³ bRVt − 1´³ bR+ (1− ρ1) /∆t

´
.
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Figure 1: Price-Dividend ratio 1926-2008. Source: CRSP.

By construction, if the non-linear terms are small and the sample large, then yt ' xt.

Step 2: Estimate:

yt+1 = c+ ρ2
yt

1 + yt
+ noise (61)

As a robustness check, it might be useful to run yt+1 = c+ ρ02yt+noise.

Step 3 : Do a specification test. We define, using the coefficient of the regression (61),

Lt+1 ≡ yt+1 − bρ2 yt
1+yt

. With LG processes, we should have Et [Lt+1] = 0. To operationalize

this, we verify that running:

Lt+1 = c+ dyt + ey2t + noise (62)

yields insignificant coefficients (via an F -test on (c, d, e)).

We next apply the procedure.

7.2 Empirical Application to the US Stock Market

Data We use the CRSP value-weighted index from 1926/12 to 2008/12, sampled at

annual frequency. Using the CRSP ex- and cum-dividend returns yields the price-dividend

ratio. Figure 1 shows the historical P/D ratio.

To remedy a too large heteroskedasticity of innovations to the P/D ratio, most papers use

the log P/D ratio. We use the analogue with LG processes, which is to use GLS, with a weight

on a regression being the P/D ratio Vt. For the GMM, we do the tests on K 0
t+1 ≡ Kt+1/Vt,
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Figure 2: Estimated value yt of the factor xt in the process, and its LG transform yt/ (1 + yt).
As expected, the two are very close: their correlation is 0.998, and the correlation in their first
time-difference is 0.994. In addition, the LG bound yt ≥ −φ is verified for the empirically
found value of mean-revision, φ ' 10%.

which should also satisfy Et

£
K 0

t+1

¤
= 0.

Results — GMM Procedure We use two moment conditions E
£
K 0

t+1

¤
= 0 and

E
£
K 0

t+1
Vt
V

¤
= 0. This yields α = 0.974 ± 0.0043 (± indicates one standard error), ρ =

0.901 ± 0.045. For the overidentifying restriction, we use the third moment condition

E
h
K 0

t+1

¡
Vt
V

¢2i
= 0, which changes the estimates by a quantity less than 0.001. The p−value

for the J−test is 0.14, which means that we do not reject the model.

Results — OLS Procedure Step 1 yields ρ1 = 0.908 ± 0.041, R2 = 0.85. Also,bR = 1/V = 3.52% for V = 28.4. The resulting estimate of the xt factor is shown in Figure

2.

Step 2 yields ρ2 = 0.910 ± 0.043, R2 = 0.85 for the LG regression (61). The non-LG

version yt+1 = α + ρ02yt yields ρ2 = 0.908 ± 0.041, R2 = 0.85. As expected, the LG and

non-LG version yield essentially the same results.

Step 3 yields insignificant right-hand side coefficients (the p−value is 0.059). Hence, the
specification test fails to reject the LG specification.

To complete the characterization of the LG process, we take α = V /
¡
1 + V

¢
= 0.966.
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The s.e. on the estimate of V is the sample standard error times
p
(1 + ρ) / (1− ρ) (as Vt fol-

lows an approximate AR(1) process), so s.e.(V )= 5.77. By the delta method, s.e.(α) =s.e.(V )×
(1− α)2 = 0.0067. This is very close to the GMM estimate.

Concluding Remarks As expected, the values yt and yt/ (1 + yt) are very close: their

correlation is 0.998, and the correlation in their first time-difference is 0.994.

This empirical example turns out to verify easily the working assumptions of the paper.

As shown in Figure 2, the LG bound yt ≥ −φ is verified for the empirically found value
of mean-revision, φ = 1 − ρ1 = 10%. Hence, the LG specification passes the specification

test for the P/D ratio of the aggregate stock market index, and satisfies the lower bound

restrictions of LG processes.

The reader may wish to read section 9.2, which presents a numerical implementation of

the model, including a parametrization of the noise that respects the LG bounds.

8 Some Theoretical Complements

8.1 Some Other Examples

Example 10 Stock price with stochastic equity premium (continuous time).

Continuous time Consider two independent Brownian motions Bt, Wt, and a discount

factor process and dividend process:

dMt

Mt
= −rdt− πt

σ
dBt,

dDt

Dt
= g∗dt+ σdBt,

with πt = π∗+bπt, where π∗ is the constant part of the equity premium, and bπt the transitory
one, which follows what is the formal limit of (32), when ρπ = 1− φ∆t and ∆t→ 0:

dbπt = ¡−φbπt + bπ2t ¢ dt+ σ (bπt) dWt,

where volatility σ (bπt) ensures that a.s. bπt < φ (e.g. σ is sufficiently regular and σ (φ) = 0,

see Cheridito and Gabaix 2008). Defining R ≡ r + π∗ − g∗, we show that MtDt (1, bπt) is a
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LG process with generator

Ã
R −1
0 R+ φ

!
, by calculating the LG moments (21)-(22):

Et

∙
d (MtDt)

MtDt

¸
= (−r + g∗ − πt) dt = (−R− bπt) dt,

Et

∙
d (MtDtbπt)

MtDt

¸
= Et

∙
dMtDt

MtDt

¸ bπt +Et [dbπt]
= (−R− bπt) bπtdt+ ¡−φbπt + bπ2t ¢ dt = − (R+ φ) bπtdt.

Hence, Theorem 4 yields the price-dividend ratio:

Pt/Dt =
1

R

µ
1− πt − π∗

R+ φ

¶
.

Example 11 Markov chains, and some economies with learning.

There are n states. In state i the factor-augmented dividend grows at a rateGi: Mt+1Dt+1/ (MtDt) =

Gi. Let Xit ∈ {0, 1} be equal to 1 if the state is i, 0 otherwise. The probability of going from
state j to state i is called pij. Then, MtDt (1,X1, . . . , Xn) is a LG process. Hence, a Markov

chain belongs to the LG class.16 As many processes are (arbitrarily) well-approximated by

discrete Markov chains, they are (arbitrarily) well-approximated by LG processes.

Markov chains induced by learning naturally lead to LG processes. For a complete

example, the reader is encouraged to read Veronesi (2000, 2005). He finds that if Xit is the

agents’ probability estimate that the economy is in state i, under canonical models with

Gaussian filtration of information, the vector Xt follows an autoregressive process. He works

out the prices of stocks and bonds in the economy, and finds that they are linear functions

of Xt. Hence, some canonical learning models naturally give rise to LG processes.

Derivation of Example 11 Et

h
Mt+1Dt+1

MtDt

i
=
P

iGiXit, and

Et

∙
Mt+1Dt+1

MtDt
Xi,t+1

¸
= Et

∙
Mt+1Dt+1

MtDt

¸
Et [Xi,t+1] =

ÃX
k

GkXkt

!ÃX
j

pijXjt

!
=
X
j

pijGjXjt,

16Veronesi (2000), Veronesi and Yared (2000) and David and Veronesi (2006) have already seen that this
type of Markov chain yielded prices that are linear in the factors.

45



as XktXjt = 0 if j 6= k, and otherwise is equal to XktXjt = Xjt, as exactly one of the Xjt is

6= 0.

Example 12 Flexible LG parametrization of state variables and stochastic discount factor.

A fairly general recipe to construct LG processes is the following. Take an n-dimensional

process Xt, such that:

Mt+1Dt+1

MtDt
= α+ β0Xt + εt+1

Xt+1 =
γ + ΓXt

a+ β0Xt
+ ηt+1 −

Et

£
εt+1ηt+1

¤
a+ β0Xt

, (63)

with Et [εt+1] = 0, Et

£
ηt+1

¤
= 0. Then, Eq. 8-9 are satisfied. Section 5.1 provides conditions

to ensure MtDt > 0 for all times.

To interpret (63), consider the case γ = Et

£
εt+1ηt+1

¤
= 0. Eq. 63 then expresses that,

when Xt is small, Et [Xt+1] =
ΓXt

α+β0Xt
∼ Γ

α
Xt, which means that Xt follows approximately

an AR(1). The corrective 1 + β0/α · Xt in the denominator is often small in practice, but

ensures that the process is LG.

Example 13 A LG process where the stock price is convex (not linear) in the growth rate

of dividends.

This “academic” example shows how one can obtain asset prices that are increasing in

their variance, which is important in some applications (Johnson 2002, Pastor and Veronesi

2003). Consider an economy with constant discount rate r (i.e. Mt = e−rt), and a stock

with dividend Dt = D0 exp
³R t

0
gsds

´
, where17 dgt = − (g2t /2 + φgt) dt +

p
k (G2 − g2t )dWt.

Calculation shows that e−rTDt (1, gt, g
2
t ) is a LG process with generator

ω =

⎛⎜⎜⎝
r −1 0

0 r + φ −1/2
−kG2 0 2φ+ k + 1

⎞⎟⎟⎠ .

Hence by Theorem 4, the price-dividend ratio is:

Pt/Dt =
2(φ+ r)(2φ+ k + r) + 2(2φ+ k + r)gt + g2t

2r (φ+ r) (2φ+ k + r)− kG2
, (64)

17We assume 0 < G < 2 (φ− k), and that the support of gt is [−G,G], with end points natural boundaries.
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which is increasing in the parameter G of the volatility. In this example, the state vector is

(gt, g
2
t ), which makes the price quadratic and convex in gt.

8.2 LG Processes are the Only Ones that Yield Linearity

The paper shows that, in a certain sense, if bond prices are linear in the factors, then they

come from an LG process. To see that, let us first consider the 1-factor case. Suppose that

for T = 1, 2, Zt (T ) = αT + βTXt, for some numbers α1, β1 6= 0, α2, β2. With T = 1, we get
Et [Mt+1/Mt] = α1 + β1Xt, so that condition (8) holds. Also,

α2 + β2Xt = Et

∙
Mt+2

Mt

¸
= Et

∙
Mt+1

Mt
Et+1

∙
Mt+2

Mt+1

¸¸
= Et

∙
Mt+1

Mt
(α1 + β1Xt+1)

¸
= α1 (α1 + β1Xt) + β1Et

∙
Mt+1

Mt
Xt+1

¸

⇒ Et

∙
Mt+1

Mt
Xt+1

¸
=
1

β1
(α2 + β2Xt − α1 (α1 + β1Xt)) = a00 + b00Xt

hence (9) holds. We conclude that if both the 1 and 2-period maturity bonds are affine in

Xt, then Mt (1, Xt) is a LG process.

Proposition 6 shows that the property holds with n factors.18

8.3 Plug-and-Verify Derivation for LG stocks

There is a elementary heuristic proof for the expression of stock prices. We seek a solution

of the type Pt/Dt ≡ Vt = c − 1 + h0Xt, which we know exists, by summation of (12). The

no-arbitrage equation is:

Pt

Dt
=
1

Dt
Et

∙
Mt+1

Mt
(Dt+1 + Pt+1)

¸
= Et

∙
Mt+1

Mt

Dt+1

Dt

µ
1 +

Pt+1

Dt+1

¶¸
18The property that {(αT , βT ) , T = 1, 2..} spans Rn+1. means that Et [Mt+T /Mt] = αT + β0TXt is the

most compact representation of the process. More precisely, if it did not span Rn+1. , one could find a stricly
lower dimensional process xt ∈ Rm. , m < n, and constants AT , BT , such that Et [Mt+T /Mt] = AT + B0

Txt.
Indeed, call γT =

¡
αT , β

0
T

¢0
, and V = Span {γT , T ≥ 0}. If V is a strict subset of Rn+1. , decompose

Rn+1. = V ⊕ V ⊥, call B : V → Rn+1. the natural injection, and h·, ·i the restriction of the Euclidean product
on V . Then, γ0 (T )Yt = (Bγ (T ))

0
Yt = γ (T )

0
B0Yt, so we have Zt (T ) = γ (T )

0
(B0Yt). Vector B0Yt has

dimension dimV < n+ 1.
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i.e.

c− 1 + h0Xt = Vt = Et

∙
Mt+1

Mt

Dt+1

Dt
(1 + Vt+1)

¸
= Et

∙
Mt+1

Mt

Dt+1

Dt
(c+ h0Xt)

¸
= c (α+ δ0Xt) + h0 (γ + ΓXt)

= (cα+ h0γ) + (cδ0 + h0Γ)Xt

i.e. (i) c− 1 = cα + h0γ and (ii) h0 = cδ0 + h0Γ. (ii) gives h0 = cδ0 (In − Γ)−1, and plugging

in (i) yields c
£
1− α− δ0 (In − Γ)−1 γ

¤
= 1, hence c and (14).

8.4 Processes with Time-Dependent Coefficients

It is simple to extend the process to time-dependent deterministic coefficients, i.e. in Defin-

ition 2, to have α, δ, γ,Γ functions of time. With Yt = (Mt,MtXt)
>, this is Et [Yt+1] = ΩtYt,

where Ωt =

Ã
αt δ0t

γt Γt

!
. That implies E0 [YT ] =

T−1Y
t=0

ΩtY0. Hence, in the zero-coupon

expressions, it is enough to replace ΩT by
T−1Y
t=0

Ωt.

8.5 Closedness Under Addition and Multiplication

The product of two uncorrelated LG processes is LG. The product of two un-

correlated LG processes with respective dimensions d1, d2 (i.e., with d1−1 and d2−1 factors
respectively) is LG, with dimension d1d2 (i.e., with d1d2 − 1 factors). The idea is simple,
though it requires somewhat heavy notations.

We start in discrete time. Take two LG processes characterized by Mk
t , Y

k
t ,Ω

k (k = 1, 2)

(we drop the D notation for simplicity) and consider a process with stochastic discount fac-

tor Mt = M1
t M

2
t . Assume that, for any index i, j of the components, covt

¡
Y 1
i,t+1, Y

2
j,t+1

¢
=

0. The innovations between processes are uncorrelated, but, importantly, not necessar-

ily independent. Then, it is easy to verify that for any vector ψi, Et

£¡
ψ1Y 1

T

¢ ¡
ψ2Y 2

T

¢¤
=

Et

£
ψ2Y 2

T

¤
Et

£
ψ2Y 2

T

¤
. In particular, Et [M

1
TM

2
T ] = Et [M

1
T ]Et [M

2
T ].

Then, Mt = M1
t M

2
t is also the stochastic discount factor of a LG process. The un-

derlying autoregressive process is Y 1
t ⊗ Y 2

t , i.e. the vector made of the d1d2 components

Y 1
itY

2
jt, i = 1, . . . , d1, j = 1, . . . , d2. Because Et

£
Y 1
i,t+1Y

2
j,t+1

¤
= (

P
k Ω

1
ikY

1
k )
¡P

l Ω
2
jlY

2
l

¢
=P

k,l Ω
1
ikΩ

2
jlY

1
ktY

2
lt , the corresponding generator Ω is Ωij,kl = Ω1ikΩ

2
jl, i.e., Ω = Ω1 ⊗ Ω2.
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The same reasoning holds in continuous time. Starting with processes Mk
t , Y

k
t , ω

k (k =

1, 2), and assuming

dY 1

it , dY
2
jt

®
= 0, then M1

t M
2
t is also a pricing kernel that comes from

a LG process. The underlying autoregressive process is Y 1
t ⊗ Y 2

t . Because Et

£
d
¡
Y 1
itY

2
jt

¢¤
=

Et [dY
1
it ]Y

2
jt + Y 1

itEt

£
dY 2

jt

¤
, the generator of the process is

ωij,kl = ω1ikδjl + δikω
2
jl (65)

where δjl is the Kronecker delta, i.e. ω = ω1 ⊗ Id2 + Id1 ⊗ ω2. To make the above concrete,

consider the following example.

Example 14 Stock with decoupled LG processes for the growth rate and the risk premium.

Consider processes with dMt/Mt = −rt−λtdBt, dDt/Dt = gtdt+σtdBt, where gt = g∗+bgt,
which follows: dbgt = −φgbgtdt− bg2t dt+ dNg

t , and the risk premium, πt = λtσt is decomposed

πt = π∗ + bπt, which follows: dbπt = −φπbπtdt + bπ2tdt + dNπ
t , where Ng

t , N
π
t are martin-

gales. Assume that the processes dNg
t , dN

π
t and dBt are uncorrelated. Then, the price of a

stock, Pt = E0
£R∞
0

Mt+sDt+sds
¤
/Mt, is Pt/Dt = Et

£R∞
s=t
exp

¡
−
R s
u=t
(r + πu − gu) du

¢
ds
¤
.

In virtue of the properties of LG processes under multiplication that we just saw,

Et

∙
exp

µZ s

t

−πu + gudu

¶¸
= Et

∙
exp

µZ s

t

−πudu
¶¸

Et

∙
exp

µZ s

t

gudu

¶¸
.

For general processes, the above equation would in general require the two processes to be

independent — for instance, with stochastic volatility, the respective variance processes should

be independent. For LG processes, the property required is the weaker: hdπt, dgti = 0 for
all t’s.

Then, using (65) or direct calculations, MtDt (1, bπt,bgt, bπtbgt) is LG with generator:

ω = RI4 +

⎛⎜⎜⎜⎜⎝
0 1 −1 0

0 φπ 0 −1
0 0 φg 1

0 0 0 φπ + φg

⎞⎟⎟⎟⎟⎠ ,
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with R = r + π∗ − g∗,19 so that: by Theorem 4,

Pt/Dt =
1

R

"
1− bπt

R+ φπ
+

bgt
R+ φg

−
¡
2R+ φπ + φg

¢ bπtbgt
(R+ φπ)

¡
R+ φg

¢ ¡
R+ φπ + φg

¢# . (66)

The central value is again the Gordon formula, Pt/Dt = 1/R. It is modified by the

current level of the equity premium, and the growth rate of the stock.20 A stock with a

currently high growth rate gt exhibits a higher price-dividend ratio, and this is amplified

when the equity premium is low, as shown by the term bπtbgt.
The difference between formula (66) and formula (35) is that in (66), the processes for πt

and gt are decoupled, whereas in (35), they were coupled, i.e. in their drift term there was

a term bgt. The decoupling forces the presence of a cross term bπtbgt in the expression of the
price. In general, one obtains simpler expressions by having one multifactor LG processes,

rather than the product of many different LG processes. With n coupled factors, the stock

price has n+ 1 terms, while with n decoupled factors, the stock price has 2n terms.

The sum of two LG processes is LG. This property is quite trivial, and mentioned

for completeness. Consider two LG processes M i
t , Y

i
t ,Ω

i, with M i
t = νiY i

t , for i = 1, 2.

Denote by di the dimension of Y i
t . Then, Mt = M1

t + M2
t comes from a LG process of

dimension d1 + d2. Indeed, define Yt = (Y 1
t , Y

2
t ), ν = (ν

1, ν2), and Ω =

Ã
Ω1 0

0 Ω2

!
. Then,

Et [Yt+1] = ΩYt, and Mt = ν 0Yt.

8.6 Potential Escape Dynamics if the Conditions on Variance are

not Respected

Section 5.1 provides sufficient conditions to keep the process well-defined, e.g. to keep prices

positive and all quantities finite. For instance, consider the basic LG process in continuous

19Menzly, Santos and Veronesi (2004, Eq. 20) obtain a similar expression. This is natural because the LG
class embeds their model, as Example 9 shows.
20This line of reasoning suggests the following non-LG variant. Suppose we have a process with

dψt = (rtψt + αrt − β) dt + dNt,where dNt is an adapted martingale, and is essentially arbitrary ex-
cept for technical conditions. Then Vt = (ψt + α) /β is a solution of the perpetuity arbitrage equation:
1 − rtVt + E [dVt] /dt = 0. If the process well-defined for t ≥ 0, then Vt is the price of a perpetuity,

Vt = Et

hR∞
t

e−
s
t
rududs

i
. For instance, with the process d (1/rt) = φ (rt − r∗) dt + dNt, the price of a

perpetuity is: Vt = (1/rt + φ/r∗) / (1 + φ).
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time:

dgt = −
¡
φgt + g2t

¢
dt+ σ (gt) dBt (67)

For the process to be well-defined so that gt > −φ a.s., the σ (g) function has to go to 0 near
g = −φ.
However, it is instructive to examine the “escape dynamics” if σ (g) is kept constant

(against the prescription of this paper). Then, gt can escape the region (−φ,∞) at a random
time τ . We examine the properties of the escape by considering T e (φ, σ), the expected value

of the time at which gt would cross the boundary, −φ, given it starts at 0. The following
Lemma calculates its value.

Lemma 2 If volatility is constant in process (67) (as opposed to going to zero at the bound-

ary), the expected time till escape is: T e (φ, σ) = 1
φ
F
³

σ2

2φ3

´
, where we define:

F (K) =
1

K

Z 1

0

R∞
y

ψK (x) dx

ψK (y)
dy, ψK (y) = exp

µ
y2

2K
− y3

3K

¶
. (68)

Proof. First, we reduce the problem by dimensional analysis. Defining yt = gt/φ + 1, we

have dyt = −φ (yt − 1) ytdt+ σ
φ
dBt, where φ has the units of [time]

−1 and σ has the unit of

[time]−3/2. So, T e can be written T e = φ−1F
³

σ2

2φ3

´
for some function F to be determined

(the prefactor 2 is simply for convenience), and where K = σ2

2φ3
is a dimensionless parameter.

By homogeneity, it is enough to consider the case φ = 1. Call T (y) the expected time

till reaching the boundary 0, given the process yt starts at a value y. By the usual reasoning

(whose heuristic form is T (yt) = E [T (yt+dt)] + dt for yt > 0), we have:

−T 0 (y) y (y + 1) + T 00 (y)K + 1 = 0.

This integrates to T 0 (y) =
∞
y ψK(x)dx

KψK(y)
, as limy→∞ T 0 (y) < +∞. Because T (0) = 0, we can

integrate: T (Y ) =
R Y
0

∞
y ψK(x)dx

KψK(y)
dy. Finally, T e = E [τ | g0 = 0] = E [τ | y0 = 1] = T (1).

To understand intuitively the behavior of the process, consider first approximating it by

an Ornstein-Uhlenbeck process, dgt ' −φgtdt + σdBt. Then, the steady state distribution

of gt is Gaussian, with mean 0 and standard deviation σ/
√
2φ. It is “safely” away from the

boundary −φ if this boundary is, say, more than 3 standard deviation away from the mean.
This corresponds to: φ > 3σ/

√
2φ, i.e. σ2/φ3 < 0.2.

51



0.02 0.04 0.06 0.08 0.10

10

100

1000

104

Figure 3: This Figure plots the expected time to escape for a LG process that would have a
constant volatility. Note that this is against the prescription of this paper, which is that the
volatility should go to 0 near the boundary, −φ. The volatility σ is on the horizontal axis,
the escape time T e on the vertical axis (which is a log axis). Units are annual and φ = 0.13.

We obtain a conclusion: we expect the time to escape function F (K) (with K =

σ2/
¡
2φ3
¢
) to become very large for K < 0.1. More precisely, Lemma 2 gives:

Lemma 3 If σ2/φ3 < 0.2, then the expected time to escape is greater than 20/φ. If σ2/φ3 <

0.1, it is greater than 109/φ.

This is confirmed numerically: F (K) is 5·107, 36, 20, 2.8 and 1.5 forK = 0.01, 0.075, .1, .5

and 1 respectively.

We consider the value φ = 0.13 (the value calibrated in Gabaix (2009), see the explana-

tions therein, and which is in the confidence interval of the estimation of section 7). Then,

for σ = 0.1%, 1%, 2%, 3%, 4%, and 10% respectively, T e is equal to 10319, 41·103, 187, 55,
29 and 6.4 year respectively.21 Figure 3 plots this dependence. Note that the correspond-

ing volatility of the P/D ratio is σ/ (R+ φ), which for a D/P ratio of 5% corresponds to a

volatility coming purely from variation in the equity premium of 0.5%, 5%, 11%, 16%, 22%

and 55% respectively. The corresponding values of σ2/φ3 are 4 · 10−4, 0.04, .18, .4, .72, and
4.5.

We conclude that whenever σ2/φ3 is less than about 0.2, then the issues of escape dynam-

ics are quite minor, or even trivial. Beyond that, it is important in numerical applications to

21The behavior of the time to escape when volatility is small is analyzed in Gardiner (2003, section 5.2).
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consider the specifications to make the noise to go 0 near the boundary proposed in section

5.1 of this paper.

9 Approximating non-LG processes with LG processes

This section offers numerical complements to the scheme proposed in section 5.2 in the paper.

9.1 Variants on the Basic LG Projection

We study variants on the basic truncation, using the Ornstein-Uhlenbeck model dxt =

−φxtdt + σdWt, V (x) = Ex0=x

hR∞
0

e−RT+
T
0 xsdsdT

i
as an example. We start by a simple,

intuitive procedure, then propose a Hermite basis, then proceed to a numerical comparison.

9.1.1 Shifted Basic Truncation

The basic truncation is the one mentioned in the body of the paper. We review it here. The

infinite-dimensional generator of the process e
t
0 xsds (1, xt, x

2
t , ...) associated with the OU has

a generator given by (51):

ω =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

R −1 0 0 · · ·
0 R+ φ −1 0 · · ·
−σ2 0 R+ 2φ −1 · · ·
0 −3σ2 0 R+ 3φ · · ·
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎠
So the first two terms of the LG projection are:

V [1] (x) = (1, 0)

Ã
R −1
0 R+ φ

!−1Ã
1

x

!

V [2] (x) = (1, 0, 0)

⎛⎜⎜⎝
R −1 0

0 R+ φ −1
−σ2 0 R+ 2φ

⎞⎟⎟⎠
−1⎛⎜⎜⎝

1

x

x2

⎞⎟⎟⎠
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i.e.,

V [1] (x) =
1

R

µ
1 +

x

R+ φ

¶
(69)

V [2] (x) =
1

R− σ2

(R+φ)(R+2φ)

µ
1 +

x

R+ φ
+

x2

(R+ φ) (R+ 2φ)

¶
. (70)

A very simple method to obtain an alternative approximation is the following: Take the

term (70), and drop the x2 term: we get a first-order approximation to the stock price:

V [1]0 (x) =
1

R− σ2

(R+φ)(R+2φ)

µ
1 +

x

R+ φ

¶
.

We will see that this expression is often more accurate than the basic expression V [1] (x).

More general, the “shifted” procedure is to take the basic truncation V [m+1], which is a

polynomial of degree ≤ m + 1 on x; drop the term of degree m + 1; and call the resulting

polynomial, of degree at most m, V [m]0 (x). Under the assumption in the paper, it converges

to the true price. For instance, from dropping the x3 term in V [3] (x) we obtain:

V [2]0(x) =
1

R− σ2

(R+φ)(R+2φ)− 3σ2

R+3φ

Ã
1 +

x

R+ φ− 3σ2

(R+2φ)(R+3φ)

+
x2

(R+ φ)(R+ 2φ)− 3σ2

R+3φ

!
.

There are other procedures and bases that may be of interest. We describe them now.

9.1.2 Using Hermite Polynomials as a Basis

Instead of projecting in the basis (1, x, x2, . . .), we can project in the basis (1, H1 (x) , H2 (x) , . . .),

where Hk are Hermite polynomials. This seems like a natural thing to do, as when dealing

with Gaussian variables, the Hermite polynomials usually have good properties.

Pick a S > 0, which has the units of an interest rate, and the Hermite polynomials

Hk (x) ≡ H∗
k (x/S)S

k, where H∗
k are the standard Hermite polynomials, defined by H

∗
k (x) =

(−1)n ex2/2 dk

dxk
e−x

2/2. In particular, H0 (x) = 1, H1 (x) = x, H2 (x) = x2 − S2, H3 (x) =

x3 − 3S2x, H4 (x) = x4 − 6S2x2 + 3S4.
To pick the value of S, recall that if X ∼ N (0, S2), then for all k > 0, E [Hk (X)] = 0.
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As the OU process has a steady state distribution N (0, σ2/ (2φ)), we set

S =
σ√
2φ

.

This way, E [Hk (X)] = 0 for k > 0.

Denote by Q the basis transformation matrix between basis (1, x, x2, . . .) and basis

(1, H1 (x) , H2 (x) , . . .). For instance, the third row of Q is (−S2, 0, 1, 0, 0, . . .), the coeffi-
cients of H2 (x).

Define Y H
t = QYt, the LG process expressed in the Hermite basis. We have E

£
dY H

t

¤
=

−ωHY H
t dt, with ωH = QωQ−1.

We can define the LG truncation as in the power basis:

V m,H = (1, 0, 0, . . .)
³¡
ωH
¢[m]´−1

(1,H1 (x) , . . . , Hm (x))
0 .

For instance, take the Ornstein-Uhlenbeck example of section 5.2. Calculations show

that ωH has a simple expression:

ωH =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

R −1 0 0 0 · · ·
−S2 R+ φ −1 0 0 · · ·
0 −2S2 R+ 2φ −1 0 · · ·
0 0 −3S2 R+ 3φ −1 · · ·
0 0 0 −4S2 R+ 4φ · · ·
...

...
...

...
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

So the first two terms are:

V 1,H (x) = (1, 0)

Ã
R −1
−S2 R+ φ

!−1Ã
1

x

!

V 2,H (x) = (1, 0, 0)

⎛⎜⎜⎝
R −1 0

−S2 R+ φ −1
0 −2S2 R+ 2φ

⎞⎟⎟⎠
−1⎛⎜⎜⎝

1

x

x2 − S2

⎞⎟⎟⎠
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i.e.,

V 1,H (x) =
1 + x

R+φ

R− σ2

(R+φ)2φ

, (71)

V 2,H (x) =
1− v0 + x

R+φ
+ x2

(R+φ)(R+2φ)

R− (R+ 2φ/3) v0 , v0 =
3σ2

2φ (R+ φ) (R+ 2φ)
. (72)

We will see that in the OU case, the Hermite approximation converges very fast.

We note that other schemes might be useful, e.g. using the Galerkin method (Canuto et

al. 2006), or perhaps the Taylor expansion method in Kristensen and Mele (2009).

9.1.3 An Alternative Intuitive Truncation

Theorem 5 analyzes a very stark truncation scheme. In practice, it is easy to do better.

Consider the Ornstein-Uhlenbeck case withDt = exp
³R t

0
xsds

´
and dxt = −φxtdt+σdWt (xt

can be a growth rate, or minus a risk premium, expressed under the risk-neutral measure).

We define Y 1
t = e−RtDt, and Y 2

t = e−RtDtxt. We have: Et [dY1t] /dt = (−R+ xt)Y1t =

−RY1t + Y2t and dY2t/dt = Y1t (− (φ+R)xt + x2t ).

To approximate x2t , we replace it by its steady state mean. To find it, we observe that

Et [dx
2
t ] /dt = −2φx2t+σ2, so that taking the expectation at time 0, we obtain limt→∞E0 [x

2
t ] =

σ2/ (2φ). Hence we approximate dY2t ' Y1t (− (φ+R)xt + σ2/ (2φ)), and we approximate

Yt by Y ∗t , where Y
∗
t follows: Et [dY

∗
t ] = −ω(1)Y ∗t with:

ω(1) =

Ã
R −1

−σ2/ (2φ) R+ φ

!
. (73)

Applying Theorem 4, we obtain:

V (1) (x) =
1 + x

R+φ

R− σ2

(R+φ)2φ

. (74)

This is exactly the expression obtained with the Hermite truncation. We can proceed further.

Second-Order Terms To study second-order terms, we study the “pure” behavior of

the process, without the effect of discounting, we look at the process when R = 0 to see
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which terms to drop and approximate. Then:

Et [dY2t] /dt = −φY2t + Y3t (75)

Et [dY3t] /dt = σ2Y1t − 2φY3t + Y4t, (76)

Let us study the truncation to two terms. We replace Y3 by the value that ensures the terms in

(76) are equal to 0 (that is sometimes called the “adiabatic principle”, see Gardiner (2003)),

so Y3 ' σ2Y1t/ (2φ), and injecting this in (75), with the discounting, we get: Et [dY2t] /dt '
σ2Y1t
2φ
− (φ+R)Y2t. Hence, the LG approximation is the one in expression (73).

Let us do the same for the x2 terms. For instance, with R = 0, Et [dY4t] /dt = 3σ
2Y2t −

3φY4t + Y5t, so we replace Y4t ' Y2tσ
2/φ. Injecting this in (76) yields the generator for the

LG approximation:

ω(2) =

⎛⎜⎜⎝
R −1 0

0 R+ φ −1
−σ2 −σ2

φ
R+ 2φ

⎞⎟⎟⎠ .

The corresponding approximation is (77), by Theorem 4, V (2)
t = (1, 0, 0)

£
ω(2)

¤−1
(1, xt, x

2
t ),

i.e.:

V (2) (x) =
1

R
+

x

R (R+ φ)
+

x2 + σ2

Rφ
(x+ φ)

R (R+ φ)
³
R+ 2φ− σ2

Rφ

´ (77)

Approximation of arbitrary order Pick a truncation order m. We write ω[m+1] =Ã
ω[m] b

c0 D

!
, and we use the approximation (coming heuristically from Ym+2,t ' − 1

D−Rc
0 (Y1t, . . . , Ym+1,t),

i.e., ω(m) = ω[m]− 1
D−Rbc

0. This corresponds to the two operations that lead to ω(1) and ω(2)

above. The LG price is simply

V
(m)
t = (1, 0, .., 0)

£
ω(m)

¤−1
(1, x, . . . , xm)0 .

9.1.4 Numerical Evaluation of the four methods

To match the mean and volatility of the PD ratio, we calibrate the OU with R = 3.5%,

φ = 13%, σ = 1.8%, all in annual units. That leads to a volatility of the log PD ratio of

10.3% per year.
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Table 1: Mean Approximation Error with LG processes

Mean Relative Error
Number of factors in LG process Shifted Basic Basic Hermite Intuitive
1 3.6 · 10−2 1.7 · 10−1 2.2 · 10−2 2.2 · 10−2
2 7.3 · 10−3 1.7 · 10−2 3.0 · 10−3 6.1 · 10−3
3 7.5 · 10−4 5.9 · 10−3 3.6 · 10−4 4.2 · 10−4

Explanation: This Table shows the mean approximation error
E [|V m (x)− V (x)|] /E [V (x)], averaging over the steady state distribution of the OU
process, for various schemes proposed in this paper: the basic, V [m], the shifted basic V [m]0,
the truncation on a Hermite basis V m,H , and the “intuitive” truncation V (m).

Table 1 shows the results for the mean approximation errorE [|V m (x)− V (x)|] /E [V (x)],
averaging over the steady state distribution of the OU process. The best performance is for

the Hermite basis. The intuitive truncation procedure performs quite similarly. The sim-

plest truncation’s fit is a bit off with just 1 term. That’s because it simply replaces E [x2t ]

by 0, whereas the intuitive and Hermite truncation replace it by its mean, σ2/ (2φ), hence

do better. However, the “shifted” simplest truncation has a better fit. Even for just the first

order term, the average error is about 2% of the daily stock price movement. It would be

already fantastic if finance could explain stock prices within 2%.

In addition, Figure 4 plots the LG approximation, and the exact expression.

We conclude that the first order approximation of the Ornstein-Uhlenbeck process by a

LG process will be rather good, and useful for theoretical purposes.

The simplest, accurate procedure to recommend is to take the procedure mentioned in

the body of the paper, but “shifted” as described above.

9.2 Numerical Comparison with and without LG terms

The “twist” term in LG processes may at first glance be strange. On the other hand,

mathematically it is close to a simple AR(1). It may be useful to illustrate, in the same

simulations, how an AR(1) and a LG process behave. This section compares twisted and

non-twisted processes in a stock market model with a time-varying risk premium.

Time is discrete, with increments ∆t. The stochastic discount factor and the dividend
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Figure 4: The Figure plots the true value of the P/D ratio of a stock with an Ornstein-
Uhlenbeck process (solid line), and the approximation by a LG process with m =1, 2 and
3 factors (wide, medium and thin dashes, respectively), using the shifted basic truncation.
Note that 95% of the time, the factor x is in the range [−6.9%, 6.9%]. The average relative
error between the OU and the LG approximation is E

£¯̄
V [m]0 (x)− V (x)

¯̄¤
/E [V (x)], and is

equal to 3.6%, 0.73% and 0.0075% for m = 1, 2, 3 respectively.

process follow

Mt+∆t

Mt
= e−r∆t

¡
1 + ηMt+∆t

¢
,

Dt+∆t

Dt
= eg∆t

¡
1 + ηDt+∆t

¢
where ηMt+∆t and ηDt+∆t have zero expected value conditional at t.

We model Et

h
Mt+∆t

Mt

Dt+∆t

Dt

i
as a function of a factor xt, such that the risk premium is

π∗ − xt to a first order. We consider two processes xt, an AR(1) and a LG process. The

AR(1) formulation is: Et

£
ηMt+∆tη

D
t+∆t

¤
= e−π∗∆text∆t, so that risk premium on a one-period

ahead dividend claim is π∗−xt to the leading order. For the perturbation xt, we can postulate
the AR(1):

xt+∆t = F (x) + σ (xt)
√
∆tεt+∆t, F (x) = x+ (1− φ∆t) (xt − x) ,

where εt+∆t is uniformly distributed, with mean 0 and variance 1. The constant x term is

an convexity adjustment, that will be determined soon.

We also consider a LG process. The covariance is expressed as: Et

£
ηMt+∆tη

D
t+∆t

¤
=
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e−π∗∆t (1 + x∗t∆t), where x∗t follows:

x∗t+∆t = F ∗ (x∗t ) + σ (x∗t )
√
∆tεt+∆t, F ∗ (x∗) =

(1− φ∆t)x∗

1 + x∗∆t
. (78)

So, the risk premium on a dividend claim is, to the leading order, π∗ − x∗t . The processes

mean-revert with a speed φ. The starred variables relate to the LG process, while the

non-starred variables relate to the AR(1).

To ensure that the process remains within [Xmin,Xmax] with Xmin < 0 < Xmax, we define

the baseline volatility as:

σ (x) =
√
2K (1− x/Xmin) (1− x/Xmax) , (79)

with K > 0. It goes to 0 fast enough at Xmin < 0 and Xmax > 0, ensuring that xt is

within [Xmin, Xmax]. The average volatility of X is fairly well approximated by: K1/2ξ, with

ξ ' 1.35. Hence, we set vx = Kξ2/ (2φ), and x = −Kξ2/
¡
2φ2
¢
.

Furthermore, to keep xt in [Xmin, Xmax], we need εt to be bounded, say that εt ∈
[εmin, εmax]. Then, we can take the truncated volatility to be:

σ (x) = min

½
σ (x) ,

F (x)−Xmin

εmax
√
∆t

,
Xmax − F (x)

εmax
√
∆t

¾
. (80)

The last two terms ensure that xt+1 ∈ [Xmin, Xmax]. They matter only when x is very close

to the boundaries. Away from the boundaries, as in the continuous time limit, σ (x) = σ (x).

We shall compare the movements of xt and x∗t , as well as the price-dividend ratios of

the two processes. In the numerical implementation, we take εt uniform on [εmin, εmax] =£
−
√
3,
√
3
¤
, so that var (εt) = 1. We use annual units, and take R = r + π∗ − g = 0.035,

for a central P/D ratio of 28. For the simulations, each period lasts a month, ∆t = 1/12.

Also, (Xmin, Xmax) = (−11%, 80%) and φ = 0.13 (which means that xt mean-reverts with

a half-life of mean-reversion of 5 years). Finally, K = 0.18, which corresponds to a annual

volatility of the log P/D ratio of 11%, based solely on the volatility of the stochastic discount

factor. With a dividend volatility of 11%, as in Campbell and Cochrane (1999), the total

stock return volatility is 15%. It is easy to increase this volatility, for instance by introducing

a positive correlation between innovations to dividends, and innovations to xt.

We simulate 10,000 years of data. Figures 5-6 illustrate a typical run over 100 years.

60



20 40 60 80 100
t

�0.05

0.05

0.10

x

Figure 5: Processes for xt (AR(1), dashed line) and x∗t (LG, solid line), simulated over 100
years. The curves are quite close, which was expected as the two processes are identical up
to second order terms.
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Figure 6: The price-dividend ratios, simulated over 100 years. The solid black line represents
the P/D associated with the LG process, and dashed purple line the P/D ratio associated
with the AR(1) process.
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They show xt and x∗t , the corresponding price/dividend ratios Pt/Dt and P ∗t /D
∗
t . (For the

LG process, the PD ratio is in closed form; for the AR(1) process, a numerical solution is

used). Given that the processes for xt and x∗t are similar up to second order terms, they are

close, as confirmed by Figure 5.

The correlations are corr (xt, x
∗
t ) = 0.985 and corr (lnPt/Dt, lnP

∗
t /D

∗
t ) = 0.958. The

correlation in the returns generated by the two models is 0.97.

The conclusion is that the processes are indeed quite close. Of course, even if they had

been quite different, this would not have been a problem for LG processes. We do not want

to say that the true model is an AR(1), that a LG process approximates. It could as well

be that the true model is a LG process, than an AR(1) model approximates. Or rather, as

models are just approximation of a complex economic reality, the respective advantage of

LG vs affine models depends on the specific task at hand. The modeler should be able to

pick whichever approximation is most convenient. It is simply reassuring that the modelling

choice does not make a large difference in terms of the economic processes.

9.3 Example of a Model Projected in the LG Space: Bansal-Yaron

(2004)

A side benefit from LG processes is that they allow to linearize models, by projecting them

in an “LG space”. To illustrate this, we present here the analysis of the Bansal-Yaron (BY,

2004) model, solved (approximately, like BY) with the LG method. It yields, of course,

the same expressions (to a first order) as the original BY framework, but with a different

method. Depending on the reader’s taste, this method may or may not be easier to use than

the more traditional “linearize, plug, and verify” method. Hence, this subsection is mostly

of illustrative rather than substantive interest.

The essentials of the BY model are as follows. The pricing kernel comes from an Epstein-

Zin-Weil preference:
Mt+1

Mt
= δθG

−θ/ψ
t+1 Rθ−1

a,t+1

where Gt+1 is the growth rate of consumption, Ra,t+1 is the gross return on an asset that

delivers aggregate consumption, δ the subjective discount factor, θ ≡ 1−γ
1−1/ψ , where γ is risk

62



aversion and ψ the intertemporal elasticity of substitution. The processes are:

lnGt+1 = μ+ xt + σtηt+1

xt+1 = ρxt + ϕeσtet+1

σ2t+1 = σ2 + ν1
¡
σ2t − σ2

¢
+ σwwt+1

where et+1, ut+1, wt+1 i.i.d. standard Gaussian, so that xt is the expected growth rate of

consumption, and σt its stochastic volatility.

We first derive the basic “case I” of the BY model, with constant volatility σ2t ≡ σ2. The

market value of the consumption claim will be (in the linearization)

Pt =
Ct

R
(1 + bxt) , (81)

for some constants b andR to be determined. The process xt followsEtxt+∆t = (1− Φx∆t)xt,

where the BY notation is ρ = 1− Φx∆t. We will consider the limit of small time intervals,

Et [dxt] = −Φxxtdt, and, given the stochastic structure postulated by BY, the expected

return on the consumption claim is:

E
£
rat+dt

¤
/dt = E

∙
d (Pt/Ct)

Pt/Ct
+

dCt

Ct
+

Ct

Pt
dt

¸
/dt =

bE [dxt] /dt

1 + bxt
+ (μ+ xt) +

R

1 + bxt

= R+ μ+ (1− (R+ Φx) b)xt +O
¡
x2t
¢

This linearization is the moral equivalent of the Campbell-Shiller linearization of the

return used by BY.

Instead of using the Euler equation, we calculate the LGmoments. To keep the derivation

elementary, we proceed in discrete time, with small intervals dt, then take the limit dt→ 0:

E

∙
Mt+dtCt+dt

MtCt

¸
= E

h
δθG

1−θ/ψ
t+dt e(θ−1)r

a
t+dt

i
= exp (−R0dt+ b0xtdt)

for R0 a constant, and

b0 =

µ
1− θ

ψ

¶
+ (θ − 1) (1− (R+ Φx) b) = θ

µ
1− 1

ψ

¶
− (θ − 1) (R+ Φx) b
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We summarize the first LG moment, E
h
d(MtCt)
MtCt

i
/dt = −R0 + b0xt. Also,

E

∙
d (MtCt)

MtCt
xt

¸
/dt = (−R0 + b0xt)xt − Φxxt ' − (R0 + Φx)xt

So, MtCt (1, xt) is (approximately) a LG process, with generator ω =

Ã
R0 −b0

0 R+ Φx

!
.

Hence, by Theorem 4, the price of a consumption claim, Pt = Et

⎡⎣ ∞Z
s=t

MsCs/Mtds

⎤⎦, is Pt =

Ct
R0

³
1 + b0xt

R+Φx

´
. Equating this with (81), we have: R0 = R, and

b =
b0

R+ Φx
=

θ
³
1− 1

ψ

´
− (θ − 1) (R+ Φx) b

R+ Φx

We deduct b =
1− 1

ψ

R+Φx
. Hence, the generator of MtCt (1, xt) is ω =

⎛⎝ R −
³
1− 1

ψ

´
0 R+ Φx

⎞⎠.
We conclude that the price of a consumption claim is

Pt

Ct
=
1

R

Ã
1 +

1− 1
ψ

R+ Φx
xt

!
(82)

Note that, as BY, we have not solved for R, but this could easily be done.

We next verify that that the LG expression (82) matches the BY approximate expression,µ
Pt

Ct

¶BY

' eA0+A1xt∆t ' eA0 (1 +A1xt∆t)

Identifying eA0 = 1/R. BY find

A1∆t =
1− 1

ψ

1− ρxκ
∆t =

1− 1
ψ

1− (1− Φx∆t) (1−R∆t)
∆t =

1− 1
ψ

Φx +R

as ∆t→ 0. So the BY expression is identical to (82), up to second order terms.

In conclusion, as expected the LG way of solving the BY problem, and the first order

approximation of BY yield the same expressions, to the first order. The same finding would
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hold for the other expressions in their paper.

The LG method allows easily to calculate finite-maturity claims, something which is not

done in the original BY paper, but is immediate to do after the LG moments have been

calculated. For instance, the price Pt (T ) of a consumption dividend paying at t+ T is:

Pt (T ) = Cte
−RT

µ
1 +

1− e−ΦxT

Φx

µ
1− 1

ψ

¶
xt

¶
. (83)

This could be useful, given the interest for dividend strips in the value / growth literature

(e.g., Lustig, van Nieuwerburgh and Verdelhan (2008)).

Derivation of bond values.

We can also derive the bond values in the BY model. Using the same linearization, we

get: E
h
dMt

Mt

i
/dt = −r− 1

ψ
xt, for a constant r. Likewise, E

h
d(Mtxt)

Mt

i
/dt = − (r + Φx)xt. So

Mt (1, xt) is (approximately) a LG process, with generator ω =

Ã
r 1

ψ

0 r + Φx

!
. Hence the

price of a real bond, Zt (T ) = Et [Mt+T/Mt] is

Zt (T ) = e−rT
µ
1− 1− e−ΦxT

Φx

xt
ψ

¶
. (84)

and the linearized bond yield is:

yt (T ) = r +
1− e−ΦxT

ΦxT

xt
ψ
. (85)

If ψ > 1, a high long run growth rate xt increases both stock prices and bond yields. Bansal

and Shaliastotich (“A Long-Run Risks Explanation of Predictability Puzzles in Bond and

Currency Markets”, 2009) present similar expressions.

Incorporating stochastic volatility

With the same method, one can show that MtCt (1, xt, θ (σ
2
t − σ2)) is a LG process with

generator:

ω =

⎛⎜⎜⎝
R −

³
1− 1

ψ

´
−bσ

0 R+ Φx 0

0 0 R+ Φσ

⎞⎟⎟⎠ , bσ =
θ

2

⎛⎝µ1− 1
ψ

¶2
+

Ã
1− 1

ψ

R+ Φx
ϕe

!2⎞⎠ ,
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where with the BY notations the autocorrelation of σ2t is ν1 = 1 − Φσ∆t. This yields the

price/dividend ratio:

Pt

Ct
=
1

R

⎡⎣1 +
³
1− 1

ψ

´
R+ Φx

xt + bσ
σ2t − σ2

R+ Φσ

⎤⎦ ,
which is the LG analogue of BY’s expression. The price of a consumption strip is:

Pt (T ) = Cte
−RT

µ
1 +

1− e−ΦxT

Φx

µ
1− 1

ψ

¶
xt +

1− e−ΦσT

Φσ
bσ
¡
σ2t − σ2

¢¶
. (86)
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