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ABSTRACT

Despite the availability of more sophisticated methods, a popular way to estimate a Pareto exponent is

still to run an OLS regression: log (Rank) = a−b log (Size), and take b as an estimate of the Pareto exponent.

The reason for this popularity is arguably the simplicity and robustness of this method. Unfortunately, this

procedure is strongly biased in small samples. We provide a simple practical remedy for this bias, and propose

that, if one wants to use an OLS regression, one should use the Rank −1/2, and run log (Rank − 1/2) =

a − b log (Size). The shift of 1/2 is optimal, and reduces the bias to a leading order. The standard error on

the Pareto exponent ζ is not the OLS standard error, but is asymptotically (2/n)1/2ζ. Numerical results

demonstrate the advantage of the proposed approach over the standard OLS estimation procedures and

indicate that it performs well under dependent heavy-tailed processes exhibiting deviations from power

laws. The estimation procedures considered are illustrated using an empirical application to Zipf’s law for

the U.S. city size distribution.

KEYWORDS: power law, heavy-tailedness, OLS log-log rank-size regression, bias, standard errors, Zipf’s

law

JEL Classification: C13, C14, C16



1 Introduction

Last four decades have witnessed rapid expansion of the study of heavy-tailedness phenomena in economics

and finance. Following the pioneering work by Mandelbrot (1960, 1963) (see also Fama, 1965, and the papers

in Mandelbrot, 1997), numerous studies have documented that time series encountered in many fields in

economics and finance are typically thick-tailed and can be well approximated using distributions with tails

exhibiting the power law decline

P
(

Z > s
)

∼ Cs−ζ , C, s > 0. (1.1)

with a tail index ζ > 0 (see the discussion in Čı́žek, Härdle and Weron, eds, 2005; Rachev, Menn and

Fabozzi, 2005; Gabaix, Gopikrishnan, Plerou and Stanley, 2006, and references therein). Here f(s) ∼ g(s)

means that f(s) = g(s)(1 + o(1)) as s → ∞. Throughout the paper, C denotes a positive constant, not

necessarily the same from one place to another. Let

Z(1) ≥ ... ≥ Z(n) (1.2)

be decreasingly ordered observations from a population satisfying power law (1.1). Despite the availability

of more sophisticated methods (see, among others, the reviews in Embrechts, Klüppelberg and Mikosch,

1997, and Beirlant, Goegebeur, Teugels and Segers, 2004), a popular way to estimate the Pareto exponent

ζ is still to run the following OLS log-log rank-size regression with γ = 0:

log (t − γ) = a − b log Z(t), (1.3)

or, in other words, calling t the rank of an observation, and Z(t) its size:

log (Rank − γ) = a − b log (Size)

(here and throughout the paper, log(·) stands for the natural logarithm).With N denoting the total number

of observations, regression (1.3) with γ = 0 is motivated by the approximate linear relationships log
(

t
N

)

≈

log(C) − ζ log
(

Z(t)

)

, t = 1, ..., n, implied by the empirical analogues of relations (1.1). The reason for the

popularity of the OLS approach to tail index estimation is arguably the simplicity and robustness of this
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method. In various frameworks, the log-log rank-size regressions of form (1.3) in the case γ = 0 and closely

related procedures were employed, among other works, in Rosen and Resnick (1980), Alperovich (1989),

Krugman (1996), Eaton and Eckstein (1997), Brakman, Garretsen, van den Berg and van Marrewijk (1999),

Dobkins and Ioannides (2000), Davis and Weinstein (2002), Levy (2003), Levy and Levy (2003), Helpman,

Melitz and Yeaple (2004), Soo (2005) and Klass, Biham, Levy, Malcai and Solomon (2006). Further examples

and the discussion of the OLS approach to the tail index estimation are provided in Persky (1992), Gabaix,

Gopikrishnan, Plerou and Stanley (2003), Gabaix et al. (2006), Eeckhout (2004), Gabaix and Ioannides

(2004) and Rossi-Hansberg and Wright (2007).

Let b̂n denote the usual OLS estimator of the tail index ζ using regression (1.3) with γ = 0 and let b̂γ
n

denote the OLS estimator of ζ in general regression (1.3).

It is known that the OLS estimator b̂n in the usual regression (1.3) with γ = 0 is consistent for ζ.

However, the standard OLS procedure has an important bias. This paper shows that the bias is optimally

reduced (up to leading order terms) by using γ = 1/2. Therefore, we recommend that, when using a log-log

regression, one should always use log(Rank − 1/2) rather than log(Rank).

We further show that the standard error of the OLS estimator b̂γ
n of the tail index ζ in general regression

(1.3) is asymptotically (2/n)1/2ζ. The OLS standard errors in log-log rank-size regressions (1.3) considerably

underestimate the true standard deviation of the OLS tail index estimator. Consequently, taking the OLS

estimates of the standard errors at the face value will lead one to reject the true numerical value of the tail

index too often.

The 1/2 shift actually comes from more systematic results, in Theorems 1 and 2, which show that

it is optimal and further demonstrate that the following asymptotic expansions hold for the general OLS

estimator b̂γ
n:

E
(

b̂γ
n/ζ − 1

)

=
(2γ − 1) log2 n

4n
+ o

( log2 n

n

)

,

b̂γ
n/ζ = 1 +

√

2

n
N (0, 1) + OP

( log2 n

n

)

(here and throughout the paper, for µ ∈ R and σ > 0, N (µ, σ2) stands for a normal random variable (r.v.)
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with mean µ and variance σ2). We conclude that, when estimating the tail index ζ with an OLS regression,

one should always use the regression log (Rank − 1/2) = a− b log (Size) , with the standard error of the OLS

estimator b̂n of the slope given by
√

2
n b̂n.

We further provide similar asymptotic expansions for the tail index estimator d̂γ
n in the dual to (1.3)

regression

log(Z(t)) = c − d log(t − γ) (1.4)

(that is, log (Size) = c−d log (Rank − γ)), with logarithms of ordered sizes regressed on logarithms of shifted

ranks. As follows from Theorems 1 and 2, the approaches to the tail index inference using regressions (1.3)

and (1.4) are equivalent in terms of the small sample biases and standard errors of the estimators. The paper

also discusses asymptotic expansions in the analogues of regressions (1.3) and (1.4) with the logarithms of

shifted ranks log(t − γ) replaced by harmonic numbers (Section 3).

Numerical results indicate that the proposed tail index estimation procedures perform well for heavy-

tailed dependent processes exhibiting deviations from power law distributions (1.1) (see Section 4). They

further demonstrate the advantage of the new approaches over the standard OLS log-log rank-size regressions

(1.3) and (1.4) with γ = 0.

The tail index estimation methods proposed in the paper are illustrated using an empirical analysis of

Zipf’s power law for the U.S. city size distribution (Section 5).

In recent years, several studies have focused on the analysis of asymptotic normality of the OLS tail

index estimators in regressions (1.4) with γ = 0 and logarithms of ordered observations log(Z(t)) regressed

on logarithms of ranks (see, among other works, the review in Ch. 4 in Beirlant et al., 2004). Such an

approach to estimation of the tail shape parameters was introduced by Kratz and Resnick (1996) who refer

to it as QQ-estimator. Nishiyama, Osada and Sato (2008) discuss asymptotic normality of the OLS tail

index estimator in the regression of log(Z(t)) on log t. Schultze and Steinebach (1999) consider closely

related problems of least-squares approaches to estimation for data with exponential tails (see also Aban

and Meerschaert, 2004, who discuss efficient OLS estimation of parameters in shifted and scaled exponential
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models). Kratz and Resnick (1996) establish consistency and asymptotic normality of the QQ-estimator in

the case of populations with regularly varying tails. Their results demonstrate that in the case of populations

in the domain of attraction of power law (1.1), the standard error of the QQ-estimator of the inverse 1/ζ of

the tail index based on n largest observations is asymptotically
√

2/(ζ
√

n). Csörgő and Viharos (1997) prove

asymptotic normality of the OLS estimators of the tail index in the case γ = 0 (see also Viharos, 1999; Csörgő

and Viharos, 2006). Beirlant, Dierckx, Goegebeur and Matthys (1999) and Aban and Meerschaert (2004)

indicate the possibility of modification of the QQ-estimator in which logarithms of ordered observations

log(Z(t)) are regressed on log(t−1/2). Aban and Meerschaert (2004) mention in a remark without providing

a proof that regressing logarithms of observations from a heavy-tailed population on logarithms of their ranks

shifted by 1/2 reduces the bias of the QQ-estimator. Their remark seems to be motivated by simulations,

not by the systematic understanding that Theorems 1 and 2 provide; in particular, they do not indicate that

a shift of 1/2 is the best shift.

To our knowledge, general regressions (1.3) and (1.4) with γ 6= 0 and asymptotic expansions for them are

considered, for the first time, in the present work. The modifications of the OLS log-log rank-size regressions

with the optimal shift γ = 1/2 and the correct standard errors provided in this paper were subsequently used

in the works by Hinloopen and van Marrewijk (2006), Bosker, Brakman, Garretsen, de Jong and Schramm

(2007) and Gabaix and Landier (2008).

2 Formal statement of the results

Throughout the paper, for variables a1, ..., an, an stands for the sample mean an =
1

n

n
∑

t=1

at. As usual, for a

sequence of r.v.’s Xn and a sequence of positive constants an, we write Xn = OP (an) (Xn = Oa.s.(an)) if the

sequence Xn/an is bounded in probability (resp., bounded a.s.) and write Xn = oP (an) (Xn = oa.s.(an)) if

Xn/an →P 0 (resp. Xn/an →a.s. 0).

Let Z(1) ≥ Z(2) ≥ ... ≥ Z(n) be the order statistics for a sample from the population with the distribution
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satisfying the power law

P (Z > s) =
1

sζ
, s ≥ 1, ζ > 0. (2.5)

Denote yt = log(t− γ) and xt = log(Z(t)). Let us consider the OLS estimator b̂γ
n of the slope parameter b in

log-log rank-size regression (1.3) with γ < 1 and logarithms of ordered observations regressed on logarithms

of shifted ranks:

b̂γ
n = −

∑n
t=1(xt − xn)(yt − yn)
∑n

t=1(xt − xn)2
= −Aγ

n

Bn
. (2.6)

We will also consider the OLS estimator d̂γ
n of slope in dual to (1.3) regression (1.4) with logarithms of

ordered sizes regressed on logarithms of shifted ranks:

d̂γ
n = −

∑n
t=1(xt − xn)(yt − yn)

∑n
t=1(yt − yn)2

= −Aγ
n

Dn
. (2.7)

The following theorems provide the main results of the paper.

Theorem 1 For any γ < 1, the following asymptotic expansions hold for the bias of the estimators b̂γ
n and

d̂γ
n:

E
(

b̂γ
n/ζ − 1

)

=
(2γ − 1) log2 n

4n
+ o

( log2 n

n

)

, (2.8)

E
(

ζd̂γ
n − 1

)

=
(1 − 2γ) log2 n

4n
+ o

( log2 n

n

)

, (2.9)

Theorem 2 For any γ < 1, the following asymptotic expansions hold for the estimators b̂γ
n and d̂γ

n:

b̂γ
n/ζ = 1 +

√

2

n
N (0, 1) + OP

( log2 n

n

)

, (2.10)

ζd̂γ
n = 1 +

√

2

n
N (0, 1) + OP

( log2 n

n

)

. (2.11)

The arguments for Theorems 1 and 2 are presented in the appendix.

Remark 1 As follows from asymptotic expansions (2.8) and (2.9), the small sample biases of the OLS

estimators b̂γ
n and d̂γ

n in regressions (1.3) and (1.4) involving logarithms of shifted ranks are both minimized

under the choice of the shift γ = 1/2.
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The proof of Theorems 1 and 2 is based on the following results and methods. First, it exploits the

Rényi representation theorem to relate the order statistics for observations following power law (1.1) to

the partial sums of scaled i.i.d. exponential r.v.’s (see the beginning of the proof of Lemma 6). Then,

we use martingale approximations to the bilinear forms that appear in the numerators of the statistics

b̂γ
n/ζ − 1 = −(Aγ

n + ζBn)/(ζBn) and ζd̂γ
n − 1 = −(ζAγ

n + Dn)/Dn (relation (7.55) in the proof of Lemma 6

and relation (7.74) in the proof of Lemma 8). Third, the arguments use strong approximations to partial

sums of independent r.v.’s provided by Lemma 1.

3 A related approach based on harmonic numbers

For t ≥ 1, denote by H(t) the t−th harmonic number: H(t) =
t

∑

i=1

1

i
. Further, let H(0) = 0. Consider

the analogues of regressions (1.3) and (1.4) that involve logarithms of ordered sizes yt = log(Z(t)) and the

functions x̃t = H(t − 1) of ranks of observations:

H(t − 1) = a′ − b′ log(Z(t)). (3.12)

log(Z(t)) = c′ − d′H(t − 1); (3.13)

Similar to the proof of Theorem 2, one can show that the following asymptotic expansions hold for the

tail index estimators b̂′n and d̂′n using regressions (3.12) and (3.13):

b̂′n/ζ = 1 +

√

2

n
N (0, 1) + OP

( log n

n

)

; (3.14)

ζd̂′n = 1 +

√

2

n
N (0, 1) + OP

( log n

n

)

. (3.15)

Comparison of expansions (3.14) and (3.15) with (2.8)-(2.11) shows that, ceteris paribus, tail index estimation

using regressions involving harmonic numbers is to be preferred, in terms of the small sample bias, to that

based on the logarithms of shifted ranks log(t − γ) for any γ. On the other hand, regressions (1.3) and

(1.4) are simpler to implement and more visual than estimation procedures based on (3.14) and (3.15). In

particular, we are not aware of works that employed estimation approaches based on harmonic numbers
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similar to (3.14) and (3.15), while regressions (1.3) and (1.4) with γ = 0 are commonly used, as discussed in

the introduction. Comparison of the asymptotic expansions for the tail index estimators using regressions

(3.12) and (3.13) with the OLS tail parameter estimators in log-log rank-size regressions (1.3) and (1.4)

also sheds light on the main driving force behind the small sample bias improvements using logarithms of

shifted ranks log(Rank − 1/2). This driving force is, essentially, the fact that log(n − 1/2) provides better

approximation to the harmonic numbers H(n − 1) than does log(n) and, more generally, than log(n − γ),

γ < 1. This is because, as follows from the inequalities for H(n) − ln(n + 1/2) in Havil (2003), Section 9.3

on pp. 75-79, for all γ < 1,

H(n − 1) = C + ln(n − γ) + (γ − 1/2)n−1 + O(n−2) (3.16)

as n → ∞, where C = limn→∞(H(n) − ln n) is Euler’s constant, so the optimal choice of the shift γ in the

sense of the best asymptotical approximation is 1/2 (note that the last inequality on p. 76 in Havil, 2003,

should read, in the notations of this section, 1/(24(n + 1)2) < H(n) − ln(n + 1/2) − C < 1/(24n2)).

4 Simulation results

In this section, we present simulation results on the performance of the traditional regression (1.3) with

γ = 0 and the modified regression (1.3) with the optimal shift γ = 1/2 and the correct standard errors given

by Theorem 2. We present the numerical results for the OLS Pareto exponent estimation procedures under

dependence and under deviations from power laws (1.1). The results are provided for dependent heavy-tailed

data that follow AR(1) processes Zt = ρZt−1 + ut, t ≥ 1, Z0 = 0, or MA(1) processes Zt = ut + θut−1, t ≥ 1,

with i.i.d. u′
ts. The departures from power laws are modeled using the innovations ut that have Student t

distributions with the number of degree of freedom m = 2, 3, 4 (Tables 2 and 4) or distributions exhibiting

2nd order deviations from Pareto tails in the Hall (1982) form

P (u > s) = s−ζ
(

1 + c(s−αζ − 1)
)

, c ∈ [0, 1), α > 0, s ≥ 1, (4.17)

(Tables 1 and 3). The choice of the number of degrees of freedom for Student t distributions is motivated

by the recent empirical works on heavy-tailedness that indicate that, for many economic and financial time
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series, the tail index ζ lies in the interval (2, 4) (see Loretan and Phillips, 1994; Gabaix et al., 2003, 2006).

The benchmark case c = 0 in (4.17) corresponds to the exact Pareto distributions (2.5), and the values ρ = 0

and θ = 0 model i.i.d. observations Zt. Similar to deviations of γ from 1/2 in (2.8) and (2.9), the term

c
(

s−αζ − 1
)

modeling the departures from the power laws in (4.17) creates a bias in the estimators b̂γ
n and

d̂γ
n in regressions (1.3) and (1.4).

Tables 1 and 2 present the simulation results for the traditional OLS estimator b̂n of the tail index using

regression (1.3) with γ = 0. These tables also provide the comparisons of the OLS standard errors of the

estimator with its true standard deviation. Tables 3 and 4 present the numerical results on the performance

of the OLS estimator b̂γ
n using modified regression (1.3) with γ = 1/2. In Tables 3 and 4, we also present

the standard errors of b̂γ
n with γ = 1/2 provided by expansion (2.10) and compare them to the true standard

deviation of the estimator. The asterics in Tables 1-4 indicate rejection of the true null hypothesis on the

tail index H0 : ζ = ζ0 in favor of the alternative hypothesis Ha : ζ 6= ζ0 at the 5% significance level using the

reported standard errors (ζ0 = 1 for innovations that follow distributions (4.17) with ζ = α = 1 considered

in Tables 1 and 3 and ζ = m for innovations that have Student t distributions with m = 2, 3, 4 degrees of

freedom in Tables 2 and 4).

For instance, consider the class of exact Pareto i.i.d. observations, which is the first row in Table 1

and Table 3, with n = 50 extreme observations included in estimation. Table 1 (column n = 50, the first

row) shows that the traditional OLS estimator using regression (1.3) with γ = 0 yields an average of 0.924

(whereas the true tail index is 1), and the OLS standard error is 0.024, very far from the true standard

deviation, 0.185. By contrast, the OLS estimator using regression (1.3) with γ = 1/2 proposed in this paper

(Table 3, column n = 50, the first row) and expansion (2.10) yield an average estimate of 1.011, and the

standard error of 0.202, very close to the true standard deviation, 0.199.

More generally, the OLS estimates b̂n of Pareto exponents ζ using traditional regression (1.3) with γ = 0

reported in Tables 1 and 2 are significantly different from the true tail indices, which means that b̂n is biased

in small samples. According to the same tables, the OLS standard errors in regression (1.3) with γ = 0
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Table 1. Behavior of the usual OLS estimator b̂n in the regression
log (Rank) = a − b log (Size) for innovations deviating from power laws

n 50 100 200 500

AR(1)

c ρ

Mean b̂n

(OLS s.e) (SD b̂n)

0 0
0.924∗

(0.024) (0.185)

0.944∗

(0.014) (0.134)

0.961∗

(0.008) (0.098)

0.978∗

(0.004) (0.063)

0 0.5
1.082∗

(0.021) (0.296)

1.069∗

(0.012) (0.244)

1.073∗

(0.007) (0.195)

1.102∗

(0.004) (0.145)

0 0.8
1.373∗

(0.034) (0.520)

1.271∗

(0.019) (0.417)

1.235∗

(0.011) (0.343)

1.235∗

(0.006) (0.268)

0.5 0
0.925∗

(0.024) (0.181)

0.942∗

(0.014) (0.132)

0.960∗

(0.008) (0.098)

0.978∗

(0.004) (0.063)

0.5 0.5
1.082∗

(0.020) (0.301)

1.067∗

(0.012) (0.244)

1.074∗

(0.007) (0.194)

1.104∗

(0.004) (0.146)

0.5 0.8
1.379∗

(0.034) (0.512)

1.276∗

(0.019) (0.412)

1.226∗

(0.011) (0.343)

1.238∗

(0.006) (0.266)

0.8 0
0.925∗

(0.024) (0.186)

0.945∗

(0.014) (0.134)

0.960∗

(0.008) (0.097)

0.978∗

(0.004) (0.063)

0.8 0.5
1.084∗

(0.020) (0.297)

1.067∗

(0.012) (0.239)

1.069∗

(0.007) (0.195)

1.101∗

(0.004) (0.145)

0.8 0.8
1.378∗

(0.034) (0.520)

1.270∗

(0.019) (0.413)

1.227∗

(0.011) (0.342)

1.238∗

(0.006) (0.265)

MA(1)

c θ

Mean b̂n

(OLS s.e) (SD b̂n)

0 0.5
0.988

(0.024) (0.261)

0.993

(0.014) (0.193)

1.003

(0.009) (0.142)

1.032∗

(0.004) (0.094)

0 0.8
0.989

(0.030) (0.275)

0.994

(0.017) (0.198)

1.011

(0.010) (0.146)

1.034∗

(0.005) (0.098)

0.5 0
0.926∗

(0.024) (0.182)

0.942∗

(0.014) (0.133)

0.961∗

(0.008) (0.099)

0.977∗

(0.004) (0.063)

0.5 0.5
0.988

(0.024) (0.259)

0.992

(0.014) (0.193)

1.007

(0.009) (0.142)

1.032∗

(0.004) (0.095)

0.5 0.8
0.988

(0.030) (0.274)

0.992

(0.017) (0.196)

1.005

(0.010) (0.145)

1.034∗

(0.005) (0.098)

0.8 0
0.925∗

(0.024) (0.184)

0.944∗

(0.014) (0.134)

0.960∗

(0.008) (0.095)

0.978∗

(0.004) (0.062)

0.8 0.5
0.991

(0.024) (0.258)

0.993

(0.014) (0.192)

1.005

(0.009) (0.140)

1.030∗

(0.004) (0.095)

0.8 0.8
0.990

(0.030) (0.276)

0.991

(0.017) (0.198)

1.006

(0.010) (0.145)

1.033∗

(0.005) (0.098)

Notes: The entries are the estimates of the tail index and their standard errors using regression (1.3) with

γ = 0 for the AR(1) and MA(1) processes Zt = ρZt−1 + ut, t ≥ 1, Z0 = 0, and Zt = ut + θut−1, where

i.i.d. ut follow the distribution P (u > s) = s−ζ
�
1 + c(s−αζ − 1)

�
, s ≥ 1, with ζ = α = 1 and c ∈ [0, 1).

For a general case ζ > 0, one multiplies all the numbers in the table by ζ. “Mean b̂n” is the sample mean

of the estimates b̂n obtained in simulations, and “SD b̂n” is their sample standard deviation. “OLS s.e.”

is the OLS standard error in regression (1.3) with γ = 0. The asteric indicates rejection of the true null

hypothesis H0 : ζ = 1 in favor of the alternative hypothesis Ha : ζ 6= 1 at the 5% significance level using the

reported OLS standard errors. The total number of observations N = 2000. Based on 10000 replications.
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Table 2. Behavior of the usual OLS estimator b̂n in the regression
log (Rank) = a − b log (Size) for Student t innovations

n 50 100 200 500

AR(1)

m ρ

Mean b̂n

(OLS s.e) (SD b̂n)

2 0
1.810∗

(0.045) (0.349)

1.809∗

(0.026) (0.245)

1.768∗

(0.014) (0.160)

1.524∗

(0.010) (0.073)

2 0.5
1.993

(0.042) (0.454)

1.986

(0.024) (0.351)

1.932∗

(0.014) (0.247)

1.647∗

(0.011) (0.115)

2 0.8
2.433∗

(0.053) (0.787)

2.334∗

(0.031) (0.608)

2.199∗

(0.019) (0.429)

1.796∗

(0.015) (0.197)

3 0
2.560∗

(0.063) (0.473)

2.503∗

(0.036) (0.312)

2.342∗

(0.021) (0.192)

1.838∗

(0.016) (0.079)

3 0.5
2.852∗

(0.065) (0.589)

2.777∗

(0.037) (0.414)

2.597∗

(0.022) (0.262)

1.992∗

(0.019) (0.107)

3 0.8
3.632∗

(0.084) (1.021)

3.400∗

(0.049) (0.722)

3.044

(0.032) (0.448)

2.179∗

(0.024) (0.186)

4 0
3.151∗

(0.078) (0.546)

3.002∗

(0.043) (0.350)

2.729∗

(0.027) (0.205)

2.017∗

(0.021) (0.083)

4 0.5
3.523∗

(0.083) (0.661)

3.358∗

(0.047) (0.443)

3.024∗

(0.030) (0.259)

2.162∗

(0.024) (0.110)

4 0.8
4.546∗

(0.112) (1.101)

4.096

(0.065) (0.700)

3.516∗

(0.043) (0.417)

2.334∗

(0.030) (0.185)

MA(1)

m θ

Mean b̂n

(OLS s.e) (SD b̂n)

2 0.5
1.927

(0.044) (0.446)

1.927∗

(0.025) (0.325)

1.869∗

(0.015) (0.220)

1.602∗

(0.011) (0.097)

2 0.8
1.978

(0.054) (0.524)

1.951

(0.031) (0.368)

1.894∗

(0.018) (0.242)

1.617∗

(0.012) (0.104)

3 0.5
2.774∗

(0.064) (0.569)

2.697∗

(0.036) (0.400)

2.519∗

(0.022) (0.245)

1.944∗

(0.018) (0.099)

3 0.8
2.916

(0.075) (0.707)

2.792∗

(0.042) (0.464)

2.587∗

(0.025) (0.283)

1.974∗

(0.019) (0.106)

4 0.5
3.430∗

(0.082) (0.649)

3.253∗

(0.045) (0.428)

2.944∗

(0.029) (0.244)

2.122∗

(0.023) (0.099)

4 0.8
3.649∗

(0.092) (0.790)

3.419∗

(0.052) (0.510)

3.035∗

(0.033) (0.287)

2.159∗

(0.025) (0.106)

Notes: The entries are estimates of the tail index and their standard errors using regression (1.3) with

γ = 0 for the AR(1) and MA(1) processes Zt = ρZt−1 + ut, t ≥ 1, Z0 = 0, and Zt = ut + θut−1, where

i.i.d. ut have the Student t distribution with m degrees of freedom. “Mean b̂n” is the sample mean of

the estimates b̂n obtained in simulations, and “SD b̂n” is their sample standard deviation. “OLS s.e.” is

the OLS standard error in regression (1.3) with γ = 0. The asteric indicates rejection of the true null

hypothesis on the tail index ζ of Zt H0 : ζ = m in favor of the alternative hypothesis Ha : ζ 6= m at the

5% significance level using the reported OLS standard errors. The total number of observations N = 2000.

Based on 10000 replications.
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Table 3. Behavior of the OLS estimator b̂γ
n with γ = 1/2 in the regression

log (Rank − 1/2) = a − b log (Size) for innovations deviating from power laws
n 50 100 200 500

AR(1)

c ρ

Mean b̂
γ=1/2

n

(
√

2/n×Mean b̂
γ=1/2

n ) (SD b̂
γ=1/2

n )

0 0
1.011

(0.202) (0.199)

1.001

(0.142) (0.139)

0.998

(0.100) (0.100)

0.998

(0.063) (0.063)

0 0.5
1.179

(0.236) (0.320)

1.131

(0.160) (0.257)

1.112

(0.111) (0.201)

1.124

(0.071) (0.147)

0 0.8
1.487

(0.297) (0.564)

1.340

(0.189) (0.439)

1.277∗

(0.128) (0.354)

1.258∗

(0.080) (0.272)

0.5 0
1.013

(0.203) (0.194)

0.999

(0.141) (0.137)

0.997

(0.100) (0.101)

0.998

(0.063) (0.064)

0.5 0.5
1.179

(0.236) (0.326)

1.129

(0.160) (0.257)

1.113

(0.111) (0.200)

1.127

(0.071) (0.147)

0.5 0.8
1.494

(0.299) (0.555)

1.344

(0.190) (0.434)

1.268∗

(0.127) (0.354)

1.262∗

(0.080) (0.270)

0.8 0
1.013

(0.203) (0.200)

1.003

(0.142) (0.139)

0.997

(0.100) (0.099)

0.998

(0.063) (0.063)

0.8 0.5
1.181

(0.236) (0.322)

1.129

(0.160) (0.251)

1.109

(0.111) (0.201)

1.123

(0.071) (0.147)

0.8 0.8
1.493

(0.299) (0.565)

1.338

(0.189) (0.435)

1.269∗

(0.127) (0.353)

1.262∗

(0.080) (0.269)

MA(1)

c θ

Mean b̂
γ=1/2

n

(
√

2/n×Mean b̂
γ=1/2

n ) (SD b̂
γ=1/2

n )

0 0.5
1.078

(0.216) (0.281)

1.052

(0.149) (0.202)

1.041

(0.104) (0.146)

1.053

(0.067) (0.095)

0 0.8
1.078

(0.216) (0.296)

1.052

(0.149) (0.207)

1.049

(0.105) (0.149)

1.054

(0.067) (0.099)

0.5 0
1.014

(0.203) (0.195)

1.000

(0.141) (0.138)

0.999

(0.100) (0.101)

0.998

(0.063) (0.064)

0.5 0.5
1.078

(0.216) (0.279)

1.051

(0.149) (0.202)

1.046

(0.105) (0.146)

1.053

(0.067) (0.096)

0.5 0.8
1.076

(0.215) (0.295)

1.050

(0.148) (0.205)

1.043

(0.104) (0.149)

1.055

(0.067) (0.099)

0.8 0
1.013

(0.203) (0.198)

1.002

(0.142) (0.140)

0.998

(0.100) (0.098)

0.998

(0.063) (0.063)

0.8 0.5
1.081

(0.216) (0.277)

1.052

(0.149) (0.201)

1.043

(0.104) (0.144)

1.051

(0.066) (0.096)

0.8 0.8
1.079

(0.216) (0.297)

1.049

(0.148) (0.207)

1.044

(0.104) (0.149)

1.054

(0.067) (0.099)

Notes: The entries are estimates of the tail index and their standard errors using regression (1.3) with

γ = 1/2 for the AR(1) and MA(1) processes Zt = ρZt−1 + ut, t ≥ 1, Z0 = 0, and Zt = ut + θut−1,

where i.i.d. ut follow the distribution P (Z > s) = s−ζ
�
1 + c(s−αζ − 1)

�
, s ≥ 1, with ζ = α = 1 and

c ∈ [0, 1). For a general case ζ > 0, one multiplies all the numbers in the table by ζ. “Mean b̂
γ=1/2

n ”

is the sample mean of the estimates b̂γ
n with γ = 1/2 obtained in simulations, and “SD b̂

γ=1/2

n ” is their

sample standard deviation. The values
p

2/n×Mean b̂
γ=1/2

n are the standard errors of b̂γ
n with γ = 1/2

provided by Theorem 2. The asteric indicates rejection of the true null hypothesis H0 : ζ = 1 in favor of

the alternative hypothesis Ha : ζ 6= 1 at the 5% significance level using the reported standard errors. The

total number of observations N = 2000. Based on 10000 replications.
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Table 4. Behavior of the OLS estimator b̂γ
n with γ = 1/2

in the regression log (Rank − 1/2) = a − b log (Size) for Student t innovations
n 50 100 200 500

AR(1)

m ρ

Mean b̂
γ=1/2

n

(
√

2/n×Mean b̂
γ=1/2

n ) (True s.e.)

2 0
1.981

(0.396) (0.374)

1.918

(0.271) (0.255)

1.834

(0.183) (0.164)

1.552∗

(0.098) (0.074)

2 0.5
2.178

(0.436) (0.489)

2.104

(0.297) (0.367)

2.004

(0.200) (0.253)

1.678∗

(0.106) (0.116)

2 0.8
2.647

(0.529) (0.854)

2.465

(0.349) (0.639)

2.277

(0.228) (0.442)

1.827

(0.116) (0.200)

3 0
2.798

(0.560) (0.507)

2.651

(0.375) (0.325)

2.427∗

(0.243) (0.196)

1.870∗

(0.118) (0.080)

3 0.5
3.118

(0.624) (0.633)

2.941

(0.416) (0.431)

2.691

(0.269) (0.268)

2.026∗

(0.128) (0.108)

3 0.8
3.956

(0.791) (1.104)

3.592

(0.508) (0.756)

3.149

(0.315) (0.459)

2.215∗

(0.140) (0.189)

4 0
3.442

(0.688) (0.585)

3.177

(0.449) (0.364)

2.825∗

(0.282) (0.210)

2.051∗

(0.130) (0.084)

4 0.5
3.848

(0.770) (0.710)

3.553

(0.502) (0.461)

3.130∗

(0.313) (0.265)

2.198∗

(0.139) (0.112)

4 0.8
4.950

(0.990) (1.188)

4.323

(0.611) (0.732)

3.634

(0.363) (0.427)

2.370∗

(0.150) (0.188)

MA(1)

m θ

Mean b̂
γ=1/2

n

(
√

2/n×Mean b̂
γ=1/2

n ) (True s.e.)

2 0.5
2.106

(0.421) (0.480)

2.042

(0.289) (0.339)

1.939

(0.194) (0.225)

1.632∗

(0.103) (0.098)

2 0.8
2.157

(0.431) (0.564)

2.065

(0.292) (0.384)

1.963

(0.196) (0.248)

1.647∗

(0.104) (0.105)

3 0.5
3.032

(0.606) (0.612)

2.856

(0.404) (0.417)

2.610

(0.261) (0.251)

1.978∗

(0.125) (0.100)

3 0.8
3.180

(0.636) (0.761)

2.953

(0.418) (0.483)

2.679

(0.268) (0.289)

2.008∗

(0.127) (0.107)

4 0.5
3.747

(0.749) (0.697)

3.441

(0.487) (0.446)

3.048∗

(0.305) (0.249)

2.157∗

(0.136) (0.100)

4 0.8
3.977

(0.795) (0.849)

3.613

(0.511) (0.531)

3.140∗

(0.314) (0.293)

2.194∗

(0.139) (0.108)

Notes: The entries are estimates of the tail index and their standard errors using regression (1.3) with

γ = 1/2 for the AR(1) and MA(1) processes Zt = ρZt−1 + ut, t ≥ 1, Z0 = 0, and Zt = ut + θut−1, where

i.i.d. ut have the Student t distribution with m degrees of freedom. For a general case ζ > 0, one multiplies

all the numbers in the table by ζ. “Mean b̂
γ=1/2

n ” is the sample mean of the estimates b̂γ
n with γ = 1/2

obtained in simulations, and “SD b̂
γ=1/2

n ” is their sample standard deviation. The values
p

2/n×Mean

b̂
γ=1/2

n are the standard errors of b̂γ
n with γ = 1/2 provided by Theorem 2. The asteric indicates rejection

of the true null hypothesis on the tail index ζ of Zt H0 : ζ = m in favor of the alternative hypothesis Ha :

ζ 6= m at the 5% significance level using the reported standard errors. The total number of observations

N = 2000. Based on 10000 replications.

12



are consistently smaller than the true standard deviations. In most of the numerical results presented in

Tables 1 and 2, the true null hypothesis on the tail index H0 : ζ = ζ0 is rejected in favor of the alternative

hypothesis Ha : ζ 6= ζ0 at the 5% significance level using the OLS standard errors.

In most of the entries in Tables 3 and 4, including dependence and deviations from power tail distri-

butions, the standard errors in the regression with shifts γ = 1/2 are much closer to the true standard

deviations than in the case of the OLS standard errors reported in Tables 1 and 2. Comparing to the

traditional regression in Tables 1 and 2, the approach illustrated by Tables 3 and 4 rejects the true null

hypothesis on the tail index H0 : ζ = ζ0 significantly less often.

Additional simulation results show that regression (1.3) with γ = 1/2 also performs well and dominates

the choice γ = 0 for GARCH processes. At the same time, it performs very similar to (3.12) and thus may

be preferable due to simplicity.

5 An empirical application: Zipf’s law for cities

As an example, we study the distribution of city populations (see also Gabaix and Landier, 2008, where the

estimation procedures proposed in this paper are used to to confirm a Zipf’s law for market capitalization

of large firms). This example is, historically, the first economic example of Zipf’s law (Zipf, 1949), which is

the name of power law (1.1) with the tail exponent ζ equal to 1. Zipf’s law is a regularity that has been

exerting an enduring interest, because it appears to describe such diverse phenomena as the frequency of

words, the popularity of Internet sites, the magnitude of earthquakes (see Li, 2003) and the size of firms (see

Axtell, 2001; Gabaix and Landier, 2008).

As a U.S. example of a study of Zipf’s law for the cities (in the upper tail at least, see Eeckhout,

2004), we take, following Krugman (1996) and Gabaix (1999), all 135 American metropolitan areas listed in

the Statistical Abstract of the United States in the year 1991, which includes all agglomerations with size

above 250,000 inhabitants. The advantage is that “metropolitan area” represents the agglomeration of the

cities (e.g., the metropolitan area of Boston includes Cambridge), which is commonly viewed as the correct
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economic definition. We rank cities from largest (rank 1) to smallest (rank n = 135), and denote their sizes
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Figure 1: Log(Population) vs. Log(Rank−1/2) for the 135 metropolitan areas in the Statistical Abstract in the US,

1991. The slope of the graph corresponds to the estimate of the slope in regression (1.3) with the optimal shift γ = 1/2,

and is 1.050 (s.e. 0.128). It is consistent with a Zipf’s law, i.e. a power law distribution with the tail index equal to 1.

S(1) ≥ ... ≥ S(n).

Regression (1.3) with γ = 1/2 estimated for the data is

log (t − 0.5) = 10.846 − 1.050 log S(t).

(0.128)

The number in the bracket is the standard error for the tail index (the slope coefficient b̂γ
n) given by

√

2
n b̂n

by Theorem 2. Figure 1 shows the corresponding plot.

Regression (1.4) with γ = 1/2 estimated for the data is

log S(t) = 10.244 − 0.930 log (t − 0.5),

producing the estimate of the tail index equal to 1/d̂γ
n ≈ 1.075 with the standard error given by

√

2
n

1
d̂n

≈ 0.131
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by Theorem 2. The estimates of the tail index are not statistically different from 1 at the 10% significance

level, so that Zipf’s law for cities is confirmed in this dataset.

6 Conclusion and suggestions for future research

The OLS log-log rank-size regression log (Rank) = a − b log (Size) and related procedures are some of the

most popular approaches to Pareto exponent estimation, with b taken as an estimate of the tail index.

Unfortunately, these procedures are strongly biased in small samples. We provide a simple approach to

bias reduction based on the modified log-log rank-size regression log (Rank − 1/2) = a − b log (Size). The

shift of 1/2 is optimal and reduces the bias to a leading order. We further show that the standard error

on the Pareto exponent ζ in this regression is asymptotically (2/n)1/2ζ, and obtain similar results for the

regression log (Size) = c − d log (Rank − 1/2). The proposed estimation procedures are illustrated using an

empirical analysis of the U.S. city size distribution. Simulation results indicate that the proposed tail index

estimation procedures perform well under dependence and deviations from power law distributions. They

further demonstrate the advantage of the new methods over the standard OLS log-log rank-size regressions.

An important open problem concerns asymptotic expansions for the OLS tail index estimators and

their biases for dependent processes, including the autocorrelated time series considered in simulations.

Combining the modified OLS estimation approach with block-bootstrap and GARCH filters may be useful

in developing tail index estimation procedures under dependence. In addition, unreported preliminary results

suggest that the OLS approaches to tail index estimation are more robust than Hill’s estimator of a tail index

under deviations from power laws. Other important problems include the analysis of the optimal choice of

the number n of extreme observations used in estimation and the study of the asymptotic bias of the OLS

estimators when n is determined by minimizing the asymptotic mean square error. Analysis of these issues

and comparisons of the OLS tail index estimators with other procedures are left for further research.
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7 Appendix. Proof of Theorems 1 and 2

Let Zt follow distribution (2.5), and let Z ′
t = Zζ

t . As in (1.2), denote by Z ′
(1) ≥ ... ≥ Z ′

(n) decreasingly

ordered variables Z ′
t. We have P (Z ′

t > s) = P (Zt > s1/ζ) = 1/s, s ≥ 1. Consequently, Z ′
t follow distribution

(2.5) with ζ = 1. Evidently, for the logarithms of ordered observations xt = log(Z(t)) and x′
t = log(Z ′

(t)) one

has xt = x′
t/ζ. Therefore, we get that the OLS estimators b̂γ

n and d̂γ
n in (2.6) and (2.7) satisfy

b̂γ
n/ζ = −

∑n
t=1(x

′
t − x′

n)(yt − yn)
∑n

t=1(x
′
t − x′

n)2
, ζd̂γ

n = −
∑n

t=1(x
′
t − x′

n)(yt − yn)
∑n

t=1(yt − yn)2
.

This implies that it suffices to prove Theorems 1 and 2 for the case ζ = 1. This will be assumed throughout

the rest of the appendix.

For the proof, we will need the following well-known results provided by Lemmas 1-4. Lemma 1 gives the

strong approximation to partial sums of independent r.v.’s that holds under the assumption of the existence

of a moment generating function in a neighborhood of zero. It is provided by, e.g., the results in Komlós,

Major and Tusnády (1975) (see also Komlós, Major and Tusnády, 1976) and by Theorem 2.6.1 on p. 107

in Csörgő and Révész (1981).

In Lemma 1, the notation {S̃n; n = 1, 2, ...} =d {Sn; n = 1, 2, ...} means that {Sn} and {S̃n} are

distributionally equivalent in the sense that all finite-dimensional distributions of {Sn} and {S̃n} are the

same, that is, the distribution of the random vector (St1 , ..., Stk ) is the same as that of (S̃t1 , ..., S̃tk ) for all

1 ≤ t1 < t2 < ... < tk, k ≥ 1.

Lemma 1 Let Xt, t ≥ 1, be a sequence of i.i.d. r.v.’s with EXt = 0, EX2
t = 1 such that R(z) = E exp(zXt)

exists in a neighborhood of z = 0. Further, let Sn =
∑n

t=1 Xt, S0 = 0, stand for the partial sums of X ′
ts. A

probability space (Ω,ℑ, P ) with a sequence {S̃n} and a standard Brownian motion W = (W (s), s ≥ 0) on it

can be so constructed that {S̃n; n = 1, 2, ...} =d {Sn; n = 1, 2, ...} and |S̃n − W (n)| = Oa.s.(log n).

Similar to Lemma 1, throughout the rest of the appendix, W = (W (s), s ≥ 0) denotes a standard

Brownian motion. Lemma 2 concerns the modulus of continuity for Brownian sample paths due to P. Lévy.
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The asymptotic relation in the lemma is provided, for instance, by Theorem 9.25 on p. 114 in Karatzas and

Shreve, 1991, and by the results in Borodin and Salminen, 2002, p. 53.

Lemma 2 The following relation holds:

lim sup
δ→+0

1
√

2δ log(1/δ)
sup

0≤t1,t2≤1
0<|t2−t1|<δ

|W (t2) − W (t1)| = 1 (a.s.). (7.18)

Lemma 3 provides an estimate of the rate of growth of sums of independent r.v.’s in terms of their

variances. The lemma is a consequence of Theorem 6.17 and the discussion following it on p. 222 in Petrov

(1995).

In what follows, for a r.v. X with EX2 < ∞, V ar(X) denotes its variance.

Lemma 3 If ut, t ≥ 1, are independent r.v.’s such that Eu2
t < ∞, t ≥ 1, and Vn = V ar(

∑n
t=1 ut) =

∑n
t=1 V ar(ut) → ∞ as n → ∞, then

∑n
t=1(ut − Eut) = oa.s.

(

V
1/2
n log Vn

)

.

Lemma 4 below is provided by Theorem 6.7 in Petrov (1995).

Lemma 4 Let at, t ≥ 1, be positive numbers such that a1 ≤ a2 ≤ a3 ≤ ... and at → ∞ as t → ∞. If ut,

t ≥ 1, are independent r.v.’s such that
∑∞

t=1 V ar(ut)/a
2
t < ∞, then

∑n
t=1(ut −Eut)/an → 0 a.s. as n → ∞.

The arguments for the following Lemmas 5-9 are provided at the end of this appendix. We first formulate,

in Lemma 5, several asymptotic relations involving sums of logarithms. Denote

Mn =

n−1
∑

t=1

[1

t

t
∑

i=1

log (i − γ) − 1

n

n
∑

i=1

log (i − γ) − log(t − γ) + log(n − γ)
]2

, (7.19)

Gn =
1√
n

[

n +
n

∑

t=1

1

t

(

t
∑

i=1

log (i − γ)
)

−
(

n
∑

t=1

log (t − γ)
)]

, (7.20)

Hn =
1√
n

[

n
∑

t=1

log2 (t − γ) − 1

n

(

n
∑

t=1

log (t − γ)
)2

+

n
∑

t=1

1

t

t
∑

i=1

log (i − γ) −
n

∑

t=1

log (t − γ)
]

.

17



Lemma 5 For all γ < 1, the following relations hold:

n
∑

t=1

log (t − γ) = n log (n − γ) − n +
(1

2
− γ

)

log (n − γ) + O(1), (7.21)

n
∑

t=1

log2 (t − γ) = (n − γ) log2 (n − γ) − 2(n − γ) log (n − γ) +

2n +
log2 (n − γ)

2
+ O(1). (7.22)

n
∑

t=1

log (t − γ)

t
=

log2 n

2
+ o(log2 n), (7.23)

Mn = O(1), (7.24)

Gn =
(1 − 2γ) log2 n

4
√

n
+ o

( log2 n√
n

)

. (7.25)

Hn =
(2γ − 1) log2 n

4
√

n
+ o

( log2 n√
n

)

. (7.26)

Relations (2.8) and (2.10) for ζ = 1 are consequences of (2.6) and the asymptotic expansions for the

statistics Aγ
n and Bn under ζ = 1 provided by Lemmas 6 and 7.

Lemma 6 The following asymptotic expansions hold for ζ = 1:

E(Aγ
n + Bn) =

(1 − 2γ) log2 n

4
+ o

(

log2 n
)

, (7.27)

1√
n

(Aγ
n + Bn) = N (0, 2) + OP

( log2 n√
n

)

. (7.28)

Lemma 7 The following asymptotic relation holds for ζ = 1:

Bn

n
= 1 + Oa.s.

( log n√
n

)

. (7.29)

Similar to (2.8) and (2.10), asymptotic expansions (2.9) and (2.11) for ζ = 1 follow from (2.7) and the

asymptotic expansions for the statistics Aγ
n and Dn under ζ = 1 provided by Lemmas 8 and 9.
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Lemma 8 The following asymptotic expansions hold for ζ = 1:

E(Aγ
n + Dn) =

(2γ − 1) log2 n

4
+ o

(

log2 n
)

, (7.30)

1√
n

(Aγ
n + Dn) = N (0, 2) + OP

( log2 n√
n

)

. (7.31)

Lemma 9 The following asymptotic relation holds for ζ = 1:

Dn

n
= 1 + O

( log2 n

n

)

. (7.32)

Proof of Lemma 5. Relations (7.21) and (7.22) follow from Euler-Maclaurin summation formula with the

remainder terms that are O(1) for the sums in them (see, e.g., Havil, 2003, p. 86). Using again Euler-

Maclaurin summation formula in a similar way (or first-order integral approximations to partial sums), we

obtain (7.23). Denote Lt =
1

t

t
∑

i=1

log (i − γ) − log(t − γ) + 1 −
(1

2
− γ

) log (t − γ)

t
. From (7.21) it follows

that

Mn =

n−1
∑

t=1

[

Lt − Ln +
(1

2
− γ

) log (t − γ)

t
−

(1

2
− γ

) log (n − γ)

n

]2
≤

C
n−1
∑

t=1

L2
t + CnL2

n + C
n−1
∑

t=1

[ log (t − γ)

t

]2
+ C

[ log2 (n − γ)

n

]

≤

C

n−1
∑

t=1

1

t2
+

C

n
+ C

n−1
∑

t=1

[ log (t − γ)

t

]2
+ C

[ log2 (n − γ)

n

]

≤ C.

Thus, (7.24) indeed holds. From (7.21) we further get

Gn =
1√
n

[

n +

n
∑

t=1

log (t − γ) − n +
(1

2
− γ

)

n
∑

t=1

log (t − γ)

t
−

n log (n − γ) + n −
(1

2
− γ

)

log (n − γ) + O(log n)
]

=

1√
n

[

n log (n − γ) − n +
(1

2
− γ

)

log (n − γ) +
(1

2
− γ

)

n
∑

t=1

log (t − γ)

t
−

n log (n − γ) + n −
(1

2
− γ

)

log (n − γ) + O(log n)
]

=

1√
n

(1

2
− γ

)

n
∑

t=1

log (t − γ)

t
+ O

( log n√
n

)

.

This, together with (7.23), implies (7.25). In a similar way, relation (7.26) follows from (7.21), (7.22) and

(7.23). �
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Proof of Lemma 6. By the Rényi representation theorem (see Beirlant et al., 2004, Sections 4.2.1 (iii)

and 4.4), one has that, for the logarithms xt = log Z(t) of ordered observations from a population with the

distribution satisfying power law (2.5), the transformations

τt = t
(

xt − xt+1

)

, t = 1, ..., n − 1,

are i.i.d. exponential r.v.’s with parameter 1: P (τt > s) = exp(−s), s ≥ 0. That is, one can represent the

regressors in (1.3) as weighted sums of exponential r.v.’s in the following way:

xt = xn + zt, t = 1, ..., n,

where zn = 0 and zt =

n−1
∑

i=t

τi

i
, t = 1, ..., n − 1. We, therefore, get

Bn =

n
∑

t=1

(xt − xn)2 =

n
∑

t=1

(xn + zt − xn − zn)2 =

n
∑

t=1

(zt − zn)2 =

n−1
∑

t=1

z2
t − nz2

n, (7.33)

and, similarly,

Aγ
n =

n
∑

t=1

(xt − xn)(yt − yn) =

n
∑

t=1

(zt − zn)(yt − yn) =

n−1
∑

t=1

ztyt − nznyn. (7.34)

We further have

n−1
∑

t=1

z2
t =

n−1
∑

t=1

(

n−1
∑

i=t

τi

i

)2
=

n−1
∑

t=1

n−1
∑

i=t

τ2
i

i2
+ 2

n−1
∑

t=1

n−2
∑

i=t

τi

i

n−1
∑

j=i+1

τj

j
. (7.35)

Using a change of summation indices, we get

n−1
∑

t=1

n−1
∑

i=t

τ2
i

i2
=

n−1
∑

i=1

τ2
i

i2

i
∑

t=1

1 =

n−1
∑

i=1

iτ2
i

i2
=

n−1
∑

i=1

τ2
i

i
, (7.36)

n−1
∑

t=1

n−2
∑

i=t

τi

i

n−1
∑

j=i+1

τj

j
=

n−1
∑

j=2

τj

j

j−1
∑

i=1

τi

i

i
∑

t=1

1 =

n−1
∑

j=2

τj

j

j−1
∑

i=1

iτi

i
=

n−1
∑

j=2

τj

j

j−1
∑

i=1

τi. (7.37)

Relations (7.36) and (7.37), together with (7.35), imply

n−1
∑

t=1

z2
t =

n−1
∑

i=1

τ2
i

i
+ 2

n−1
∑

j=2

τj

j

j−1
∑

i=1

τi. (7.38)

In addition,

nz2
n =

1

n

(

n−1
∑

t=1

n−1
∑

i=t

τi

i

)2
=

1

n

(

n−1
∑

i=1

τi

)2
=

1

n

n−1
∑

i=1

τ2
i +

2

n

n−1
∑

i=2

τi

i−1
∑

j=1

τj, (7.39)
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with the second equality obtained by a change of summation indices similar to (7.36). Using (7.33), (7.38)

and (7.39), we get

Bn =
n−1
∑

i=1

τ2
i

i
+ 2

n−1
∑

j=2

τj

j

j−1
∑

i=1

τi −
1

n

n−1
∑

i=1

τ2
i − 2

n

n−1
∑

i=2

τi

i−1
∑

j=1

τj. (7.40)

Similar to the above derivations, we have, using a change of summation indices,

n−1
∑

t=1

ztyt =

n−1
∑

t=1

log (t − γ)
(

n−1
∑

i=t

τi

i

)

=

n−1
∑

t=1

τt

t

(

t
∑

i=1

log (i − γ)
)

, (7.41)

nznyn =
(

n−1
∑

t=1

n−1
∑

i=t

τi

i

)( 1

n

n
∑

t=1

log (t − γ)
)

=
(

n−1
∑

t=1

τt

)( 1

n

n
∑

t=1

log (t − γ)
)

. (7.42)

Relations (7.34), (7.41) and (7.42) imply

Aγ
n =

n−1
∑

t=1

τt

t

(

t
∑

i=1

log (i − γ)
)

−
(

n−1
∑

t=1

τt

)( 1

n

n
∑

t=1

log (t − γ)
)

. (7.43)

From (7.40) and (7.43) we get

1√
n

(Aγ
n + Bn) =

1√
n

[

n−1
∑

t=1

τt

t

(

t
∑

i=1

log (i − γ)
)

−
(

n−1
∑

t=1

τt

)( 1

n

n
∑

t=1

log (t − γ)
)

+

n−1
∑

i=1

τ2
i

i
+ 2

n−1
∑

j=2

τj

j

j−1
∑

i=1

τi −
1

n

n−1
∑

i=1

τ2
i − 2

n

n−1
∑

i=2

τi

i−1
∑

j=1

τj

]

. (7.44)

Since τt, t ≥ 1, are i.i.d. r.v.’s with Eτt = 1, t ≥ 1, we obtain

E
(

2

n−1
∑

j=2

τj

j

j−1
∑

i=1

τi −
2

n

n−1
∑

i=2

τi

i−1
∑

j=1

τj

)

= n + O(log n), (7.45)

E
[

n−1
∑

i=1

τ2
i

i

]

= O(log n), (7.46)

E
[ 1

n

n−1
∑

i=1

τ2
i

]

= O(1). (7.47)

Since, by (7.21),

1

n

n
∑

t=1

log (t − γ) = O(log n), (7.48)
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from (7.44)-(7.47), it follows that

E(Aγ
n + Bn) =

n−1
∑

t=1

1

t

(

t
∑

i=1

log (i − γ)
)

− (n − 1)
( 1

n

n
∑

t=1

log (t − γ)
)

+ n + O(log n) =

√
nGn + o

(

log2 n
)

,

where Gn is defined in (7.20). This, together with (7.25), implies (7.27).

Consider

2√
n

∑

1≤i<j≤n−1

τiτj

j
− 2

n3/2

∑

1≤i<j≤n−1

τiτj =
2√
n

∑

1≤i<j≤n−1

τi(τj − 1)

j
+

2√
n

∑

1≤i<j≤n−1

τi

j
− 2

n3/2

∑

1≤i<j≤n−1

τi(τj − 1) − 2

n3/2

∑

1≤i<j≤n−1

τi =

2√
n

∑

1≤i<j≤n−1

(τi − 1)(τj − 1)

j
+

2√
n

∑

1≤i<j≤n−1

τj − 1

j
+

2√
n

∑

1≤i<j≤n−1

τi − 1

j
+

2√
n

∑

1≤i<j≤n−1

1

j
− 2

n3/2

∑

1≤i<j≤n−1

(τi − 1)(τj − 1) − 2

n3/2

∑

1≤i<j≤n−1

(τj − 1) −

2

n3/2

∑

1≤i<j≤n−1

(τi − 1) − (n − 1)(n − 2)

n3/2
. (7.49)

Using a change of summation indices, we have that

2√
n

∑

1≤i<j≤n−1

1

j
− (n − 1)(n − 2)

n3/2
=

√
n + O

( log n√
n

)

and

2√
n

∑

1≤i<j≤n−1

τj − 1

j
− 2

n3/2

∑

1≤i<j≤n−1

(τi − 1) − 2

n3/2

∑

1≤i<j≤n−1

(τj − 1) =

2√
n

n−1
∑

j=1

(τj − 1) − 2

n3/2

n−1
∑

j=1

(τj − 1)(n − j) − 2

n3/2

n−1
∑

j=1

(τj − 1)j + OP

( 1√
n

)

=

2√
n

n−1
∑

j=1

(τj − 1) − 2√
n

n−1
∑

j=1

(τj − 1) +
2

n3/2

n−1
∑

j=1

(τj − 1)j − 2

n3/2

n−1
∑

j=1

(τj − 1)j + OP

( 1√
n

)

= OP

( 1√
n

)

.

From (7.49) it thus follows that

2√
n

∑

1≤i<j≤n−1

τiτj

j
− 2

n3/2

∑

1≤i<j≤n−1

τiτj =
2√
n

∑

1≤i<j≤n−1

(τi − 1)(τj − 1)

j
−

2

n3/2

∑

1≤i<j≤n−1

(τi − 1)(τj − 1) +
2√
n

∑

1≤i<j≤n−1

τi − 1

j
+

√
n + OP

( log n√
n

)

.
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Using this relation, from (7.44) we now obtain

1√
n

(Aγ
n + Bn) =

1√
n

n−1
∑

t=1

(τt − 1)
[1

t

(

t
∑

i=1

log (i − γ)
)

−
( 1

n

n
∑

i=1

log (i − γ)
)

+

2
1

t

t−1
∑

i=1

(τi − 1) − 2

n

t−1
∑

i=1

(τi − 1) + 2

n−1
∑

j=t+1

1

j

]

+ Gn +

[ 1√
n

n−1
∑

i=1

τ2
i

i
− 1

n3/2

n−1
∑

i=1

τ2
i

]

+ OP

( log n√
n

)

, (7.50)

where Gn is defined in (7.20). Relations (7.46), (7.47) and Chebyshev’s inequality imply

1√
n

n−1
∑

i=1

τ2
i

i
= OP

( log n√
n

)

, (7.51)

1

n3/2

n−1
∑

i=1

τ2
i = OP

( 1√
n

)

. (7.52)

In addition, it is not difficult to see that V ar
[

∑n−1
t=1

τt−1
t

∑t−1
i=1(τi − 1)

]

= O
(

∑n
t=1

1
t

)

= O(log n). This

implies that

1√
n

n−1
∑

t=1

τt − 1

t

t−1
∑

i=1

(τi − 1) = OP

(

√

log n

n

)

. (7.53)

Similarly, since V ar
[

∑n−1
t=1 (τt − 1)

∑t−1
i=1(τi − 1)

]

= O(n2), we get

1

n3/2

n−1
∑

t=1

(τt − 1)

t−1
∑

i=1

(τi − 1) = OP

( 1√
n

)

. (7.54)

Using relations (7.25) and (7.50)-(7.54), we obtain

1√
n

(Aγ
n + Bn) =

1√
n

n−1
∑

t=1

(τt − 1)
[1

t

(

t
∑

i=1

log (i − γ)
)

−

( 1

n

n
∑

i=1

log (i − γ)
)

+ 2
n−1
∑

j=t+1

1

j

]

+
2√
n

n−1
∑

t=1

τt − 1

t

t−1
∑

i=1

(τi − 1)−

2

n3/2

n−1
∑

t=1

(τt − 1)

t−1
∑

i=1

(τi − 1) + Gn + OP

( log n√
n

)

=

1√
n

n−1
∑

t=1

(τt − 1)
[1

t

(

t
∑

i=1

log (i − γ)
)

−
( 1

n

n
∑

i=1

log (i − γ)
)

+ 2

n−1
∑

j=t+1

1

j

]

+
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Gn + OP

( log n√
n

)

=
1√
n

n−1
∑

t=1

(τt − 1)
[1

t

(

t
∑

i=1

log (i − γ)
)

−

( 1

n

n
∑

i=1

log (i − γ)
)

+ 2

n−1
∑

j=t+1

1

j

]

+
(1 − 2γ) log2 n

4
√

n
+ oP (

log2 n√
n

) =

− 1√
n

n−1
∑

t=1

(τt − 1) log (t/n) +
1√
n

n−1
∑

t=1

(τt − 1)
[1

t

(

t
∑

i=1

log (i − γ)
)

−

( 1

n

n
∑

i=1

log (i − γ)
)

+ 2
n−1
∑

j=t+1

1

j
+ log (t/n)

]

+
(1 − 2γ) log2 n

4
√

n
+ oP

( log2 n√
n

)

. (7.55)

Let us show that

Un =
1√
n

n−1
∑

t=1

(τt − 1)
[1

t

(

t
∑

i=1

log (i − γ)
)

−

( 1

n

n
∑

i=1

log (i − γ)
)

+ 2

n−1
∑

j=t+1

1

j
+ log (t/n)

]

= OP

( 1√
n

)

. (7.56)

We have

V ar(
√

nUn) =
n−1
∑

t=1

[1

t

(

t
∑

i=1

log (i − γ)
)

−
( 1

n

n
∑

i=1

log (i − γ)
)

− log(t − γ) +

log(n − γ) + 2
n−1
∑

j=t+1

1

j
+ 2 log (t/n) + log

(

1 − γ/t
)

− log
(

1 − γ/n
)

]2
≤

C
(

Mn +

n−1
∑

t=1

[

log
(

1 − γ/t
)

− log
(

1 − γ/n
)

]2
+

n−1
∑

t=1

[

n−1
∑

j=t+1

1

j
+ log (t/n)

]2)

=

C(Mn + Qn + Rn),

where Mn is defined in (7.19), Rn =

n−1
∑

t=1

[

n−1
∑

j=t+1

1

j
+ log (t/n)

]2
, and

Qn =
n−1
∑

t=1

[

log
(

1 − γ/t
)

− log
(

1 − γ/n
)

]2
. (7.57)

Using the inequality | log (1 − x)| ≤ 2|x|, −1/2 < x < 1/2, one easily obtains that

Qn = O(1). (7.58)

Since, by integral approximations to partial sums (or by (3.16)),
∣

∣

∣

n−1
∑

j=t+1

1

j
+ log (t/n)

∣

∣

∣
≤ C

t
for all t and n,

we also get that Rn = O(1). Using (7.24) and the above relations, we conclude that V ar(
√

nUn) = O(1).

Thus, (7.56) indeed holds. We now provide the argument for the relation

− 1√
n

n−1
∑

t=1

(τt − 1) log (t/n) =
√

2N (0, 1) + OP

( log2 n√
n

)

(7.59)
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using strong approximations to partial sums of independent r.v.’s by Brownian motion.

Using partial summation similar to the proof of Lemma 2.3 in Phillips (2007), we get (below, St =
∑t

i=1 ui

and ui = τi − 1)

− 1√
n

n
∑

t=1

ut log (t/n) = − 1√
n

n
∑

t=1

ut log t + log n
1√
n

n
∑

t=1

ut =

[

− log n
Sn√

n
+

n
∑

t=2

(

log t − log (t − 1)
)St−1√

n

]

+ log n
Sn√

n
=

n
∑

t=2

(

log t − log (t − 1)
)St−1√

n
. (7.60)

By Lemma 1, one can expand the probability space as necessary to set up a partial sum process that is

distributionally equivalent to St and the standard Brownian motion W (·) on the same space such that

sup
1≤t≤n

∣

∣

∣

St−1√
n

− W
(t − 1

n

)

∣

∣

∣
= Oa.s.

( log n√
n

)

. (7.61)

As conventional, throughout the rest of the proof we suppose that that the probability space on which

the random sequences considered are defined has been appropriately enlarged so that relation (7.61) holds.

From (7.61) we get

n
∑

t=2

(

log t − log (t − 1)
)St−1√

n
=

n
∑

t=2

(

log t − log (t − 1)
)

W
(t − 1

n

)

+

Oa.s.

( log n√
n

)

n
∑

t=2

(

log t − log (t − 1)
)

=

n
∑

t=2

(

log t − log (t − 1)
)

W
(t − 1

n

)

+ Oa.s.

( log2 n√
n

)

. (7.62)

Let us consider the difference between

n
∑

t=2

(

log t − log (t − 1)
)

W
(t − 1

n

)

=

n
∑

t=2

[

log
(

n
t

n

)

− log
(

n
t − 1

n

)]

W
(t − 1

n

)
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and
∫ 1
0 W (r)d log (nr). We have

∣

∣

∣

n
∑

t=2

(

log t − log (t − 1)
)

W
(t − 1

n

)

−
∫ 1

1/n
W (r)d log (nr)

∣

∣

∣
=

∣

∣

∣

n
∑

t=2

[(

log t − log (t − 1)
)

W
(t − 1

n

)

−
∫ t/n

(t−1)/n
W (r)d log (nr)

]
∣

∣

∣
≤

n
∑

t=2

∫ t/n

(t−1)/n

∣

∣

∣
W (r) − W

(t − 1

n

)
∣

∣

∣
d log(nr) ≤

sup
0≤t1,t2≤1

0<|t2−t1|≤1/n

∣

∣W (t2) − W (t1)|
n

∑

t=2

∫ t/n

(t−1)/n
d log(nr) =

sup
0≤t1,t2≤1

0<|t2−t1|≤1/n

∣

∣W (t2) − W (t1)|
n

∑

t=2

(

log t − log (t − 1)
)

=

log n sup
0≤t1,t2≤1

0<|t2−t1|≤1/n

∣

∣W (t2) − W (t1)|. (7.63)

From Lemma 2 it follows that

sup
0≤t1,t2≤1

0<|t2−t1|≤1/n

∣

∣W (t2) − W (t1)| = Oa.s.

(

√
log n√

n

)

. (7.64)

In addition, using integration by parts, it is not difficult to see that

∫ 1/n

0
W (r)d log (nr) = OP

( log n√
n

)

. (7.65)

From (7.62)-(7.65) and integration by parts it follows that

− 1√
n

n
∑

t=1

log (t/n)ut =

∫ 1

0
W (r)d log (nr) + OP

( log2 n√
n

)

=

−
∫ 1

0
log s dW (s) + OP

( log2 n√
n

)

.

Since
∫ 1
0 log sdW (s) =d W

(

∫ 1
0 log2 sds

)

= W (2), we get that (7.59) indeed holds (this relation also follows

from (7.62), Lemma 2, the relation 1
n

∑n
t=1 log2 (t/n) = 2 + O

( log2 n
n

)

implied by (7.21) and (7.22), and the

property that, similar to (7.60),
∑n

t=2

(

log t−log (t−1)
)

W
(

t−1
n

)

= −∑n
t=1

(

W
(

t
n

)

−W
(

t−1
n

))

log (t/n)).

Relations (7.55), (7.56) and (7.59) imply (7.28). �

Proof of Lemma 7. By (7.33), (7.38) and (7.39),

Bn

n
=

1

n

n−1
∑

t=1

z2
t − z2

n =
1

n

n−1
∑

t=1

τ2
t

t
+

2

n

n−1
∑

t=2

τt

t

t−1
∑

i=1

τi −
1

n2

(

n−1
∑

t=1

τt

)2
. (7.66)

26



Using Lemma 3 for i.i.d. exponential r.v.’s τt, t ≥ 1, with Vn =
∑n

t=1 V ar(τt) = n, we conclude that

1

n

n−1
∑

i=1

τi = 1 + oa.s.

( log n√
n

)

, (7.67)

and, consequently,

1

n2

(

n−1
∑

t=1

τt

)2
= 1 + oa.s

( log n√
n

)

. (7.68)

Using (7.67), we also obtain

2

n

n−1
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τt

t
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n

n−1
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( log t√
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. (7.69)

As is easy to see, 1
n

∑n−1
t=2

log t√
t

= O
( log n√

n

)

. Using Lemma 3 for independent r.v.’s ut = τt
log t√

t
, t ≥ 1,

with Vn =
∑n

t=1 V ar(ut) =
∑n

t=1
log2 t

t = O(log3 n), we also have 1
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. Thus,

1
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. This, together with (7.67) and (7.69), implies that
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We further have

1

n

n−1
∑

t=1

τ2
t

t
=

1

n

n−1
∑

t=1

Eτ2
t

t
+

1

n

n−1
∑

t=1

τ2
t − Eτ2

t

t
=

1

n

n−1
∑

t=1

τ2
t − Eτ2

t

t
+ Oa.s.

( log n

n

)

. (7.71)

Taking at = log t and ut =
τ2

t −Eτ2

t
t , t ≥ 1, we have

∑∞
t=1 V ar(ut)/a

2
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t=1

V ar(τ2

1
)

t2 log2 t
< ∞. Therefore, by

Lemma 4,
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t
t log n → 0 a.s. as n → ∞ and, consequently, 1
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t
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log n
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This, together with (7.71), implies that

1
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τ2
t

t
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( log n
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)

. (7.72)

From (7.66), (7.68), (7.70) and (7.72) it follows that (7.29) indeed holds. �

Proof of Lemma 8. We have

Dn =

n
∑

t=1

y2
t − ny2

n =

n
∑

t=1

log2(t − γ) − 1

n

(
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. (7.73)
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Using (7.43) and (7.73) we get, as in (7.55),
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This implies

E(Aγ
n + Dn) =
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From (7.26) and (7.48) it follows that (7.30) indeed holds. Let us show that
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1√
n
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Similar to the arguments for (7.56), we get that the variance of Vn satisfies

V ar(
√

nVn) =
n−1
∑

t=1

[1

t

(

t
∑

i=1

log (i − γ)
)

−
( 1
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n
∑
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log (i − γ)
)

− log (t/n)
]2

≤

C(Mn + Qn),

where Mn is defined in (7.19) and Qn is defined in (7.57). Using (7.24) and (7.58), we thus get that

V ar(
√

nVn) = O(1). Consequently, (7.75) indeed holds. Relations (7.26), (7.59), (7.74) and (7.75) imply

(7.31). �

Proof of Lemma 9. Relation (7.32) follows from (7.21), (7.22) and representation (7.73). �
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