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This online appendix presents extensions of the model to business cycle shocks, and nominal

bond risk premia. It also provides extra proofs, and technical complements to the calibration

of the model.

VIII. A Setup with a Risk Factor and a Business

Cycle Factor

VIII.A. Basic Theory with a Business Cycle

So far, we have only introduced one factor, so that, controlling for current productivity, exchange

rates and risk premia are perfectly correlated. This is an undesirable feature. In this section,

we extend our framework to a two-factor model with a risk factor and a business cycle factor

(see Pavlova and Rigobon 2007, 2008 for a different framework with several factors).

We model country ’s export sector productivity as follows:  =  (1 + ) where  is

the (stochastic) trend component of productivity and  is a deviation from the trend that we

refer to as the business cycle factor. The trend  behaves according to:

+1



= exp ()×
⎧⎨⎩ 1 if there is no disaster at + 1,

+1 if there is a disaster at + 1.

The business cycle factor  follows a linearity-generating process

E [+1] =
1 +∗
1 +

exp (−) 

with the innovation uncorrelated with those of  and ∗
 .

Proposition 10 (Business cycle factor). The exchange rate is given by

 =


1− exp (−)
µ
1 +

exp (− − ∗)
1− exp (− − 

)
b +

1− exp (−)
1− exp (− − )



¶
 (52)

51



In the limit of small time intervals, the exchange rate is given by

 =




Ã
1 +

b

 + 

+


 + 

!
 (53)

In the limit of small time intervals, the interest rate is

 =  − +
− 

+

b +

+



1 +


+
+ 

+

 (54)

The resilience b affects the exchange rate and the interest rate in the same way as in

the setup without the business cycle factor: a risky country with a low b has a depreciated

exchange rate  and a high interest rate . As a result, the disaster factor captured byb induces a negative correlation between  and . In contrast, the business cycle factor

induces a positive correlation between these two variables: a country with an above-trend export

sector productivity  has an appreciated exchange rate  and a high interest rate . The

correlation between the exchange rate and the interest rate depends on the relative importance

of the disaster factor and the business cycle factor.

Fama regressions with two factors. Denote by 0 and 0 respectively the constant term

and the Fama coefficient of the Fama regression in the two-factor model:

+1 − 


− +1 − 


= 0 − 0( − ) + +1 (55)

The next proposition relates the coefficient 0 in a sample with no disasters and the coefficient

0 in a full sample to their counterparts  and  in the one-factor model.

Proposition 11 (Fama regression with two factors). Consider two countries  and  with

 =  =  
= 

= 
, and  =  =  Consider the limit of small time intervals

as well as a small b and b. Let  be the share of the interest rate differential variance due

to b − b:

 =

³


+

´2
Var

³ b − b

´
³


+

´2
Var

³ b − b

´
+
³


+

´2
Var ( − )

 (56)

The coefficient 0(respectively 0) in the Fama regression (55) for a sample with no dis-
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asters (respectively for a full sample) is given by26

0 =  + 1−  (57)

0 =  + 1− 

In equation (57), 0 is the weighted average of two Fama coefficients: the first coefficient,

, corresponds to variations in exchange rates and interest rate differentials driven by the

disaster factor; the second coefficient, 1, corresponds to variations in exchange rates and interest

rate differentials driven by the business cycle factor. The weight  is the share of the disaster

factor in the variance of interest rate differentials.

VIII.B. Predicting the Exchange Rate with Forwards

Nominal yield curves contain a lot of information that is potentially useful for predicting ex-

change rates. We now explain how best to extract the relevant information to compute exchange

rate risk premia. As above, the expected depreciation of the nominal exchange rate, up to sec-

ond order terms and conditional on no disasters, is:

E


∙
ee

¸
 =  −


b

 + 

− 

 + 
−  (58)

It involves three factors that are also reflected in the nominal forward curve. Note, however, that

it does not involve the inflation risk premium Π
. So, an optimal combination of forward rates

should predict expected currency returns with more accuracy than the simple Fama regression.

Boudoukh, Richardson and Whitelaw (BRW, 2014) propose to regress the exchange rate

movement on the  -period forward rate from  periods ago. BRW regression:

E

∙
+1 − 


− +1 − 



¸
=  ( )−  ( ) ( − ( + 1)− 


− ( + 1)) (59)

Our model’s prediction is summarized in the next Proposition.

Proposition 12 (Value of the  coefficient in the Fama regression with two factors and with

forward rates). Up to second order terms, in the BRW (59) regression with forward rates, the

26The formula 0 =  + 1−  is valid even when  is not constant. The only difference in this case

is that  is no longer given by equation (27).
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coefficients are:

 ( ) =  ( ) + 1−  ( ) (60)

and

 ( ) =  ( ) + 1−  ( ) (61)

where  and  are given by Eqs. (28) and (27), respectively, and

 ( ) =

³


+

´2
Var

³ b − b

´
exp (−2

 )³


+

´2
Var

³ b − b

´
exp (−2

 ) +
³


+

´2
Var ( − ) exp (−2 )

(62)

is the share of variance in the forward rate due to b− b. In particular, when 
 , the

long horizon regression has a coefficient going to 1: lim→∞  ( ) = lim→∞  ( ) =

1.

Boudoukh, Richardson and Whitelaw (2014) find that  ( ) increases toward 1 with the

horizon. Our theory is consistent with this empirical finding. Indeed, to interpret Proposition

12, consider the case where risk premia are quickly mean-reverting, and the business cycle factor

is slowly mean-reverting, 
 .

27 Then, for large  ,  ( ) tends to 0, which means that,

at long horizons, the forward rate is mostly determined by the level of the business cycle factor

and not the risk premium. Hence, at a long horizon the model behaves like a model without

risk premia and therefore generates a coefficient  close to 1.

IX. Discussion

The Backus-Smith puzzle. Recall that the (traditional) real exchange rate is (44):

E =
¡
 + 

1−¢ 1
1−  (63)

Call  :=
h¡



¢−1
 + 1



¡



¢−1


i 
−1

the consumption basket. We have:


−
 =

∗
 




E

27The same reasoning would hold if we replaced the business cycle factor with inflation.
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Hence, with two countries  :

∆ ln




=
1


∆ ln




− 1


∆ ln

E
E 

Hence, the correlation between relative consumption growth ∆ ln 

and movement ∆ ln E

E in

the relative exchange rate will not be perfect, because of the taste shock ∆ ln 

. The model

generates an imperfect correlation between total consumption and real exchange rates.

Predicting returns with the price-dividend ratio. Finally, Table VI verifies that our

calibration of stocks also matches the pattern of predictability of the stock market with the

price-dividend ratio, with the slope and 2 rising with the horizon (at least for a while).

TABLE VI: Predicting Returns with the Price-Dividend Ratio

Data Model

Horizon Slope s.e. 2 Slope 2

1 yr 0.11 (0.053) 0.04 0.15 0.08

4 yr 0.42 (0.18) 0.12 0.51 0.26

8 yr 0.85 (0.20) 0.29 0.86 0.39

Notes. Predictive regression for the expected stock return Stock→+ =  +  ln (), at horizon

 (annual frequency), up to an 8-year horizon. The data are from Campbell (2003, Table 10 and
11B)’s calculation for the US for the period 1891—1997.

X. Richer Nominal Model

X.A. Basic Theory

We now develop a richer model with an inflation-specific risk premium. This allows us to talk

about a basic fact about the yield curve: on average, the (nominal) yield curve is upward sloping,

i.e. long-term interest rates are higher than short term interest rates. We therefore extend the

framework by incorporating inflation risk along the lines of Gabaix (2012): as inflation rises

during disasters (on average), long-term bonds are riskier, which makes the yield curve slope

upward. This will allow us to study the term premium across countries.
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The variable part of inflation now follows the process:

b+1 = 1− ∗
1− 

·
³
exp (−) b + 1{Disaster at +1} ³∗ + b´´+ +1 (64)

In case of a disaster, inflation jumps by an amount  = ∗+ b. This jump in inflation makes
long-term bonds particularly risky. ∗ is the baseline jump in inflation, b is the mean-reverting
deviation from the baseline. It follows a twisted auto-regressive process, and, for simplicity,

does not jump during crises:

b+1 = 1− ∗
1− 

· exp (Π) b + +1 (65)

We define

Π :=
E

£

−
+1+1

¤
1 +∗

b (66)

which is the mean-reverting part of the “risk adjusted” expected increase in inflation if there is a

disaster. We parametrize the typical jump in inflation ∗ in terms of a number  ≤ (1− ) 2:

E
£

−
+1+1∗

¤
1 +∗

= (1− ∗) (1− exp (−)− ) 

 represents a risk premium for the risk that inflation increases during disasters. Also, we define

∗∗ := ∗ +  (67)

and Π :=  − . They represent the “risk adjusted” trend and mean-reversion parameters

in the inflation process. In the continuous-time limit,

 ( − ) = E
£

−
+1+1∗

¤
= ∗ ( + ) (68)

As before, we denote nominal variables with a tilde. The price of a long-term nominal bond

yielding one unit of the currency at time  +  is e ( ) = E
h
∗
+ ++

∗
 

i
, where  is the

inverse of the price level.

The yield at maturity  , e ( ), and the forward rates e ( ) are defined by − ln e ( ) =e ( ) = P

 0=1
e ( 0). The forward rates can be derived in closed form. For completeness,
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we also import the part with business cycle risk from section VIII (the  term below).

Proposition 13 (Forward rates with inflation risk premia). In the continuous time limit, up

to second order terms in
³ b  Π 

´
:

e ( ) =  − − 

 + 

exp (−
 ) b +



 + 
exp (− ) + (69)

+ ∗∗ (1− exp (− )) + exp (− ) +
exp (− )− exp (−Π )

Π − 
Π

where b is the transitory part of the country’s resilience,  is the state of the business cycle, 

is inflation, Π is the transitory part of the bond risk premium: they are all for a given country

 (for simplicity, we omit here the index ).

Proof. The proof is along the lines of Gabaix (2012, Theorem 2 and Lemma 2), and

we only sketch it here as the mechanics are very similar. The first step is to calculate that

 :=

³
1 b  bΠ

´
is LG (to the leading order), with continuous time generator:

 = ( − )  +

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 − 
+


+

1 0

0 
0 0 0

0 0  0 0

− ( − ) 0 0  −1
0 0 0 0 

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(70)

Then, we derive the bond price as  ( ) = (1 0 0 0 0)
0
−. The forward rate is then

 ( ) = − ln ( ). Here we report the limit for  → 0, which makes terms cleaner, and

gives a sense in which the proposition is only up to second order terms. The nominal forward

rate in (69) depends on real and nominal factors. The real factors are the resilience of the

economy ( b) and the expected growth rate of productivity (−). The nominal factors are
inflation (), and the variable component of the the risk premium for inflation jump risk (Π).

¤
When a disaster occurs, inflation increases (on average). As very short term bills are es-

sentially immune to inflation risk, while long-term bonds lose value when inflation is higher,

long-term bonds are riskier, hence they get a higher risk premium. Hence, the yield curve slopes
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up on average — as implied by the term ∗∗ (1− exp (− )) ∼ ∗∗ .

Each of the three terms is multiplied by a term of the type exp (−
 ). For small speeds

of mean reversion 
the forward curve is fairly flat. The last term, however, is close to 

for small maturities (
exp(−)−exp(−Π )

Π−
∼  ) and therefore creates a variable slope in the

forward curve.

Hence, we obtain a rich forward curve. Gabaix (2012) shows that this type of yield curve

generates a realistic term premium and volatility of the yield curve. Here, we have two extra

terms: the country-specific resilience b, and the state of the business cycle .

X.B. The Term Premium Across Countries

Proposition 13 implies that the short-term nominal interest rate is e = e (0):
e =  − − 

 + 

b +


 + 
 + 

so that on average, up to second order terms,

E [e] =  − + ∗

while the long-term nominal interest rate (e = lim→∞ e ( )) is equal to:
e :=  − + ∗ + 

It is independent of time, which is typical in these models.

The difference between the two rates is

e − E [e] = 

We will call this the “term premium”.28 It is also the expected excess return of long-term

bonds conditional on no disasters. Below, we define ∗ as the average value of the probability

of disasters.

28Empirically, the term premium is often drawn from the properties of finite-maturity bonds, e.g. the 30-year

bond, but for conceptual discussions very long-term bonds are clearer.
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Proposition 14 (Slope of the yield curve / term premium) On average (and up to second

order terms), the term premium (the average value of long-term bond yields minus short term

bond yields) in country , , is the smaller positive root of

 ( − ) = ∗ (∗ + ∗)  (71)

The term premium  is increasing with the expected increase of inflation in disasters (∗), and

increasing with resilience. In other words, controlling for the inflation process ( and ∗),

countries that are relatively riskier (have a lower resilience ∗) have a lower term premium 

than countries that are safer (have a higher resilience ∗).

Lustig, Stathopoulos and Verdelhan (2014) find evidence of this effect (see also Ang and

Chen (2010) for related work). In their sample, more risky (high interest rate) countries have

lower term premia than less risky (low interest rate) countries.

The intuition is the following. To make the benchmark starker, suppose that all countries

have the same inflation processes (same  and ∗). Because a risky currency will depreciate

in a disaster, a “term premium trade” portfolio long its long-term bond and short its short-

term bond will have little value in a disaster: in the limit where the currency is due to entirely

collapse in a disaster (∗ = 0, so that ∗ + ∗ = 0, and  = 0) this “term premium trade”

will have exactly zero payoff. Hence, perhaps surprisingly at first, it should have a zero risk

premium.

However, the same “term premium trade” with a safe currency will do very poorly during

disasters, as the value of long term bonds falls (on average) during disasters because of the

increase in inflation: this trade is risky, hence commands a risk premium, which is the term

premium, .
29 In some sense, disasters “democratize” risk premia, i.e. dull the differences in

riskiness between bonds (here, between short-term and long-term bonds of risky countries), as

extreme disasters just wipe out the value of all very risky bonds.30

29More precisely, consider small jumps and risk premia: inflation jumps by ∗, but with a speed of mean-
reversion  , so that the loss in value of long-term bonds is ∗


. Hence, the risk premium  satisfies  =

E
h

−
+1+1

∗


i
, i.e.  = E

£

−
+1+1∗

¤
, which is equation (68), up to a second order term in .

30A similar intuition holds in Gabaix (2012), Proposition 4, point (i).

59



XI. Proofs That Were Omitted in the Paper

Proof of Lemma 1. Part (i). The CES functional form gives:



= 

¡



¢− 1


∙¡



¢−1
 +

1



¡



¢−1


¸ 
−1 (1−)−1

(72)



=





¡



¢− 1


∙¡



¢−1
 +

1



¡



¢−1


¸ 
−1 (1−)−1

(73)

hence

 =







=
1



µ






¶− 1


Given





=  exp (−)

−∗

 = 0

we have ¡



¢−
[1 + − 1− ]


−1 (1−)−1 =

∗
 





and


 [1 + − 1− ]


−1(1− 1

 )+
1
 =

µ
∗

 




¶− 1


This gives the values of 
 and 

 . We must have the resource constraints:


 =  + 

 , (74)

 
 =  +

∞X
=0

exp(−)− (75)

 =  
 − 

  (76)

Consider an arbitrary sequence of  (the simplest case being  = 0), and define the

endowment to be 
 :=  + 

 , 

 :=  + 

 and  :=  
 −

P∞
=0 exp(−)−.

Then, these endowments generate the posited equilibrium value of the pricing kernel and net

exports.

Part (ii). Processes ∗
 and  pin down the process for  as per Proposition 2. This in

turn pins down the value of 

and 


as per equations (72)-(73), two values that can be

matched with judicious values of  (given by calculating








) and then . The rest is as in
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part (i).

Proof of Lemma 2. The Lemma is proven in Farhi et al. (2015, Proposition 5), but for

completeness we provide a proof. We call  the maturity of the option, and perform a Taylor

expansion (in  12) for small  . We consider puts with a given Garman-Kohlhagen delta equal

to −∆ (with ∆  0), so that 1− = 
¡
 12

¢
, and   = 

¡
 12

¢
(for a detailed explanation,

see Farhi et al. (2015)). We define  = Φ−1 (∆). We call  the initial exchange rate, which we

later normalize to 1.

Proposition 6 implies the following, where we drop all the terms of order  ( ):

  = (−+) (1− 0 )



¡
(−)  |

¢
+ (−+)0E0

h

−
1

¡
(−)1 − 1

¢+i
=  



¡
(−)  |

¢
+ 0E0

£

−
1 (1 − 1)

+
¤
+

¡
 32

¢
=  



¡
−(+−)  |

¢
+ 0E0

£

−
1 (1 − 1)

+
¤
+

¡
 32

¢
= (+−) 



¡
−−(+−−)  −  |

¢
+ 0E0

£

−
1 (1 − 1)

+
¤
+

¡
 32

¢
= (+−) 



¡
−+(−) −  |

¢
+ 0E0

£

−
1 (1 − 1)

+
¤
+

¡
 32

¢
=  



¡
− −  |

¢
+

 




¡
− −  |

¢× ( −)

+ 0E0
£

−
1 (1 − 1)

+
¤
+

¡
 32

¢
=  



¡
− −  |

¢−∆ ( −) + 0E0
£

−
1 (1 − 1)

+
¤

+
¡
 32

¢
, using

 



= −∆

=  


¡
− −  |

¢
+ +

¡
 32

¢
where

 = −∆ ( −) + 0E0
£

−
1 (1 − 1)

+
¤


On the other hand, the option price can be expressed as a traditional Garman-Kohlhagen

value, with an implied volatility | + ̃ (where ̃ is the difference between implied volatility

and realized volatility, and is of order 
¡
 12

¢
) tuned to match the price:
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  =  


¡
−  −  | + ̃

¢
=  



¡
−  −  |

¢
+

 



(−  −  )̃ +

¡
 32

¢
=  



¡
−  −  |

¢
+  ()

√
 ̃ +

¡
 32

¢


using
 




(− −  |) =  ()

√
 . Hence

 =  ()
√
̃ +

¡
 32

¢
which gives:

̃Put =
−∆ ( −) + 0E0

£

−
1 (1 − 1)

+
¤

 ()

√
 + ( )

Likewise, the implied volatility of a symmetric call is

̃Call =
− (1−∆) ( −) + 0E0

£

−
1 (1 −1)

+
¤

 (−)
√
 + ( )

so that the risk reversal is:

 = ̃Put − ̃Call =
(1− 2∆) ( −) +( − 1)

 ()

√
 + ( )

=
(1− 2∆) ( −)

 ()

√
 + ( ) as  − 1 = 

¡
 12

¢
= ∆ ( −)

√
 + ( )

where ∆ :=
1−2∆
()

= 1−2∆
(Φ−1(∆)) .

Proof of Lemma 3. The quick intuition is the following: the expected excess return of

the stock claim in terms of the international numéraire is E
£

−
+1 (1− +1)

¤
, while the ex-

pected excess return on holding the currency is E
£

−
+1 (1− +1)

¤
. Hence, the excess return

on holding the domestic stock is the difference between the two, namely E
£

−
+1 (+1 − +1)

¤
.

The derivation is as follows: conditional on no disasters, the return on a stock in the domestic
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currency is (we neglect the Jensen’s inequality / Ito variance terms, which are second order):

E =




+






=




− 


+



1 + 

+






= 
−  −



1 + 
+



1 + 

+


1 + 

= 
−  +  + 

 − (
+ )

while  =  − − , so

E −  = 
−  +  −  + + (

+ ) − (
+ )

= + b − b

where the constant  is:

 = 
−  +  −  + 

= 
−  + (− 

− ∗)− (+ −  − ∗) + 

= ∗ − ∗

so

E −  = ∗ − ∗ + b − b =  − = −0

XII. Details of the Calibration

In the first calibration to generate Table III in the paper, we use the variables listed in the

table below.

The value for 
is taken from Gabaix (2012), while the values for  and  are estimated.

A value of ∗ equal to 2% is consistent with average inflation in the US since 1990. We also set

 =  = 0. This generates a real risk-free rate (in the absence of disasters) of 05%.

We use the following relationship to get estimates for 
. Recall that we are targeting a

bilateral exchange rate volatility of 11% (annualized). Using the relationship between annual

and monthly volatilities, this corresponds to a monthly targeted volatility of 11%
√
12, or a
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Symbol Description Value

 Exchange rate discount rate 6% (calibrated to this value)


Speed of mean reversion (resilience) 18%


Volatility of resilience 187% (calibrated to this value)

∗ Mean inflation 2%

 Speed of mean reversion (inflation) 23%

 Volatility of inflation 06%

 Productivity growth rate 0%

monthly variance of 011212. Since these are bilateral variances, and using the relationship in

equation (16) of the paper, we have that

0112

12× 2 = (
)2( + 

)2

Now, we can solve for 
.

Specifically,


= ( + 

)
011√
2
√
12

If  and 
are in annualized units, then


= ( + 

)
011

12
√
2
√
12

This gives us the value of 
reported in Table I in the paper, and in the above table.31

The first step in the calibration is to simulate the series of resiliences  and for countries

 and . We can simulate such a time series using equations (13) and (14) in the paper. However,

we need to know  , the standard deviation of the residual in the equation

̂+1 = exp(−
+ ∗)× ̂(1 +) + +1

The methodology to compute this quantity follows.

Variance processes. Consider an LG process centered at 0,

 = − (+)+  () 

31Note: in all the tables, only annualized values are reported. Annualization factors for different variables are

reported in a table in the next section.
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where  is a standard Brownian motion. Because of economic considerations, the support of

 needs to be some (min∞) with − ≤ min  0. min cannot be less than − since the
random variable  must always be mean reverting. For the simulation, we take min = −,
maintaining full generality of the allowed domain. The following variance process makes this

possible:

2 () = 2 (1−min)
2
 (77)

with   0.  is in units of [Time]
−3
. The average variance of  is: 2 = E [2 ()] =R max

min
 ()

2
 ()  where  () is the steady-state density of . It can be calculated using

the Forward Kolmogorov equation, which yields:

 ln  ()  = 2 (+) 2 ()−  ln2 () 

Numerical simulations show that the process for volatility is fairly well approximated by:

 ' 12 with  = 13.

Therefore, we use a value of  equal to (
13)2.

This is the variance process that we use in the simulation as well, but in discrete instead of

continuous time. In particular, we use

̂+1 = exp(−
+ ∗)× ̂(1 +) +

√
2 × (1 + ̂

)×
+1;

where  is a set of standard Gaussian shocks with mean 0 and variance 1
32 We similarly

simulate the resilience for country .

Methodology for the simulations. The methodology followed in the code is as follows:

1) Initialize variables in monthly units.

2) Simulate a sequence of 400 shocks (to remove possible dependencies on the starting value,

we simulate 500 shocks, throwing away the first 100), obtain monthly time series of resilience

and inflation values using the following equations (we use parameters and equations for country

32Throughout the calibration, we use Gaussian shocks to simulate innovations to the variable part of resilience.

We always require this variable part to be greater than −
, to preserve the mean-reverting property of ̂.

Theoretically, with discrete Gaussian shocks, this bound may be violated, but in the continuous time limit, this

violation happens with probability 0. As such we stick to this method of simulating the innovation shocks. If the

shocks were uniform instead of Gaussian, this issue would not arise. For more details, see the online appendix

of Gabaix (2012).
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 below; needless to say, the same holds for country  as well):

+1 = ∗ + ̂+1

̂+1 = exp(−
+ ∗)× ̂(1 +) +

p
2 × (1 + ̂

)×
+1;

+1 = ∗ + exp(−)
1− ∗
1− 

( − ∗) +
p
2 × (1 + ( − ∗)

)×
+1;

where  = (
13)2 and  = (13)

2.

3) Use resilience, inflation values and other fundamentals to obtain a series of interest rates and

spot rates from equations (16) and (22).

4) At every date , using the two interest rates computed at , and the bilateral volatility, we

solve for a pair of strikes that would give the Put and Call deltas of 0.25 and -0.25. The formula

used is the one in Garman-Kohlhagen (with maturity of 1 unit).

5) For the pair of strikes computed, we compute the values of Calls and Puts using equations

(33) and (30) of the paper, again using monthly parameters and with maturity of 1 unit (which

is a month in this case).

6) We use the computed prices of Puts and Calls to obtain implied volatilities using the Garman-

Kohlhagen formula.

7) The risk reversal is computed as the difference in implied volatilities, and this is again in

monthly units.

8) The desired moments are obtained and annualized.

Calibration for stocks. We will use additional parameters to perform the calibration

for stocks, while holding fixed the parameters that generated Table III. The parameters are as

follows: The value of ∗ is taken to imply a stock recovery rate of 66%, in line with Gabaix

Symbol Description Value


Dividend growth rate 25%

∗ Average dividend resilience 89%


Speed of mean reversion (dividend resilience) 13%


Volatility of dividend resilience 311% (calibrated to this value)


Volatility of dividends 843%

(2012). The value for 
is also according to Gabaix (2012). To obtain the value of 

, we
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first observe that the standard deviation of  is 11%, which implies a volatility of , i.e.


of 843%.

The value of 
is set to generate stock return volatility of 18%. In practice, we fix a value

of 
, run the simulations and obtain stock return volatility. If this volatility is below 18%,

we raise 
and continue by trial and error until we hit 18%. Due to the tractability of the

model, this process does not take long at all. We obtain an annualized value of 
= 311%

to obtain the desired stock return volatility. This annualized value is reported in the above

table.

Once we fix a value for 
, we need to generate   On the one hand, since

̂+1 =
1 +∗
1 +

exp(−
)̂ + 

+1

then, to respect the LG bound (̂+1 ≥ −
) and to ensure mean-reversion, we must

have that 

+1 = 0 whenever ̂ = −
. If not, there is a strictly positive probability

that ̂+1  −
, violating the LG bound. On the other hand, we must make sure that



+1 − +1 is uncorrelated with +1. Therefore, we use the following methodology.

Let 

+1 = 
0


+1+

+1, where 

0


+1 is uncorrelated with 

+1. Let 

and 
be the standard

deviations of +1 and 

+1. Then (

+1 

+1) = 2

, and (

+1 

+1) = 


= .

Thus, it is now sufficient to simulate 

+1 so that it has a correlation of  with 

+1 and has the

appropriate LG-implied vanishing properties.

The way to do this is by simulating



+1 =
p
2

Ã
1 +

̂



!h


+1 +
p
1− 2 0+1

i


where 
+1 is the standard Gaussian random number drawn to simulate +1, (i.e. +1 =√

2(1+
̂


)

+1) and 
0
+1 is a set of standard Gaussian shocks such that (

0
+1 


+1) =

0.

As before,  and 
are set to generate appropriate values of the steady state volatility of

 and  . In particular,  = (
13)2 and 

= (
13)2

67



We then use the equation

̂+1 = exp(−
+ ∗)

̂

1 +

+ 

+1

to generate the sequence of stock resiliences.

We also separately simulate a sequence of dividends to obtain prices and returns.

HML Calibration. Recall from the paper that we now alter the calibration done ear-

lier by introducing a one-factor structure in currencies and stocks. We define the normalized

resilience as:

 =
1 + ̂

+

1 + ̂

+

;  =
̂

 + 



We define  as:

+1 =
1 + ∗
1 + 

exp(−
) + +1

Now, we introduce aggregate shocks to the resilience innovations as follows (this automati-

cally introduces a factor structure to normalized resiliences as well):

+1 = +1 + +1

where we set  = (−)(1+ ̂
), and we set +1 = +1 where +1 is a common

innovation of i.i.d. standard Gaussian random variables and  is the average resilience across

countries. We assume, as before, that the ∗ are the same across countries. The above

formulation assures that +1 = 0 whenever ̂ = −
.

Now, since resiliences  are uncorrelated across countries, then, if we have a continuum of

countries,  converges almost surely to ∗, and so  − converges almost surely to ̂.

The above reduces to

+1 = −̂(1 + ̂
)+1

Let +1 = 
√
2(1 + ̂

)
+1, where 


+1 is a shock to country  alone and  is a

constant. Therefore,

+1 = −̂(1 + ̂
)+1 + 

p
2(1 + ̂

)
+1
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where  is such that the volatility of +1 matches the data. The above formulation ensures

that +1 = 0 whenever ̂ = −
and so the LG bounds are satisfied.

We use a value of  equal to 011 and  equal to 06. With these parameters, the share of

idiosyncratic variance of resilience is 69%, in line with estimates.

To simulate the resilience innovations for stocks, we follow the below steps:

1) Recall that  = 
0

 +  , where 
0
 is orthogonal to  . We also have common innovations

to 
0

 , so we simulate it as follows:


0

+1 = 
h

+1 + ̃

+1

i


where  is a set of common innovations with unit variance and a correlation of  ( ) =

065 with . ̃ is a set of idiosyncratic innovations with unit variance.  is such that

(  

) = 1, where 1 = 



.  is the standard deviation of ̂ and 

is the

standard deviation of ̂. This ensures that (
0

  ) = 0.

2) From the simulated 
0

 , obtain  = 
0

 +  , and obtain the time series of resilience for

each country.

3) Separately simulate dividends to obtain prices and returns.

To obtain correlations, we perform the following steps:

1) Using the methodology outlined above, simulate the time series for resilience.

2) From the obtained time series, obtain exchange rates for both countries and the resulting

(log of) bilateral exchange rate, and also obtain risk reversals.

3) Sort the real interest rate  into terciles, and obtain a corresponding series of “high shocks”,

“medium shocks” and “low shocks” of .

4) Look at the correlations of each tercile of  with the corresponding bilateral exchange rate

and the change in risk reversals at those indices.

Annualization Methodology. This section details the techniques used to convert num-

bers from both the calibration and the data to annualized figures. Note that all values reported

are annualized. The “annualization factor” (Ann. Factor) is the number we use to multiply

the value directly obtained (from data/calibration) to transform it into annual terms.
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Moments Ann. Factor (Data) Ann. Factor(Calibration)

E(||) 1
√
12

Std Dev() 1
√
12

Std Dev(∆())
√
12

√
12×√12

Std Dev()(real) 1 12

Std Dev()(nominal) 1 12

Std Dev(∆( − ))(real)
√
12 12×√12

Std Dev(∆( − ))(nominal)
√
12 12×√12

Std Dev(∆ ln())
√
12

√
12

Carry Trade Return 1 12

Miscellaneous Notes. Derivation of the carry trade return. Recall that, for a process

+∆ = (1− ∆) +
√
∆+1, the dispersion (in the limit of small time intervals) is

 () = 
√
2 . Hence, the standard deviation of the steady-state distribution of b is:


³ b

´
=

p
2



Note that these results hold exactly in the limit of small shocks, i.e. 
³ b

´


µ
√
2

¶
→ 1

as 
→ 0.

Recall that, for a Gaussian variable ∼  (0 2), E [ |   0] = −E [ |   0] =
q

2

.

As b is approximately Gaussian (when the process goes to continuous time and b is small,

it is approximately an Ornstein-Uhlenbeck), we find that the carry trade return is

 = 2

r
2



³ b

´
=

2p





Details for the interpretation of the calibration in section V.A.

The calculations reported in the text come from:

 =
−

E [−]
1√
2


where the
√
2 comes from the assumption of independent movements in  (it is easy to gen-
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eralize) and

 =
−

E
£

−
+1 |+1 − +1|

¤ 
XIII. Allowing for Different Time Scales in

Resilience

XIII.A. The Model with Two Time Scales for Resilience

There are different time scales in most measures of risk. For instance, the VIX index (of stock

market volatility) features low-frequency epochs of low vs. high volatility (e.g. pre-2008 vs.

post-2008), and high-frequency variations (e.g. temporary rises in volatility level, such as after

bad macroeconomic news). To capture them, we propose an extension of the model with two

time scales of resilience. We decompose resilience  as:

 = ∗ +
2X

=1

b (78)

where b for  = 1 2 are the two transitory components of resilience, one slow-moving, one

fast-moving ( indicates the time scale). Their laws of motion are:

b+1 =
1 +∗
1 +

exp(−
) b + +1 (79)

where E
£
+1

¤
= E

£
+1

¤
= 0.

We assume that 1
 2

, so that b1 is the slow component of resilience, and b2 is

its fast component. For instance, b1 can capture the movements of resilience happening at

business cycle frequency, and b2 the movements happening at higher (e.g. monthly) frequency.

All our results are easily adapted to this multi-scale setup.

Proposition 15 (Modifications when there are two time scales for resilience). The theory’s

basic formulas carry over to the setup with two time scales for resilience, with minor modifica-

tions as follows. In the limit of small time intervals, the exchange rate (16), interest rate (22),
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and the Fama coefficients become:

 =




Ã
1 +

2X
=1

b

 + 

!
 (80)

 =  − − 

P2

=1



+

1 +
P2

=1



+

 (81)

 = −
P2

=1



(+)
2 Var

³ b − b

´
P2

=1


(+)
2 Var

³ b − b

´  (82)

while the expected return of the carry trade (25), and the risk-reversal (34) are unchanged.

Proof of Proposition 15. The value of  is derived as in Gabaix (2012, Proposition 12,

Online Appendix). The proof for the interest rate is as above. For completeness, we state the

value of the nominal Fama coefficient with two time scales.

e =
−P



(+)
2 Var

³ b − b

´
+Var ( − )P



³


+

´2
Var

³ b − b

´
+Var ( − )

 (83)

Proof sketch. We proceed as in the original proof of Proposition 5. Up to second order

terms,

E


∙e+1−ee
¸
= −

X




 + 

b −  +

e = −X


 b

 + 

+  + 0


so

e =
−Cov

³
E


h+1−
i
− E



h+1−
i
 e − e´

Var (e − e)
=
−P



(+)
2 Var

³ b − b

´
+Var ( − )P



³


+

´2
Var

³ b − b

´
+Var ( − )



72



XIII.B. Calibration with Two Time Scales

XIII.B.1. Parameter Values

We present a calibration of the model. Our data is nominal; we therefore use the extension

to a nominal setup. In order to match the observed autocorrelation structure of risk reversals,

we use the two time scales model.33 Up to second order terms, the differences in resiliences

− are a sufficient statistic for the quantities of interest (which are bilateral, e.g. ln
³



´
,

 − , etc.). Hence we specify parameters for the differences in resilience — rather than the

absolute resilience  and  and their correlation. These differences in resiliences could come

from various combinations of shocks to the world disaster probability , severity +1 and

country-specific factors +1. We discuss these later.

Table I summarizes the main inputs of the calibration. The justification is as follows.

Exchange rate and interest rate. We call ∆ the time-difference operator, ∆ =  − −1,

and  =  (∆) the volatility of a variable . For two countries, define the volatility

of the bilateral exchange rate as  = 
³
∆ ln 



´
and the volatility of the difference in

interest rates  =  (∆ ( − )). Equations (16) and (22) give  = 

 .

34 The

above equation constrains our calibration.35 We will match  ' 11%. In the sample, the

volatility of the nominal bilateral interest rate is  ' 07%. We therefore set  = 6%.36

The speeds of mean-reversion 1
 2

and the variances of − are chosen to roughly

match the level and volatility of the risk reversals, their autocorrelations at different lags, as well

as the volatility of the exchange rate. For the speed of mean-reversion of the slow component

we take 1
= 01, which gives a half-life of ln 2

= 7 years, in line with estimates from

33We also performed a calibration with one time scale (available upon request). That calibration is essentially

equally successful, except that it does not match the high-frequency movements of the risk reversals (volatility

and autocorrelation), and it generates a close to perfect correlation between innovations to the exchange rate

and innovations to resilience.
34To keep the model parsimonious, we assume no default risk on debt. This is the cleanest assumption for

developed countries. Of course, in many cases (e.g. when pricing sovereign debt), default risk can be added

without changing anything about the exchange rate.
35This expression also holds in the two time scales model (Proposition 15).
36The growth rate of productivity  is irrelevant in practice, but for completeness we propose a specific

value. We choose the growth rates so that in normal times consumption of non-tradables grows at a rate

 = 25%. We set  = 0, but results are not sensitive to the choice of this parameter. We make sure that

the riskless domestic short-term rate is on average around 05%, which pins down the rate of time preference

. The parameter  =  + −  − ∗ is driven in the model by deeper combinations of underlying factors
 

−
+1, and  but mainly three parameters govern the key statistics that we present in Table III. We take

 = 55%, which generates a real interest rate of  −  = 05%. The underlying rate of time preference  is

calibrated to match the value of . For simplicity, we take the recovery rate of productivity to be the average

recovery rate of consumption, ∗ = E [− ]
1
. Hence we get the rate of time preference  = 59%.
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the exchange rate predictability literature (Rogoff 1996). For the speed of mean-reversion of

the fast component, 2
, we target the autocorrelations of the RR (Table VIII): the RR has a

fast mean-reverting component with a half-life of about 4 months. We choose the volatilities

of resilience to target the volatilities of RR and the exchange rate reported in Table VIII. For

parsimony, we take the innovations to the fast and slow component (1−1 and 2−2)

to be uncorrelated.

TABLE VII: Key Parameter Inputs.

Exchange rate discount rate  = 6%

Volatility of  1−1
= 174% 2−2

= 397%

Mean reversion of resilience 1
= 10% 2

= 250%

Inflation: volatility and speed of mean-reversion  = 06%  = 30%

Notes. This table reports the coefficients used in the model.  is the average volatility, and  is the

speed of mean-reversion. The time unit is a year (the model is simulated at the monthly frequency,

but for readability the numbers reported are all annualized).

Inflation. Data (e.g. on currency options) are nominal, and the essence of our model is real.

We pick inflation parameters that are broadly in line with averages in our sample.

Carry trade returns. We proceed as is usual in the carry trade literature, see e.g. Farhi et al.

(2015). However, to better capture disaster risk, we sort on risk reversals rather than interest

rates. We divide countries into two equally-sized bins of resilience; the more risky countries are

those in the bottom half according to resilience, whereas the less risky ones are in the top half.

We define the carry trade as going long $1 in the equally-weighted portfolio of risky countries

and going short $1 in the equally-weighted portfolio of safer countries (the ones with high b).

Interpreting resilience processes in terms of deeper disaster parameters. Re-

silience differentials are sufficient statistics for the calibration. We now discuss how their vari-

ations are related to deeper disaster parameters.

We take numbers from Barro and Ursua (2008).37 The average probability of disasters

is E [] = 36%. An important parameter in the calibration is the risk-adjusted probability

37See also Gabaix (2012), Gourio (2012) and Wachter (2013) for related calibrations of disaster models in

closed economies.
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of disasters E [−]. Disasters are overweighted compared to their physical probability by a

factor E [−]. This factor is very sensitive to the severity of disasters and to the coefficient of

relative risk aversion. We take  = 4, which yields E [−]1 = 066. Hence, the “risk neutral”

(i.e. risk-adjusted) probability of disasters equals E [−] = 192%. Note that even though

E [−]1 = 066, which corresponds to a risk-adjusted average size of disaster of 34%, the

median disaster in Barro and Ursua (2008) is much smaller: because of risk aversion, the small

possibility of a large disaster matters a lot.

This calibration, strictly speaking, relies on a stark idealization in which consumption is

permanently affected after disasters. In practice, there is a partial recovery from disasters

(Barro and Ursua 2008). For a given , that lowers the disaster risk premium (Gourio 2008).

However, this can be remedied by increasing  slightly. Indeed, Barro and Jin (2011) find an

empirical power-law distribution of disaster sizes, so that a moderate  can generate a very large

(infinite for a large enough ) risk premium. In addition, for our purposes, the idealization of

a permanent disaster seems like a good compromise between parsimony and realism.

Our calibration only requires the law of motion of the resilience differential,  −  =

E
£

−
+1 (+1 − +1)

¤
. Results of the calibration do not depend on whether the shocks

come from movements in , 
−
+1 or +1 − +1.

3839

To interpret the volatility of− = E
£

−
+1 (+1 − +1)

¤
, we present the standard

deviation of changes in  − over a horizon of one year. Generally, call this object 
for

the standard deviation of a variable  at a one-year horizon: 
=  (+1year −). We

take some polar cases. If the innovations come entirely from idiosyncratic movements of 

(keeping  and 
−
+1 constant at E [] and E [

−]), then  = 129%. This is broadly in line

with Gabaix (2012), who argues that a one-year horizon volatility  ' 10% for the resilience
of the aggregate stock market is plausible and does not violate variance bounds from historical

data: hence, that calibration seems acceptable too. Conversely, suppose that innovations to the

resilience differential come entirely from movements in  (keeping E
£

−
+1 (+1 − +1)

¤
constant). With fixed values of , e.g. |+1 − +1| = 04 (similar to the numbers above)
we get  = 16%. This is of the same order of magnitude as the calibration in Wachter (2013),

which uses  ' 11%.
38For instance, movements in  generate a positive covariance between the innovations of  and , while

idiosyncratic movements of +1 and +1 generate a 0 covariance. For the calibration, the covariance between

the innovations to  and  does not matter per se — only the variance of the innovations to ( −).
39This is true up to second order terms. We verify numerically that this is a good approximation.
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XIII.B.2. Implications

Table VIII presents the main results from the calibration in Table VII.

TABLE VIII: Moments: Empirical and in the Model

Moments Data Calibration

Std Dev(∆ ln ̃) 1235% 114%

Carry Trade Return 344% 46%

Mean(||) 131% 123%

Std Dev() 124% 126%

Std Dev(∆) 260% 18%

Std Dev(̃) 138% 112%

Std Dev(∆(̃ − ̃)) 071% 117%

Corr(∆ ln ̃∆) −058 −049
Corr(ln ̃+1 ln ̃) 088 098

Corr(∆ ln ̃+1∆ ln ̃) −013 −001
Corr(̃ − ̃ ) 055 057

(1) 077 090

(6) 045 061

(12) 031 045

Notes. The table reports the moments generated by the model, using the inputs from Table VII. The

risk reversal  is defined as the implied volatility of an out-of-the-money put minus the implied

volatility of an out-of-the-money call, all at 25-delta. A high  means that the price of protection

from depreciation of currency  (against country ) is high. ̃ is the nominal interest rate. We definee =  , the nominal bilateral exchange rate between countries  and : a high e means that
currency  appreciates. Carry trade returns are the returns from a long-short portfolio going $1 long

(short) an equally-sized portfolio of high (low) RR countries.  () is the autocorrelation of 

at lag . ∆ =  − −1 is the time-difference, annualized. Time unit is a year (the model is

estimated and simulated at a monthly frequency, but for readability the numbers reported above are

all annualized).
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The model hits the volatility of the bilateral exchange rate, i.e. generates the right amount

of “excess volatility” in exchange rates. The model also roughly matches (and slightly under-

shoots) the size of disaster risk as measured by the average size of risk reversals.40 41 At the

same time, the model generates a moderate volatility of the interest rate, as in the data.

We showed earlier that in the model countries with high risk reversals have high interest rates

and that increases in risk reversals are associated with depreciations of the exchange rate. The

calibration shows that these predictions hold not just qualitatively, but also quantitatively:

Table III reports the calibrated values of Cov (e − e ) and corr(∆ ln ̃∆) and

shows that they broadly match their empirical counterparts.

The carry trade generated by the model gives average returns in line with the empirical

evidence (see Farhi et al. 2015 for more variants of the carry trade). Investing in countries

with high risk reversals generates high expected returns. Indeed, the expected return of the

carry trade (given positive ) is about 3% per annum. Finally, the model generates the Fama

coefficient of  = −040, in line with estimates of the literature cited above.
We conclude that the disaster model can be made quantitatively broadly congruent with

the empirical facts.
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40We take the mean of the absolute values of risk reversals because, by symmetry, the mean of risk reversals

is 0.
41If we increased the value of E [− ], for example by slightly increasing , we could match better the average

value of the RR and other moments, without requiring a larger volatility of the relative prospective recovery

rate − or of the probability of disaster . We thought it was more parsimonious to stick to the numbers

from the previous literature for E [− ].
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