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A Primer on Tractable Incentive Contracts
Alex Edmans and Xavier Gabaix1

Even in simple settings, the principal-agent problem is typically very di¢ cult to solve: the

optimal contract often cannot be derived in closed form. Holmstrom and Milgrom (1987, �HM�)

showed that simple contracts can be achieved under the joint assumptions of exponential utility,

a pecuniary cost of e¤ort, Gaussian noise, and continuous time. However, researchers may desire

tractability without imposing the above assumptions �for example, if they wish to model DARA

for empirical realism or to obtain wealth e¤ects, or discrete time for clarity. We wished to develop

a framework for tractable contracts in broader settings that do not require the above assumptions.

This note summarizes this framework in a non-technical manner. We refer the reader to the full

paper (Edmans and Gabaix (2011a)) for further detail on the general framework, and to Edmans

and Gabaix (2011b) and Edmans, Gabaix, Sadzik, and Sannikov (2011) for two speci�c applications.

The model has T periods. The agent�s reservation utility is u, and his expected utility is:

E

"
u

 
v (c)�

TX
t=1

g (at)

!#
: (1)

� c is the cash paid by the principal to the agent in period T

� v is the �felicity�function over cash, and is increasing and weakly concave

� at is an action taken in period t, that bene�ts output but is costly to the agent (e.g. e¤ort,
taking the e¢ cient project rather than private bene�ts, or choosing not to divert cash �ows)

� g is the cost of e¤ort, and is increasing and weakly convex

� u is the utility function, de�ned over �felicity minus cost of e¤ort�, and is increasing and
weakly concave

The model contains both a utility function u and a felicity function v to maximize generality:

� Macroeconomic models typically use
�
ce�g(a)

�1��
= (1� �) (see e.g. the survey of Cooley and

Prescott (1995)), which entails u (x) = e(1��)x= (1� �) and v (x) = lnx

� u(x) = x denotes additively separable preferences

� v(c) = ln c generates multiplicative preferences

� v(c) = c models the cost of e¤ort as a subtraction to cash pay, e.g. if e¤ort requires foregoing
an alternative income-generating activity

1Wharton and NBER, aedmans@wharton.upenn.edu; NYU Stern, NBER, and CEPR, xgabaix@stern.nyu.edu.
June 2011 version.

1



Electronic copy available at: http://ssrn.com/abstract=1871218Electronic copy available at: http://ssrn.com/abstract=1871218

The key feature of our model that leads to tractability is our �noise-before-action�timing as-

sumption. In each period t, the agent �rst observes noise �t, and then takes the action at. This is

similar to theories in which the agent observes total cash �ow before deciding how much to divert

(e.g., Lacker and Weinberg (1989); Biais et al. (2007); DeMarzo and Fishman (2007)). (Other

moral hazard models feature �action-before-noise�). After the action is taken, a veri�able signal:

rt = at + �t

is publicly observed at the end of each period t. Then, noise �t+1 is observed at the start of period

t+ 1, at+1 is taken, and so on. We do not require that the noise be Gaussian.2

The principal wishes to implement the path of actions (a�t )t=1;::;T (exogenous for now), and solves

for the cheapest contract ec (r1; :::; rT ) that does so. We take a fully optimal contracting approach
that imposes no restrictions on the contract ec(�): for example, it may be nonlinear in the signals rt.
Despite the general setup, the contract takes a surprisingly simple closed form:

Theorem 1 (Optimal Contract) The agent is paid

c = v�1

 
TX
t=1

g0 (a�t ) rt +K

!
, (2)

where K is a constant that makes the participation constraint bind (E

"
u

 P
t g
0 (a�t ) rt+

K �
P

t g (a
�
t )

!#
= u).

The functional form is independent of the utility function u, the reservation utility u, and the

distribution of the noise �; these parameters a¤ect only the scalar K.

To see the intuition for why our timing assumption achieves tractability, consider a one-period

model and drop the time subscript for simplicity. With standard �action-before-noise�timing, the

agent�s IC condition is given by:

E� [u
0 (v (c (r))� g (a)) (v0 (c (r)) c0 (r)� g0 (a))] = 0, (3)

where the expectation is taken over all possible future �. Importantly, the noise � is not known

when the agent takes his action a. Thus, the IC condition only pins down his marginal incentives

in expectation, i.e. on average. Multiple contracts satisfy (3), and so the problem is highly complex

as the principal must solve for the cheapest contract out of this continuum.

By contrast, with �noise-before-action�timing, the noise is already known, so the expectations

operator can be removed to give:

u0 (v (c (r))� g (a)) (v0 (c (r)) c0 (r)� g0 (a)) = 0. (4)

This leads to an additional simpli�cation: the u0 (�) term also drops out, which yields

v0 (c (r)) c0 (r)� g0 (a) = 0:

2We do require that noises �2; :::; �T be log-concave. This property is satis�ed by most distribution functions.
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This must hold for a = a�, so the contract becomes c = v�1 (g0 (a�) r +K).

Intuitively, the �rst-order condition (4) must hold for every realization of �, i.e., state-by-state.

This is a tighter restriction than requiring incentives to be correct only on average. This requirement

pins down the slope of the contract: for all �, the agent must receive a marginal felicity of g0 (a�)

for a one unit increment to the signal r1. The principal�s only degree of freedom is the constant K,

which is itself pinned down by the participation constraint. In contrast to the �action-before-noise�

case, here there is a single optimal contract and so the contracting problem has a simple solution.

The key advantage of tractability is that it allows the economic forces driving the contract to be

transparent. First, (2) shows which parameters do and do not matter for the contract�s functional

form. It depends only on the felicity function v and the cost of e¤ort g, and is independent of

the utility function u, the reservation utility u, and the distribution of noise �: they only a¤ect

the scalar K. Second, (2) shows which parameters do and do not matter for the contract�s slope.

Typically, u, u, and � will a¤ect the slope via their impact on K. However, if v(c) = c (the cost

of e¤ort is pecuniary), the contract�s slope is linear and independent u, u, and �; if v (c) = ln c

(multiplicative preferences), the contract is log-linear and independent of u, u, and �. Third, (2)

shows what determines the optimal curvature of the contract. If v (c) = c, the contract is linear; if

v (�) is concave (convex), the contract is convex (concave). More generally, while the HM framework

delivers only linear contracts, this framework allows for convex and concave contracts.

We also show that the contract retains the same form in continuous time, where noise and action

are simultaneous: the optimal contract becomes

c = v�1
�Z T

0

g0 (a�t ) drt +K

�
.

The paper also allows for the action at to depend on the noise �t and shows that a noise-dependent

action function A (�) can also be implemented with a tractable contract. Finally, we solve for the

optimal action function. We prove that, if the output under the agent�s control is su¢ ciently large

(e.g., he is a CEO who a¤ects an entire �rm), the optimal action is the highest productive e¤ort

level (a) regardless of the noise � (the �high e¤ort principle.�) In a cash �ow diversion model, this

corresponds to zero stealing; in a project selection model, it corresponds to taking all positive-NPV

projects while rejecting negative-NPV ones. Intuitively, the optimal action is a trade-o¤ between

the bene�ts and costs of e¤ort. The former are of similar order of magnitude to the output under

the agent�s control, and the latter (disutility plus the risk imposed by incentives) are of similar

order of magnitude to the agent�s wage. Thus, if output is su¢ ciently large, the bene�ts of e¤ort

swamp the costs and so the high e¤ort is e¢ cient regardless of the realized noise.

The model can be extended to allow the principal to choose the highest productive e¤ort level

(e.g. plant size or capacity) according to the parameters of the setting. In the �rst stage, the

principal chooses a capacity a; in the second stage, the above contracting game is played out for

this choice of a. The problem appears complex, since the principal must choose both capacity a

and the action function A (�). However, under certain conditions, the problem can be reduced to

optimizing over only capacity a, which will be the target level of e¤ort a� = a:

max
a�
B (a�)� C [a�] , (5)
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where B (a�) = E [b (a�; �)] is the principal�s expected payo¤ given e¤ort a�, and C [a�] is the

expected cost of the contract implementing a�. C [a�] obtains in closed forms in a series of cases.

A. Applications

Another advantage of tractability is it allows the model to be easily extended to accommodate other

important features of real-life contracting situations. Two examples are below.

A.1. Market Equilibrium

Edmans and Gabaix (2011b) show that the contract can be embedded into a market equilibrium

with multiple principals and agents. Typically, it is very di¢ cult to embed a moral hazard model

into a market equilibrium unless risk-neutrality is assumed; our setup allows for risk aversion and

so we can study how risk a¤ects both the optimal contract and the assignment of managers to

�rms. As in macroeconomic models, we take u (x) = e(1��)x= (1� �) and v (x) = lnx, so the utility
function (1) specializes to:

U (c; a) =

�
ce�g(a)

�1��
1� � : (6)

As in Gabaix and Landier (2008, �GL�), there is a continuum of �rms of di¤erent size and

managers with di¤erent talent. Firm n 2 [0; N ] has size S (n) and CEO m 2 [0; N ] has talent
T (m). Low n denotes a larger �rm and low m a more talented CEO: S 0 (n) < 0, T 0 (m) < 0. The

CEO�s talent increases �baseline��rm value according to:

s = S + CTS:

Assume a one-period model and drop the time subscript. After taking the action a, the �rm�s �nal

stock price is given by:

P = sea�a+�=E [e�] .

It can be easily shown that, up to a constant, we have r = a+ � as before.

GL assume a Pareto �rm size distribution S (n) = An��, and the following asymptotic value for

the spacings of the talent distribution: T 0 (n) = �Bn��1. The equilibrium expected pay is:

w (n) = D (n�)S(n�)
�=�S (n)��=� ; (7)

where n� is the index of a reference �rm, S (n�) is the size of that reference �rm, and D (n�) is a

constant.

GL do not feature an agency problem and only specify expected pay. We incorporate the

above agency model to determine the sensitivity of pay. We denote the marginal cost of e¤ort as

�n = g
0
n (an), and use �n to denote the standard deviation of �n. The variable

�n = gn (an) +
� (�2n�

2
n)

2
(8)
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denotes the �equivalent variation� (�EV�) associated with �rm n, i.e., the loss su¤ered by the

manager from disutility (the gn (an) term) and risk (the � (�2n�
2
n) =2 term). De�ne � as the average

of the �rms�EVs:

e�� = E
�
e��n=(�)

��
: (9)

The market equilibrium with heterogeneous moral hazard and risk aversion can be summarized

by three simple closed-form equations, one for each of assignment, pay, and incentives:

Theorem 2 (CEO Assignment, Pay, and Incentives in Market Equilibrium) Rank man-
agers by their talent Tn and �rms by their �e¤ective size�de�ned by:

bSn = Sne��n=. (10)

In equilibrium, the manager of rank n runs a �rm whose e¤ective size is ranked n, and receives an

expected pay:

wn = D (n�)S(n�)
�=�S��=�n exp

�
�

�
(�n � �)

�
; (11)

where �n and � are de�ned by (8) and (9). The actual pay cn is given by:

ln cn = �nrn + lnwn � lnE
�
e�nrn

�
: (12)

Again, closed-form solutions allow the economics to be transparent. The �rst equation is for

assignment. In a pure assignment model (GL) or an assignment model with homogeneous moral

hazard and risk-neutrality (Edmans, Gabaix, and Landier (2009)), managers are matched to �rms

purely based on their size Sn. The most talented managers are hired by the largest �rms. We show

that this assignment is distorted with heterogeneous moral hazard and risk aversion. Firms with a

high EV, due to either high disutility (high gn (an)) or high risk (high �n) optimally choose to hire

less talented managers. Wealth e¤ects (which the framework allows as it does not require exponential

utility) are critical for generating this result: more talented (and thus wealthier) managers must be

paid a higher compensation for both disutility and risk, and so �rms with a high EV choose not to

hire such managers.

The second equation is for expected pay. In a pure assignment model or an assignment model

with homogeneous moral hazard and risk-neutrality, cross-sectional di¤erences in pay stem exclu-

sively from di¤erences in �rm size. Here, pay is also greater at �rms which exhibit higher disutility

or risk. However, what matters is not the absolute level of these parameters (�n), but their level

compared to other �rms in the economy (�n � �). Aggregate, economy-wide increases in disutility
and risk have no e¤ect on pay: even though a manager�s current �rm becomes less attractive to

work for, so do the outside options.

The third equation is for incentives. Log pay (ln cn) is linear in the �rm�s log stock return (rn),

i.e. the optimal measure of incentives is the percentage change in pay for a percentage change in �rm

value. The model thus provides theoretical justi�cation for this measure of incentives, previously

advocated by Murphy (1999) on empirical grounds.
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A.2. Dynamic CEO Compensation

Edmans, Gabaix, Sadzik, and Sannikov (2011) add additional dynamics to the core model, by

extending it to allow for intermediate consumption, the agent (a CEO) to privately save across

periods, and for the CEO to engage in myopic actions which boost the short-term return at the

expense of long-run value. For brevity we refer the reader to the paper for the myopia extension.

The CEO now consumes in every period t. He lives in periods 1 through T � � and retires after
period L � T . We take the utility function (6) from Edmans and Gabaix (2011b) and specialize to

� = 1 so his utility is given by:

U =

TX
t=1

�t(ln ct � g(at)):

We consider two versions of the model: one in which private saving is impossible (so the agent

must consume his entire income) and another in which it is possible. In the latter case, we must

now distinguish between the CEO�s consumption ct and the income provided by the contract, which

we denote yt. The agent saves (yt � ct) at the continuously compounded risk-free rate R. There are
now two IC constraints: the principal must ensure that the agent takes action path (a�t )t=1;::;T , and

does not deviate from the contract by privately saving (yt = ct 8 t). Again, the optimal contract is
tractable, and given as follows:

Theorem 3 (Optimal Contract, Full Dynamics) In each period t, the CEO is paid a compen-
sation ct which satis�es:

ln ct = ln c0 +
tX
s=1

�srs +
tX
s=1

ks; (13)

where �s and ks are constants. The sensitivity �s is given by

�s =

(
g0(a�s)

1+�+:::+�T�s for s � L;
0 for s > L:

(14)

If private saving is impossible, the constant ks is given by:

ks = R + ln �� lnE[e�s(a
�
s+�)]: (15)

If private saving is possible, ks is given by:

ks = R + ln �+ lnE[e
��s(a�s+�)]: (16)

The initial condition c0 is chosen to give the agent his reservation utility u:

Again, tractability allows the economics to be transparent. First, the contract is history-

dependent : time-t income is linked to the return in the current and all previous periods. The

rewards for current performance are spread over all future periods, to achieve intertemporal risk-

sharing. Second, regarding the contract�s sensitivity, with a �xed target action (a�t = a
� 8 t) and an

in�nite horizon (T = � !1), the sensitivity is constant and given by �t = � = (1� �) g0 (a�). The
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sensitivity increases in the marginal cost of e¤ort and decreases in the discount rate: if the CEO is

more impatient, he must be rewarded today rather than in the future. With a �nite T , the slope �t
is increasing over time: since there are fewer periods left over which to smooth a given reward for

performance, the current reward must increase. Third, it shows the e¤ect of allowing for private

saving on the contract. Whether the CEO has the option to privately save has no e¤ect on the slope.

Instead, it a¤ects the constant kt and thus the growth rate of consumption. If the CEO cannot

privately save, the growth rate is lnE [ct=ct�1] = R + ln �. It is positive if and only if the CEO is

more patient than the representative agent, as is intuitive. If the CEO can privately save (and so

the contract must deter private saving), the growth rate becomes lnE [ct=ct�1] = R + ln � + �2t�
2
t

and so is faster than in the no-saving case. This is because an incentive contract exposes the CEO

to risk, so he wishes to save to insure himself; a rapidly growing contract e¤ectively saves for the

CEO, removing the need for him to do so himself. The growth rate of pay depends on the risk to

which the CEO is exposed, which is in turn driven by his sensitivity to the �rm�s returns �, and

�rm risk �.

Due to its simplicity, the contract can be illustrated by a numerical example. We �rst set T = 3,

L = 3, � = 1, a�t = a
� and g0 (a�) = 1. From (14), the contract is:

ln c1 =
r1
3
+ �1

ln c2 =
r1
3
+
r2
2
+ �2

ln c3 =
r1
3
+
r2
2
+
r3
1
+ �3

where �t =
Pt

s=1 ks. An increase in r1 leads to a permanent increase in log consumption �it rises

by r1
3
in all future periods. In addition, the sensitivity @ut=@at increases over time, from 1=3 to 1=2

to 1=1. The total lifetime reward for e¤ort @Ut=@at is a constant 1 in all periods.

We now consider T = 5, so that the CEO lives after retirement. The contract is now:

ln c1 =
r1
5
+ �1 (17)

ln c2 =
r1
5
+
r2
4
+ �2

ln c3 =
r1
5
+
r2
4
+
r3
3
+ �3

ln c4 =
r1
5
+
r2
4
+
r3
3
+ �4

ln c5 =
r1
5
+
r2
4
+
r3
3
+ �5:

Since the CEO takes no action from t = 4, his pay does not depend on r4 or r5. However, it depends

on r1, r2 and r3 as his earlier e¤orts a¤ect his wealth, from which he consumes.
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