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1 Introduction

The last three decades of financial research have established that stocks and bonds have time-varying

risk premia (Campbell 2003). As a way to represent stocks with time-varying growth rate and risk

premia Gabaix (2007) defines and analyzes the “linearity-generating” class of financial processes,

which yields simple closed for stocks and bonds, with an arbitrary number of factors.1

The LG class is a tractable and flexible class of processes for asset pricing. 2 In its generality,

it is comparable to the exponential-affine class of Duffie and Kan (1996), which has proven very

useful to analyze bonds. In the LG class bond and stock prices obtain in closed forms that are

affine functions of the factors. This contrasts with the exponential-affine class, in which bond prices

are an exponential-affine function of the factors and stocks are expressed as an infinite sum over

maturities rather than a simple closed-form expression, as in the LG class.

Gabaix (2007) assumes that the processes are well-defined, and in particular that pricing kernel

and dividends remain always positive. In this paper we show some simple conditions to guaranty

this result. As a corollary we exhibit some new concrete LG stochastic processes.

The following two examples describe the problem and present our solution.

Two Examples of LG processes with boundaries We start with a simple “LG twisted”

interest rate process (Gabaix 2007, Example 12).

Example 1 (Simple one-factor interest rate model) Consider the interest rate process:

rt = r∗ + brt
dbrt = −φbrtdt+ br2t dt+ σ (brt) dBt, (1)

where r∗ is a constant, Bt is a standard Brownian motion. Assume br0 < φ, and that the process is

well-defined for t ≥ 0. Then,

Et

h
e−

T
0 rt+sds

i
= e−r∗T

µ
1− 1− e−φT

φ
brt¶ , (2)

1It unifies in a common framework antecedents such as Bhattacharya (1978), Menzly, Santos and Veronesi (2004),
and Santos and Veronesi (2006).

2For instance, it has been used to think about stocks and bond puzzles (Gabaix 2008), exchange rate puzzles
(Farhi and Gabaix 2008), and the econometrics of return and cash-flow predictibility (Binsbergen and Koijen 2007).
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independently of the functional form for σ (brt). Also, the price of a perpetuity is:
Et

∙Z ∞

0

e−
T
0 rt+sdsdT

¸
=
1

r∗

µ
1− brt

r∗ + φ

¶
. (3)

The interest rate process (1) illustrates salient features of an LG process. (i) Its drift is approxi-

mately an autoregressive process (as in the term −φbrtdt) but with a “twist” introduced by the termbr2t dt. This term needs to have a coefficient of +1 to be in the LG class. Note that in many cases

the extra twist term will be small: if the deviation of the interest rate from trend (|brt|) is less than
5 percent then the extra drift term is less than 0.25 percent per year. Hence for many purposes,

the process behaves similarly to an autoregressive process.

Then, perhaps surprisingly at first, the bond price (2) is (ii) linear in the state variable, brt (hence
the name “linearity-generating” process) and (iii) is independent of the value of the volatility term

σ (brt). As long as the process is well-defined, the value and functional form of the process volatility
does not affect bond prices.

Furthermore, while many other processes have closed forms for bond prices, the distinctive

feature of the LG class is that it also yields a closed form expression for the price of a perpetuity,

Eq. 3. This is useful for the case of the stock, which is isomorphic to a perpetuity (see many examples

in Gabaix 2007). These features are useful because they allow closed forms for perpetuities and

stocks and also prices are independent of the details of the system, e.g. of some variance terms.

However, the caveat in Example 1 was “Assume that the process is well-defined”. For the

process to be well-defined (in particular, for it not to explode) we require that for all times, br0 < φ.

The Feller conditions, are the well-known tools to ensure this. Qualitatively, they say that σ (brt)
should to go zero smoothly enough in a right neighborhood of brt = φ. Volatility dies down near the

boundary so the process never leaves the region {brt < φ}.
The real challenge, for which this paper proposes a solution is: How can we generalize the

conditions of this example to n factors? What should the boundaries be for the process? How do

we ensure that volatility dies smoothly enough? We illustrate the question with the next example

(Gabaix 2007, Example 13), which generalizes Example 1.

Example 2 (Multifactor interest rate model) Consider the interest rate process:

rt = r∗ +
nX
i=1

rit

drjt = −φjrjtdt+
Ã

nX
i=1

rit

!
rjtdt+ dNjt, (4)
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where r∗ is a constant, Nt = (N1t, ..., Nnt) is a square-integrable martingale. Suppose that the process

is well-defined for t ≥ 0. Then,

Et

h
e−

T
0 rt+sds

i
= e−r∗T

Ã
1−

nX
i=1

1− e−φiT

φi
rit

!
. (5)

Also, the price of a perpetuity is:

Et

∙Z ∞

0

e−
T
0 rt+sdsdT

¸
=
1

r∗

Ã
1−

nX
i=1

rit
r∗ + φi

!
. (6)

Eq. 4 means that each component j of the deviation of the interest rate mean-reverts with a

speed φj, but with a “LG-twist”, namely the term (
Pn

i=1 rit) rjt in (4). Then again, bond prices are

linear in the factors (Eq. 5), and the price of a perpetuity obtains in closed form (Eq. 6).

In this example work beyond Feller’s conditions is needed. Indeed, it is not completely trivial to

formulate “simple” conditions on r1t, ..., rnt that ensure that bond prices (5) are always positive. In

this paper, we present various sufficient conditions for the process to be well-defined which implies

that bond prices are positive. In this introduction we give a flavor for the conditions. Order

φ1 ≤ ... ≤ φn, one sufficient condition is:

Condition D at time t: ∀k = 1...n,
mX
i=k

rit
φi

< 1. (7)

Also, we show that if Condition D holds at time 0 and the noise is sufficiently small then Condition

D will hold for all time. This way the condition is “self-perpetuating.” We will specify the condition

on volatility, and the sense in which it should go to zero “smoothly enough” near the boundary of

Condition D. This will occupy us in Section 2, which is in discrete time, and Section 3, which is in

continuous time.

We note that other sufficient conditions could work. Gabaix (2007) proposes a simple condition,

which gives:

Condition C at time t:
mX
i=1

max (rit, 0)

φi
< 1. (8)

We will see that Condition C implies Condition D which implies that all bond prices are positive.

This paper will work this out systematically, in discrete and continuous time, with and without

risk premia, with one and several factors, and with continuous and jump processes. LG processes

allow a unified treatment. Appendix A reviews the basics on them.
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Notations. We will use the following notation. For Z a vector in RN , for some N ≥ 1:

Z Â 0

if and only if all components of Z are strictly positive. Also, diag (Z) is the diagonal matrix with

diagonal elements Z1, ..., ZN , and ι is a vector with all components equal to 1.

Section 2 presents the results in discrete time. Section 3 presents the results in continuous time.

Section 4 provides extensions. Section 5 concludes. Appendix A provides a concise introduction to

the LG class. Appendix B shows some results on special matrices. Appendix C contains the longer

proofs.

2 Discrete Time

2.1 A One-Factor Introduction

We start with a basic 1-factor example (Gabaix 2007, Example 1 and Lemma 1). It will give us the

flavor for the type of regularity conditions that we will want to impose with n factors.

Example 3 (Basic LG stock process) The dividend satisfies:

Dt+1

Dt
= (1 + gt) (1 + εt+1)

gt+1 =
(1− φ) gt + ηt+1

1 + gt
, (9)

and εt > −1 almost surely, Et [ηt+1] = Et [εt+1] = Et [εt+1ηt+1] = 0. Assume that the process is well-

defined, with gt > −1, for all non-negative times, and the price is Pt = Et

hP∞
T=0Dt+T/ (1 + r)T

i
.

Then, the equilibrium price is:
Pt

Dt
=
1 + r

r

µ
1 +

gt
r + φ

¶
.

When is the process well defined? Let us start with the case where there is no noise, ∀t, ηt+1 = 0.
The application g 7→ (1− φ) g/ (1 + g) has two fixed points, an attractive one g = 0, and a repelling

one that, g = −φ. To ensure that the process is economically meaningful, we require that g0 be on
the right side of the repelling point, g0 > −φ. That will ensure (when there is no noise) that for
all t ≥ 0, gt > −φ, and in particular gt > −1. If g0 < −φ, then for some t, gt < −1, which is not
a meaningful economic outcome. In conclusion in the deterministic growth rate case we want to

impose

gt > g, for some g ∈ [−φ, 0). (10)
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When the growth rate is stochastic we still want to ensure (10). This means that for all
(1−φ)gt+ηt+1

1+gt
> g = −φ, i.e. gt + ηt+1 > g. Hence the volatility of ηt+1 has to go to zero near

the boundary g. For instance, suppose that ηt+1 = σ (gt) vt+1, with σ (gt) ≥ 0 and that there is an
m > 0 such that vt+1 > −m almost surely. Then, we want: gt − σ (gt)m ≥ g, i.e. σ (gt) ≤

gt−g
m
. To

summarize:

Result 1 (Conditions for the existence of the process in the 1-factor, discrete time case). Consider

the process in Example 3:

gt+1 =
(1− φ) gt + σ (gt) vt+1

1 + gt
,

with Et [vt+1] = 0, and an m > 0 such that ηt+1 > −m with probability 1 and 0 ≤ σ (g) ≤ g−g
m
(the

volatility goes to 0 fast enough close to g) where g = −φ. Suppose g0 > g. Then, almost surely, for

all t ≥ 0, gt > g, and the process is well defined.

2.2 The N-Dimensional Case in Discrete Time: Initial Conditions

2.2.1 Theory

We next study the N dimensional case. The task is the following: given an LG process (with

ν, Yt ∈ RN , Ψ ∈ RN×N),

Et [Yt+1] = ΨYt and MtDt = ν 0Yt, (11)

we need simple conditions on Y0, and the innovations Yt+1 −Et [Yt+1] so that for all nonnegative t,

MtDt > 0. We will say that the process is well-defined when it is defined for all dates t ≥ 0, with
MtDt > 0.

We will make the following assumption:

Assumption 1 Generator matrix Ψ is diagonalizable in the space of real matrices, i.e. there is a

real matrix q and a diagonal matrix Λ such that Ψ = qΛq−1.

We order the coordinates by decreasing eigenvalues of Λ, i.e. Λ11 ≥ ... ≥ ΛNN . We define

kt = q−1Yt. This way: Et [kt+1] = q−1ΨYt, and

Et [kt+1] = Λkt and MtDt = ν 0qkt.

We next make a second assumption:

Assumption 2 The components of vector ν 0q are all different from zero.
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Indeed, if that was not the case it would be enough to suppress some components of kt. We

define Q = q diag (ν 0q)−1 and Kt = Q−1Yt so that Kt = diag (ν 0q) kt. Then,

Et [Kt+1] = ΛKt and MtDt = ι0Kt (12)

with ι0 = (1, ..., 1). In other terms, the state vector is now kt, and the process is diagonal, in the

sense that Et [kt+1] = Λkt, where Λ is a diagonal matrix.

Finally, we define the matrix Θ =
¡
1{i≥j}

¢
ij
as in Lemma 1, and Zt = ΘK, i.e.

Zkt =
kX
i=1

Kit, (13)

for k = 1...N , and MtDt = ζ 0Zt > 0 with ζ = (0, ..., 0, 1). Defining F = ΘQ−1 we have Zt = FYt.

Lemma 1 in Appendix A shows that:

Et [Zt+1] = AZt and MtDt = ξ0Zt,

where A is a matrix with non-negative non-diagonal coefficients and positive diagonal coefficients,

and ξ = (0, ..., 0, 1). So, Z Â 0 implies AZ Â 0, and ATZ Â 0 for all T ≥ 0.
In this section, we start with a partial goal: finding conditions on Y0 such that for all t’s,

MtDt > 0, when there is no noise. We state the following Proposition, which is proven in Appendix

B.

Proposition 1 (Sufficient Condition D on the initial conditions, deterministic case). Suppose that

the process is deterministic, Yt+1 = ΨYt. Suppose Y0’s transform, Z0, satisfies for t = 0, Condition

D:

Condition D at time t: ∀k = 1...N, Zkt > 0. (14)

Then, for t ≥ 0, Condition D holds, and MtDt > 0.

Proposition 2 (Sufficient Condition D on the initial conditions for the prices to be positive).

Suppose that Y0’s transform Z0 satisfies Condition D (Eq. 14) at time 0. Then, for t ≥ 0,

E0 [MtDt] > 0.

For completeness we state two related Propositions (proven in Gabaix 2007).

Proposition 3 (Sufficient Condition C on the initial conditions in the deterministic case). Suppose

that the process is deterministic, Yt+1 = ΨYt. Suppose Y0’s transform K0, satisfies for t = 0,
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Condition C:

Condition C at time t: K1t +
X
i>1

min (0,Kit) > 0. (15)

Then, for t ≥ 0, Condition C holds and MtDt > 0.

Proposition 4 (Sufficient Condition C on the initial conditions for the prices to be positive). Sup-

pose Y0’s transform K0 satisfies Condition C (Eq. 15) at time 0. Then, for t ≥ 0, E0 [MtDt] > 0.

Finally, Condition C is more restrictive than Condition D.

Proposition 5 For any time t, Condition C implies Condition D.

Proof. This follows from:

Zkt =
kX
i=1

Kit ≥ K1t +
kX
i=2

min (0,Kit) ≥ K1t +
NX
i=2

min (0, Kit) .

2.2.2 Applications

Basic stock model We first study how the machinery of Proposition 2 applies to our basic

stock model in Example 3. The discount rate isMt = (1 + r)−t. So that with Yt =MtDt (1, gt)
0, we

have EtYt+1 = ΨYt, with Ψ = (1 + r)−1
Ã
1 1

0 1− φ

!
. Diagonalizing Ψ yields the following canonical

representation:

Kt =MtDt

Ã
1 + gt

φ

−gt
φ

!
,

with Et [Kt+1] = ΛKt, with Λ = (1 + r)−1
Ã
1 0

0 1− φ

!
, and MtDt = (1, 1)

0Kt. The vector Zt is:

Zt =MtDt

Ã
1 + gt

φ

1

!
.

Condition D gives: 1+ gt
φ
> 0, and 1 > 0, i.e. gt > −φ, exactly the condition we found in the direct

investigation of the 1-dimensional case. Condition C is: 1 + gt
φ
+ min

³
−gt

φ
, 0
´
> 0, is the same

conclusion.
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Checking the conditions with 1 factor Suppose Yt = MtDt (1, xt), and the generator is

Ψ =

Ã
a b

0 d

!
with a > d > 0. The condition for the process to be well-defined is:

a+ bxt > d. (16)

Indeed, write Ψ = a

Ã
1 b/a

0 1− φ

!
, gt = bxt/a. With 1−φ = d/a the above condition gt/φ+1 > 0

is (16)

N−factor stock model With N factors for the growth rate the canonical stock model is:

Dt+1/Dt = 1 +
nX
i=1

gjt

Et [git+1] = (1− φi) git/

Ã
1 +

nX
j=1

gjt

!
,

with 0 < φ1 ≤ ... ≤ φn. The discount factor is Mt = (1 + r)−t. The canonical basis is: K0,t =

MtDt (1 +
P

git/φi), Kit = −MtDtgit/φi, where we start the indices at i = 0 which is natural in this

context. Indeed, the reader can verify EtKt+1 = ΛKt, with Λ = (1 + r)−1 diag (1, 1− φ1, ..., 1− φn).

Also, MtDt = ι0Kt with ι = (1, .., 1).

Condition D is: ∀k = 0...n,
Pk

i=0Kit > 0, i.e.

∀k = 1...n, 1 +
nX
i=k

git
φi

> 0. (17)

Condition C is: 1 +
P

git/φi +
P
min (0,−git/φi), i.e.

1 +
nX
i=1

min

µ
git
φi
, 0

¶
> 0. (18)

The idea remains that “the growth rate cannot become too negative”. The weighing by xit

means that there is a stronger penalty for persistent processes, which makes sense, as they have a

longer influence.
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N−factor bond model The model is, in its simplest form:

Mt+1

Mt
=

1

1 + r∗

Ã
1−

nX
j=1

rjt

!

E [rit+1] =
(1− φi) rit
1−

Pn
j=1 rit

,

and for bonds, the dividend is Dt = 1.

The diagonalized basis is: K0,t = Mt (1−
P

rit/φi), Kit = Mtrit/φi, and Mt = ι0Kt with

ι = (1, .., 1). Then, EtKt = (1 + r∗)
−1 diag (1, 1− φ1, ..., 1− φn)Kt.

Condition D is

∀k = 1...n, 1−
nX
i=k

rit
φi

> 0. (19)

Condition C becomes: 1−
P

i rit/φi +
P

imin (0, rit/φi), i.e.

1 >
nX
i=1

max

µ
0,
rit
φi

¶
. (20)

The idea remains that “the interest rate cannot become too high”.

We have now a better sense of what are sufficient conditions to ensure that the process remains

positive. We now turn to conditions that ensure that the noise “dies down” close enough to the

boundaries.

2.3 Making Sure that the Noise “Dies Down” Close to the Boundary

2.3.1 Theory

As in the 1-factor case of section 2.1, we need to ensure that the noise is close to zero near the

boundary region {Zt : Zt Â 0} for the process. We specify here sufficient conditions for that to
happen.

We start from:

Yt+1 = ΨYt + σ (Yt) ηt+1, (21)

where ηt is a p−dimensional vector with Et [ηt+1] = 0, σ (Y ) is an N × p matrix.

We use a canonical basis Zt, with Zt = FYt and MtDt = ζ 0Zt > 0, ζ = (0, ..., 0, 1). We want to

ensure that, almost surely, for all t, Zt Â 0. That will imply MtDt > 0. To ensure that, the next

Proposition states conditions that are reasonably easy to verify.

10



Proposition 6 (Sufficient conditions so thatMtDt > 0 for all t). Call λ1 ≥ ... ≥ λn the eigenvalues

of Ψ, and F (i) = (Fij)j=1...n the i-th row vector of matrix F . Suppose that Z0 Â 0 (i.e. has all its
components strictly positive), and that, for all t, any one of the conditions (SC1,2,3,4) is verified

almost surely:

(SC 1) Zt Â 0⇒ ∀i = 1...n, F (i)ΨF−1Zt + F (i)σ
¡
F−1Zt

¢
ηt+1 Â 0 (22)

(SC 2) Zt Â 0⇒ ∀i = 1...n, F (i)ΨF−1Zt >
°°F (i)σ

¡
F−1Zt

¢°°
1
kηk∞ (23)

(SC 3) Zt Â 0⇒ ∀i = 1...n, λiZit + F (i)σ
¡
F−1Zt

¢
ηt+1 > 0 a.s. (24)

(SC 4) Zt Â 0⇒ ∀i = 1...n, λiZit >
°°F (i)σ

¡
F−1Zt

¢°°
1
kηk∞ (25)

where kxk1 =
PN

i=1 |xi| , kηk∞ = ess sup |η|. Then, with probability 1, for all t ≥ 0, Zt Â 0, and in
particular MtDt > 0.

Also, SC4⇒ SC3⇒ SC1 and SC4⇒ SC2⇒ SC1.

Proposition 6 provides sufficient conditions to express that the noise needs to be “small enough”

near the boundary. We turn to concrete examples to illustrate them.

2.3.2 Applications

Simple stock model Take (9), gt+1 =
(1−φ)gt+v(gt)ut+1

1+gt
, with v (g) ≥ 0. We setMt = (1 + r)−t.

As Yt =MtDt (1, gt)
0, Zt =MtDt

Ã
1 + gt/φ

1

!
, so that:

Zt+1 = (1 + r)−1
Ã
1 0

φ 1− φ

!
Zt + (1 + r)−1MtDt

Ã
v (gt)ut+1/φ

0

!
.

Condition SC1 simply means that Zt+1 > 0, i.e. 1 + gt/φ + v (gt)ut+1/φ > 0, which is just the

condition we had seen in section 2.1.

Condition SC2 means v (gt) < (φ+ gt) / kuk∞: the volatility of the process goes to 0 near
gt = −φ.
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N−factor bond model The model is now more specified, as:

Mt+1

Mt
=

1

1 + r∗

Ã
1−

nX
j=1

rjt

!

rit+1 =
(1− φi) rit + σit · ηt+1

1−
Pn

j=1 rit
,

where ηt+1 ∈ Rp for some p, Et [ηt+1] = 0, and for i = 1...n, σit ∈ Rp. As before, the diagonalized

basis is: K0,t = Mt (1−
P

rit), Kit = Mtxit, and Mt = ι0Kt with ι = (1, .., 1). Then, EtKt = ΛKt,

with Λ = (1 + r∗)
−1 diag (1− φ0,..., 1− φn), calling φ0 = 0.

The associated Z = ΘKt, withΘ = (1i≥j)0≤i,j≤n. So, for i = 0...n−1, Zit =Mt

³
1−

Pn
j=i+1 σjt

´
,

and Znt =Mt. Also,

Zt+1 =
1

1 + r∗

¡
Θdiag (1− φ0,..., 1− φn)Θ

−1Zt +Mtvt+1
¢
,

with vit+1 = σitηt+1 if i > 0 and v0,t+1 = −
Pn

i=1 σitηt+1.

Then, SC4 is simply:

∀i = 0, ..., n− 1, (1− φi)Zit >

°°°°°
nX

j=i+1

σjt

°°°°°
1

· kηt+1k∞

and SC3 is: ∀i = 0, ..., n− 1, (1− φi)Zit >
³Pn

j=i+1 σjt1
´
· ηt+1 almost surely

2.4 Killing Functions

In practice, a way to ensure the conditions of Proposition 6 is via a “killing function” at the borders.

Definition 1 (Killing functions) A “killing” function with 1 argument κ : R→ R+, is a function

such that (i) κ (x) = 0 if any x ≤ 0; (ii) here is an x∗ such that κ (x) = 1 for x ≥ x∗, (iii) κ is

uniformly Lipschitz, i.e. there is a c such that |κ(x)− κ(y)| ≤ c|x− y|, for all x, y ∈ R.
A “killing” function with N arguments κ : RN → Rp

+, (for positive integers N , p) is a function

such that (i) κ (x) = 0 if xi ≤ 0 for at least one i = 1...N ; (ii) here is an x∗ such that κ (x) = (1, ..., 1)
if ∀i = 1...N , xi ≥ x0, (iii) κ is uniformly Lipschitz, i.e. there is a c such that kκ(x)− κ(y)k ≤
c||x− y||, for all x, y ∈ RN .

A “killing function” κ (x) is equal to 0 as soon as one of the components of x non-positive, and

is equal to 1 when all components of x are far enough from 0.
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In practice, x0 is small. An example of a killing function with one argument is the “ramp”

function κ (x) = min (x+/x∗, 1), equal to x/x when x ∈ [0, x0], and 1 for x ≥ x0. A generalization

with N arguments is κ (x) = min
¡
mini=1...n x

+
i /x

∗, 1
¢
, for x ∈ RN .

Indeed, suppose one would like to have a process approximately equal to: Yt+1 ' ΨYt+v (Yt) ηt+1.

To make sure the process remains well-defined, one can set up the modified process (21), with

σ (Yt) = K (Yt) v (Yt), and

K (Yt) = κ

µ
min
i

F (i)ΨYt
kF (i)v (Y )k1 kηk∞

¶
. (26)

Another possibility is a K (Yt) (with value in R+) that ensures, for all Yt s.t. FYt Â 0,

∀i = 1...n, F (i)ΨYt +K (Yt)F
(i)v (Yt) ηt+1 > 0 (27)

where again F (i) is the i− th row vector of matrix F .

Proposition 7 Consider the LG process Yt+1 = ΨYt+K (Yt) v (Yt) ηt+1, with (26) or (27). Suppose

that FY0 Â 0. Then, for all times t ≥ 0, FYt Â 0 and MtDt > 0.

We now end our study of the discrete time case, and move on to its analogue for continuous

time.

3 Continuous Time

3.1 The N-Dimensional Case in Discrete Time: Initial Conditions

3.1.1 Standard Representations of the Processes

We start from a continuous-time LG process:

dYt = −ΞYtdt+ dNt and MtDt = ν 0Yt

where Ξ is an N ×N matrix, ν, Yt ∈ RN , and Nt a martingale with values in RN . We want to find

conditions such that almost surely for all t ≥ 0, MtDt > 0.

We proceed as in the discrete time case, and make the following assumption.

Assumption 3 Generator matrix Ξ is diagonalizable in the space of real matrices, i.e. there is a

real matrix q, and a diagonal matrix Λ, such that −Ξ = qΛq−1.
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We order the rows so that Λ11 ≥ ... ≥ ΛNN . We make assume that q0ν has non-zero elements

(Assumption 2). We define Q = q diag (q0ν)−1, and Kt = Q−1Yt. Then,

dKt = ΛKtdt+Q−1dNt and MtDt = ι0Kt,

with ι = (1, ..., 1)0. Using matrix Θ in Lemma 1, we define: Zt = ΘKt = FYt, with F = ΘQ−1. So,

Zt satisfies:

dZt = AZtdt+ FdNt and MtDt = ξ0Zt (28)

where ξ = (0, ..., 0, 1) and A = ΘΛΘ−1 has nonnegative non-diagonal elements, in virtue of Lemma

1.

3.2 Making Sure that the Noise “Dies Down” Close to the Boundary

3.2.1 A Preliminary Theorem

We first present an abstract result which is useful to establish more concrete sufficient conditions.

The reader may wish to skip this subsection in a first reading and to move directly to section 3.2.2.

Let n, p ≥ 1 and consider the stochastic differential equation (SDE)

dzt = μ(zt−)dt+ σ(zt−)dGt + diag (zt−) dHt, z0 = x0 ∈ D, (29)

for an n + 1-dimensional process zt with components z0t , z
1
t , . . . , z

n
t . zt is understood as a column

vector. D is the region
D =

©
x ∈ Rn+1 : x Â 0

ª
.

μ is a function from D to Rn+1 and σ maps D to the space of (n + 1) × p-matrices. Gt is an

p-dimensional column vector whose components are continuous semimartingales G1
t , . . . , G

p
t .

3 Ht

is a column vector consisting of n+ 1 semimartingales (possibly with jumps) H0
t ,H

1
t , . . . , H

n
t with

the property (recall ∆Ht = Ht −Ht−)

∆Hm
t > −1 for all m and t . (30)

This condition implies that starting from D, zt cannot be propelled outside D by a jump dHt.

By μm we denote them-th component of μ and by σm the row vector (σm1, . . . , σmN). Moreover,

3For instance, every Brownian motion with drift, and, more generally, every solution of a SDE driven by a
Brownian motion, is a continuous semimartingale.
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we set

||μ|| :=

vuut nX
m=0

(μm)2 and ||σ|| :=

vuut nX
m=0

pX
r=1

(σmr)2 .

Assume there exist constants a ≥ 0, b1, b2, · · · ≥ 0, c ∈ R, d ≥ 0 and ε > 0 such that the

following conditions hold:4

(i) ||μ(x)|| ∨ ||σ(x)|| ≤ a(1 + ||x||) for all x ∈ D
(ii) ||μ(x)− μ(y)|| ∨ ||σ(x)− σ(y)|| ≤ bk||x− y|| for all x, y ∈ D such that ||x||, ||y|| ≤ k

(iii) μm(x) ≥ cxm for all m = 0, . . . , n and x ∈ D

(iv) ||σ0(x)|| ≤ dx0 for all x ∈ D with x0 < ε

(v) ||σm(x)|| ≤ dxm for all m ≥ 1 and x ∈ D with xm < ε(1 ∧ x0)

Then the following two properties hold.

Theorem 1 The SDE (29) has a unique strong solution that never leaves D.

Proposition 8 Suppose further than Gt and Ht are a square-integrable martingales and μ (z) = Bz

for B a (n+ 1)× (n+ 1) matrix. Then for all non-negative t, T, Et [zt+T ] = eATzt.

3.2.2 Theory

We assume that the noise in process Zt (Eq. 28) can be parameterized:

dZt = AZtdt+ Z0t v

µ
Zt

Z0t

¶
dBt + diag (Zt−) dJt, (31)

where A is an N ×N matrix, Bt is a standard K−dimensional Brownian motion, v (z) is a N × p-

dimensional matrix, and Jt has values in RN and is square-integrable martingale.

For instance, we could have Jt = jt − λt where jt is a finite-activity square-integrable jump

process and λt is its compensator. We assume that:

(a) A has nonnegative non-diagonal terms.

(b1) For m = 0...N − 1, if zm = 0, then vm (z) = 0.

(b2) v is continuous and almost everywhere differentiable

(b3) There exists a constant C such that for all z where v is differentiable, |∂vij/∂zm| ≤ C for

all i, 0...N − 1, j = 1...p and m = 1...N − 1

4We could replace assumptions (i) and (ii) by an assumption that SDE (29) has a unique strong solution.
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(b4) There exists a constant C 0 such that for all z where v is differentiable,
¯̄̄
vij −

PN−1
m=1 z

m∂vij

∂zm

¯̄̄
≤

C 0 for all i = 0...N − 1, j = 1...p0.
(c) ∆Jt > −1 (recall ∆Jt = Jt − Jt−)

Condition (a) ensures that the drift does not pull the process out of the positivity domain

D = {Z s.t. Z Â 0}.
Condition (b1-b3) make sure that the volatility is small enough near the boundary of the posi-

tivity domain. Condition (b1) ensures that, when Zi = 0, then the volatility of the i−th component
is at 0, so the volatility term does not expel the process outside of the positivity domain. Condition

(b2)-(b4) ensures that the volatility function σ (Z) = Z0v (Z/Z0) is Lipschitz.

Condition (c) means that the process cannot jump outside of the positivity domain D.

Theorem 2 (Sufficient condition to make the LG process dividend-augmented pricing kernel always

positive). Suppose Z0 Â 0, and conditions (a)-(c) above hold. Then, the SDE (31) has a unique

strong solution, that never leaves D = {Z s.t. Z Â 0}. In particular, with probability 1, the process
satisfies, MtDt > 0 for all t ≥ 0. Also, for all non-negative t, T, Et [Zt+T ] = eATZt.

3.3 Applications

Simple one-factor interest rate process Consider the simple interest rate process, with

rt = brt + r∗

dbrt = − (φ− brt) brtdt+ σ (brt) dBt, (32)

where Bt is a standard Brownian motion. We saw that it implies (2). We form: Mt = e−
t
0 rsds and

set Dt ≡ 1. The LG vector is Yt =Mt (1, rt)
0, and the positivity test vector is:

Zt =

⎛⎝Mt

³
1− rt

φ

´
Mt

⎞⎠
so that:

dZ1t = −r∗Z1t dt+Mt

µ
−brtµ1− brt

φ

¶
+ (φ− brt) brt

φ
− σ (brt)

φ
dBt

¶
= −r∗Z1t dt+

σ (brt)
φ

Z2t dBt

dZ2t = −Mtrtdt = φZ1t − (r∗ + φ)Z2t

i.e.

dZt =

Ã
−r∗ 0

φ −r∗ − φ

!
Zt +

Ã
σ(rt)
φ

Z2t dBt

0

!
. (33)
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The conditions above are Z1t > 0, Z
2
t > 0. Applying Theorem 2 yields:

Result 2 (1-factor interest rate process) In the interest rate model above, suppose that: br0 < φ;

σ is continuous and almost everywhere differentiable; σ0 (br) and σ0 (br) (φ− br) + σ (br) are uniformly
bounded for all the br ∈ (−∞, φ) where σ is differentiable. Then the SDE (32) are (33) have a

unique strong solution for all t ≥ 0, and Eq. 2-3 hold for all t ≥ 0. Also for all t ≥ 0, brt < φ, and

Zt Â 0.

Other sufficient conditions can be found. In particular, we could ensure that some r ∈ (0, φ) is
a natural right boundary brt, starting from br < r. Using the general Feller conditions, it would be

enough to have, in a left neighborhood of φ |σ (br)| ≤ k (1− br/r)β, for some k > 0 and β > 1/2.

Then we would have, for all t ≥ 0, br ≤ φ. Here we impose a condition with β = 1 (to ensure that

v is Lipschitz). Our goal is simply to provide simple sufficient conditions.

A two-factor interest rate process ConsiderMt = exp
³
−
R t
0
rsds

´
, rt = r∗+ r1t+ r2t, and

dr1t = − (φ1 − r1t − r2t) r1tdt+ σ1 (r1t, r2t) dB1t + w1 (r1t, r2t) dWt

dr1t = − (φ2 − r1t − r2t) r2tdt+ σ2 (r1t, r2t) dB2t + w2 (r1t, r2t) dWt,

with 0 < φ1 ≤ φ2, and B1, B2,W independent standard Brownian processes. The drift terms mean

that rit mean-reverts to 0 according to a LG-twisted AR(1), with the typical speed φi. The dBit

shocks are specific to component i, and the dWt shocks are common to both components.

We set Dt ≡ 1. Mt (1, r1t, r2t) is a LG process, and, if the process is well-defined, then, according

to Gabaix (2007, Theorem 3 and Example 13)

Et

∙
exp

µ
−
Z T

0

rt+sds

¶¸
= e−r∗T

µ
1− 1− e−φ1T

φ1
r1t −

1− e−φ2T

φ2
r2t

¶
. (34)

Here, we apply Theorem 2. The diagonal representation is:

Kt =Mt

⎛⎜⎜⎝
1− r1t

φ1
− r2t

φ2
r1t
φ1
r2t
φ2

⎞⎟⎟⎠ ,
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which satisfies Et [dKt] = diag (0,−φ1,−φ2)Ktdt, and positivity test vector is

Zt =Mt

⎛⎜⎜⎝
1− r1t

φ1
− r2t

φ2

1− r2t
φ2

1

⎞⎟⎟⎠ ,

which satisfies (by direct calculation, or application of Lemma 1)

dZt =

⎛⎜⎜⎝
−r∗ 0 0

φ1 −r∗ − φ1 0

φ1 φ2 − φ1 −r∗ − φ2

⎞⎟⎟⎠Ztdt+Mt

⎛⎜⎜⎝
−σ1(r1t,r2t)dB1t+w1(r1t,r2t)dWt

φ1
− σ2(r1t,r2t)dB2t+w2(r1t,r2t)dWt

φ2

−σ2(r1t,r2t)dB2t+w2(r1t,r2t)dWt

φ2

0

⎞⎟⎟⎠ .

We note that the drift matrix of dZt has nonnegative non-diagonal coefficients, as expected.

Applying Theorem 2 yields:

Result 3 (2-factor interest rate model) Suppose that

r1t
φ1
+

r2t
φ2

< 1 and
r2t
φ2

< 1 (35)

holds for t = 0, and

σ1 (r1, r2) = σ1κσ1

µ
1− r1

φ1
− r2

φ2

¶
w1 (r1, r2) = w1κw1

µ
1− r1

φ1
− r2

φ2

¶
σ2 (r1, r2) = σ2κσ2

µ
1− r1

φ1
− r2

φ2
, 1− r2

φ2

¶
w2 (r1, r2) = σ2κw2

µ
1− r1

φ1
− r2

φ2
, 1− r2

φ2

¶
,

where κσ1 , κw1, κσ2 , κw2 are killing functions, as defined in Definition 1. Then, the process is well-

defined for all t ≥ 0, and Eq. 34holds. Also, (35) holds for all t ≥ 0.

Stock with a stochastic trend in dividend growth and a stochastic equity premium

We apply Theorem 2 to a stock model with stochastic growth rate and stochastic risk premium

(Gabaix 2007, Example 9). The stochastic discount factor Mt and the dividend process Dt follow

dMt/Mt = −rdt−
πt
σ
dzt and dDt/Dt = gtdt+ σdzt

18



The price of the stock is Pt = Et

£R∞
t

MsDsds
¤
/Mt. πt is a the stochastic equity premium, and gt

is the stochastic growth rate of dividends.

We assume that πt and gt follow the following LG process, best expressed in terms of their

deviation from trend, bπt = πt − π∗,bgt = gt − g∗:

dbgt = −φgbgtdt+ (bπt − bgt)bgtdt+ σg (bgt, bπt) · dBt

dbπt = −φπbπtdt+ (bπt − bgt) bπtdt+ σπ (bgt, bπt) · dBt,

where the Bt is a p−dimensional Wiener process independent of zt, and σγ and σπ are processes

with values in Rp. In particular, the innovations of bgt and bπt can have quite general correlations.
We suppose that the process is defined in [t,∞). Again the processes dbgt and dbπt are to a first order
linear, but with quadratic “twist” terms added, (bπt − bgt)bgtdt and (bπt − bgt) bπtdt. The stock price is

Pt =
Dt

R

µ
1 +

gt − g∗
R+ φg

− πt − π∗
R+ φπ

¶
with R ≡ r + π∗ − g∗ (36)

where R is the traditional Gordon rate. This example nests the three sources of variation in stock

prices: the movements in dividends (Dt), in expected growth rate of dividends (gt), and in the

discount factor (πt).

We next study how to ensure that the process is well-defined. For concreteness, we suppose

0 < φg ≤ φπ. This may represent slow-moving innovations to the growth rate, as in Bansal

and Yaron (2003). This stock model is analogous to the 2-factor interest rate model above, with

r1t = −bgt and r2t = bπt. The diagonal representation of the process is
Kt =MtDt

⎛⎜⎜⎝
1 + bgt/φg − bπt/φπ

−bgt/φgbπt/φπ
⎞⎟⎟⎠ ,

and Et [dKt] = ΛKtdt with Λ = (−R,−R− φg,−R− φπ). The positivity test vector Zt is:

Zt = Kt =MtDt

⎛⎜⎜⎝
1 + bgt/φg − bπt/φπ

1− bπt/φπ
1

⎞⎟⎟⎠ ,
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and

dZt =

⎛⎜⎜⎝
−R 0 0

φg −R− φg 0

φg φπ − φg −R− φπ

⎞⎟⎟⎠Zt + Ztdzt +MtDt

⎛⎜⎜⎝
(σg (bgt, bπt) /φg − σπ (bgt, bπt) /φπ) · dBt

−σπ (bgt, bπt) /φg · dBt

0

⎞⎟⎟⎠ .
Hence, applying 2, we obtain the following.

Result 4 (Stock with a stochastic trend in dividend growth and a stochastic equity premium) Sup-

pose that

1 + bgt/φg − bπt/φπ > 0 and 1− bπt/φπ > 0 (37)

holds for t = 0, and

σg (bgt, bπt) = κg (1 + bgt/φg − bπt/φπ)σg
σπ (bgt, bπt) = κπ (1 + bgt/φg − bπt/φπ, 1− bπt/φπ)σπ,

where κg, κπ are killing functions with values in R+, as defined in Definition 1, and σg, σπ are

p−dimensional vectors. Then, the process is well-defined for all t ≥ 0, and Eq. 36 holds. Also, (37)
holds for all t ≥ 0.

4 Some Other Possible Specifications

The conditions described in this paper are the existence of a vector-valued process Zt ∈ RN , a

non-zero vector ξ ∈ RN
+ , a N ×N matrix A with nonnegative non-diagonal elements, and positive

diagonal elements, such that Et [Zt+1] = AZt andMtDt = ξ0Zt. This way, in the deterministic case,

having Zt Â 0 implies Zt+1 = AZt Â 0. In the case with noise, we had to ensure that the noise in
Zt+1 − Et [Zt+1] goes to 0 close to the boundaries.

In the above construction we have used a particular positivity vector Zt = ΘKt, where Θ is the

matrix in Lemma 1. We now show three different ways to construct other positivity vectors Zt.

Specification with the Π matrix One such vector is Zt = ΠKt where Π is defined in Lemma

2, which proves that the associated A matrix, A = ΠΛΠ−1, satisfies the nonnegativity conditions

on A, and also ξ = (0, ..., 0, 1). It provides similar conditions to the ones we have expressed. In the
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2-interest rate factor example of section 3.3, it gives:

Zt =Mt

⎛⎜⎜⎝
φ1
³
1− r1t

φ1
− r2t

φ2

´
φ2
³
1− r1t

φ2
− r2t

φ2

´
1

⎞⎟⎟⎠ ,

so the positivity conditions are:

r1t
φ1
+

r2t
φ2

< 1 and
r1t
φ2
+

r2t
φ2

< 1, (38)

rather than the conditions (35), which came from using with matrix Θ. Conditions (35) imply (38),

as r1t
φ2
+ r2t

φ2
= λ

³
r1t
φ1
+ r2t

φ2

´
+ (1− λ)

³
r2t
φ2

´
, with λ = φ1/φ2 ∈ [0, 1]. This is a general phenomenon

(see Appendix B).

In this paper we chose to highlight the Θ matrix, because it is arguably simpler to use. It is

easy to verify that the logic of this paper would be the same if we used the Π matrix.

Specification with an infinity of conditions Another possibility has an infinity of condi-

tions (N =∞):
Zt =

¡
ν 0ΨTYt

¢
T=0,1,...

, (39)

which basically calculates the value of all prices of finite-maturity claims Et [Mt+TDt+T ] = ν 0ΨTYt

(see Appendix A).5 Here Aij = 1{j=i+1}, and ξ = (1, 0, 0, ...). This is the weakest sort of condition

(all other conditions imply positivity bond prices, hence ν 0ΨTYt = Et [Mt+TDt+T ] > 0), but it

forces checking an infinity of inequalities, which is burdensome, at it requires some reasoning and

truncation.

A hybrid specification We can have a mixed example. Take J a positive integer, and

N = J + n+ 1, and

Zjt = ι0Λj−1Kt for j = 1...J

= Θ(j−J)ΛJKt for j = J + 1...J + n+ 1,

where Θ(j−J) is the j − J-th row vector in matrix Θ. The first part of Zt is condition (39) for

T = 0...J − 1 (indeed, ν 0ΨTYt = ι0ΛTKt). The second part of Zt is the condition associated with

5It can also be normalized Zt =
¡
ν0ΨTYt/∆

T
11

¢
T=0,1,...

, where ∆11 is the largest eigenvalue of Ψ.
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Θ and applied to the expected value of the state vector in J periods Et [Kt+J ] = ΛJKt. So, for

the first J period, the positivity of bond prices is checked while for the later periods the criterion

ΘKt Â 0 is used. 6

5 Conclusion

This paper has provided conditions ensuring that LG processes are well-defined. We have tried to

formulate them in a way that makes them easy to use in theoretical or empirical work. We have

illustrated the conditions via a series of economic examples.

As we end this paper we wish to highlight one remaining question on LG processes. Is there

a formulation of the volatility as function of the state variables, that allows calculation in closed

form of derivative prices with LG processes (perhaps up to a Fourier transform, as Duffie, Pan and

Singleton 2000 for affine processes) ? Our conditions should be useful to guide the search of such a

formulation of volatility.

6ξ = (1, 0, 0, ...) and A =

µ
1 {j = i+ 1} B

0 Θ∆Θ−1

¶
with Bij = 0 for i = 1...J , j = 1...n+ 1, except bJ,n+1 = 1.
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Appendix A. Results for Linearity-Generating processes

Here we present the some results on the Linearity-Generating (LG) processes identified and analyzed

in Gabaix (2007). LG processes are given by MtDt, a pricing kernel Mt times a dividend Dt, and

Xt, a n-dimensional (n a non-zero integer) vector of factors (that can be thought as stationary).

For instance, for bonds the dividend is Dt = 1.

Discrete time By definition, process MtDt (1, Xt) is a LG process with generator Ψ =Ã
α δ0

γ Γ

!
∈ R(n+1)×(n+1) if and only if it follows, for all t’s:

Et
∙
Mt+1Dt+1

MtDt

¸
= α+ δ0Xt (40)

Et
∙
Mt+1Dt+1

MtDt
Xt+1

¸
= γ + ΓXt, (41)

where α ∈ R, γ ∈ Rn, δ ∈ Rn, Γ ∈ Rn×n, and almost surely MtDt > 0 for all t ≥ 0.
Higher moments need not be specified. For instance the functional form of the noise does not

matter, which makes LG processes parsimonious.

The key property of LG processes is that stocks and bonds have simple closed-form expressions.

The price-dividend ratio of a “bond”, Zt (T ) = Et [Mt+TDt+T ] / (MtDt), is, with In the identity

matrix of dimension n, and 0n is the row vector with n zeros.

Zt (T ) =
³
1 0n

´
ΨT

Ã
1

Xt

!
(42)

= αT + δ0
αT In − ΓT

αIn − Γ
Xt when γ = 0. (43)

If all eigenvalues of generator

Ã
α δ0

γ Γ

!
have a modulus less than 1, then the price of a stock,

Pt = Et
£P

s≥tMsDs

¤
/Mt, is finite and equal to:

Pt = Dt
1 + δ0 (In − Γ)−1Xt

1− α− δ0 (In − Γ)−1 γ
(44)

= Dt

³
1 0n

´
(In+1 −Ψ)−1

Ã
1

Xt

!
. (45)

There is a more compact way to think about LG processes. Define the process with values in
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Rn+1

Yt :=

Ã
MtDt

MtDtXt

!
=

⎛⎜⎜⎜⎜⎜⎝
MtDt

MtDtX1t

...

MtDtXnt

⎞⎟⎟⎟⎟⎟⎠ , (46)

so that with vector ν 0 = (1, 0, ..., 0),

MtDt = ν 0Yt. (47)

Yt stacks all the information relevant to the prices of the claims derived here (other assets, e.g.

options, require of course to know more moments). Conditions (40)-(41) can be written as:

Et [Yt+1] = ΨYt. (48)

Hence, the (dividend-augmented) stochastic discount factor of a LG process is simply the projection

(47) of an autoregressive process, Yt. The tractability of LG processes comes from the tractability

of autoregressive processes. Eq. 42 comes simply from:

Z0 (T ) =
E0 [MTDT ]

M0D0
=

E0 [ν
0YT ]

M0D0
=

ν 0E0 [YT ]

M0D0
=

ν 0ΨTY0
M0D0

= ν 0ΨT Y0
M0D0

= ν 0ΨT

Ã
1

Xt

!
.

Also, Eq. 45 comes from:

P0
D0

=
∞X
T=0

E0 [MTDT ]

M0D0
=

∞X
T=0

Z0 (T ) =
∞X
T=0

ν 0ΨT

Ã
1

Xt

!
= ν 0

Ã ∞X
T=0

ΨT

!Ã
1

Xt

!

= ν 0 (In+1 −Ψ)−1
Ã

1

Xt

!
.

If the process is well-defined, i.e. MtDt > 0 for all t, prices simply depend on (48). The central

task of this paper is to provide conditions on the process, so that indeed MtDt > 0 for all t.

Continuous time The following notation is useful when using LG processes. For xt, μt

processes, we say Et [dxt] = μtdt, or Et [dxt] /dt = μt, to signify that there exists a martingale

Nt such that: xt = x0 +
R t
0
μsds+Nt.

In continuous time, MtDt (1,Xt) is a LG process with generator Ξ =

Ã
a β

b Φ

!
∈ R(n+1)×(n+1)
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if and if only it follows:

Et [d (MtDt)] = − (a+ β0Xt)MtDtdt (49)

Et [d (MtDtXt)] = − (b+ ΦXt)MtDtdt, (50)

with a ∈ R, β ∈ Rn, b ∈ Rn, Φ ∈ Rn×n, and almost surely MtDt > 0 for all t ≥ 0
The price-dividend ratio of a “bond” is: Zt (T ) = Et [Mt+TDt+T ] / (MtDt)

Zt (T ) =
³
1 0n

´
exp (−ΞT )

Ã
1

Xt

!
(51)

= exp (−aT ) + β0
exp (−ΦT )− exp (−aT ) In

Φ− aIn
Xt when b = 0.

The price of a stock, Pt/Dt = Et
£R∞

t
MsDsds

¤
/ (MtDt) , is, if all eigenvalues of generator Ξ

have a positive real part (finite stock price):

Pt/Dt =
1− β0Φ−1Xt

a− β0Φ−1b

=
³
1 0n

´
Ξ−1

Ã
1

Xt

!
.

To ensure that the process is well-behaved (hence prevent prices from being negative), the

volatility of the process has to go to zero near some boundary. The present paper sufficient conditions

for this.

Similarly to the discrete time case, one defines the vector Yt as in (46). Thus conditions (40)-(41)

can be written as:

Et [dYt] = −ΞYtdt, (52)

which is the continuous time analogue of (48). The formulas for bonds and stocks are derives as in

the discrete time case, observing Et [Yt+T ] = e−ΞTYt. The latter equation requires some regularity

conditions that are the topic of this paper.

Appendix B. Some Useful Lemmas on Positive Matrices

The following Lemma is useful in several parts of this paper. It is proven by simple verification of

(54).
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Lemma 1 (Θ matrix) Given an integer N ≥ 1, a diagonal matrix Λ = diag (λ1, ..., λN), define the

N ×N matrix Θ:

Θ =
¡
1{i≥j}

¢
ij
=

⎛⎜⎜⎜⎜⎝
1 0 ... 0

... 1 0 ...

... ... 1 0

1 ... ... 1

⎞⎟⎟⎟⎟⎠ . (53)

Then, (ΘΛΘ−1)ij = 0 if i < j, = λi if i = j, and = λj − λj+1 if i > j, i.e.

ΘΛΘ−1 =

⎛⎜⎜⎜⎜⎜⎝
λ1 0 ... 0

λ1 − λ2 λ2 0 ...

... ...
. . . 0

λ1 − λ2 ... λN−1 − λN λN

⎞⎟⎟⎟⎟⎟⎠ . (54)

In particular, if λ1 ≥ ... ≥ λN , then ΘΛΘ−1 has non-negative coefficients, and, if the λi are positive,

positive diagonal coefficients.

The Lemma implies that, if Zt+1 = ΘΛΘ−1Zt, then Z0 Â 0 implies that for all t ≥ 0, Zt Â 0.
The next Lemma analyzes another matrix with a similar property.

Lemma 2 (Π matrix) Given an integer N ≥ 1, a diagonal matrix Λ = diag (λ1, ..., λN), define the

N ×N matrix Π:

Πij = (λi+1 − λj) 1i≥j for i = 1...N − 1

= 1 for i = N,

i.e.,

Π =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

λ1 − λ2 0 ... 0

λ1 − λ3 λ2 − λ3 0 ...

... ...
. . . 0

λ1 − λN ... λN−1 − λN λN−1 − λN

1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (55)

Then, (ΠΛΠ−1)ij = 0 if i < j or N = i > j, = λi if i = j, and = λj − λj+2 if N > i > j, and = 1

if i = N and j = N − 1.
In particular, if λ1 ≥ ... ≥ λN , then ΘΛΘ−1 has non-negative coefficients and, if the λi are

positive, positive diagonal coefficients.
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Proof. Call A the announced value for ΠΛΠ−1. One simply verifies that ΠΛ = AΠ, which is

straightforward algebra.

For instance, when N = 5

ΠΛΠ−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

λ1 0 0 0 0

λ1 − λ3 λ2 0 0 0

λ1 − λ3 λ2 − λ4 λ3 0 0

λ1 − λ3 λ2 − λ4 λ3 − λ5 λ4 0

0 0 0 1 λ5

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

The Θ matrix yields stricter conditions than Π matrix, in the sense that ∀Z ∈ RN , ΘZ Â 0⇒
ΠZ Â 0. This comes from the fact that Π = πΘ for a matrix π with non-negative coefficients,

namely πij = 0 for i > j or i = N > j, πNN = 1, and πij = λj − λj+1 otherwise.

Appendix C. Additional Derivations

Proof of Proposition 1 In the deterministic case Yt+1 = ΨYt, hence Zt+1 = ΘΛΘ−1Zt.

Eq 14 is Zt Â 0. The key fact is Lemma 1 in Appendix A which shows that ΘΛΘ−1 has non-
negative non-diagonal coefficients, and positive diagonal coefficients. So Zt Â 0 implies Zt+1 Â 0.
By induction, for all t ≥ 0, Zt Â 0.
Finally, MtDt = Znt > 0.

Proof of Proposition 2 It is proven like Proposition 1. Define zt = E0Zt. Then, zt+1 =

ΘΛΘ−1zt. Observe that z0 Â 0, and zt Â 0 implies zt+1 Â 0. Finally, E0 [MtDt] = znt > 0.

Proof of Proposition 6 With Zt = FYt, Zt+1 = FΨF−1Zt + Fσ (F−1Zt) ηt+1. So (SC1)

simply expresses Zt Â 0⇒ Zt+1 Â 0.
Because F (i)σ (F−1Z) ηt+1 ≥ −

°°F (i)σ (F−1Z)
°°
1
kηk∞, SC2⇒ SC1 and SC4⇒ SC3

Next, remark that λi = (FΨF−1)ii. Because FΨF
−1 has nonnegative elements non-diagonal

elements, when Zt Â 0,

F (i)ΨF−1Zt =
nX

j=1

¡
F (i)ΨF−1

¢
ii
Zjt ≥

¡
F (i)ΨF−1

¢
ii
Zit = λiZit,

i.e.

F (i)ΨF−1Zt ≥ λiZit
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This implies SC3⇒ SC1 and SC4⇒ SC2.

Proof of Proposition 7 Immediate, given SC1 and SC2 of Proposition 6.

Proof of Theorem 1 By (ii), μ and σ have a unique continuous extension to the closure D
of D. From there we extend them to Rn+1 by setting μ̂(x) := μ(|x|) and σ̂(x) := σ(|x|), where |x|
denotes the vector with components |xm|,m = 0, . . . , n. Since |||x||| = ||x|| and |||x|−|y||| ≤ ||x−y||
for all x, y ∈ Rn, μ̂ and σ̂ satisfy the conditions (i) and (ii) for all x, y ∈ Rn+1. Therefore, the SDEs

dzt = μ̂(zt−)dt+ σ̂(zt−)dGt + diag (zt−) dHt , z0 = x0 ∈ D , (56)

and

dAt = cAt−dt+ σ̂(At−)dGt + diag (At−) dHt , A0 = x0 ∈ D , (57)

both have unique solutions. If we can show that At does not leave D, then zt cannot leave D either.
Indeed, it follows by comparison from condition (iii) that zmt ≥ Am

t for all m and 0 ≤ t ≤ τ , where

τ is the stopping time

τ := inf {t ≥ 0 : zt /∈ D} .

So if At does not leave D, then τ =∞ and zt does not leave D.
To show that At does not leave D, introduce for all m = 0, . . . , n and k ≥ 1 the functions

νm(x) :=

(
(xm)−1σ̂m(x) if xm 6= 0
(0, . . . , 0) if xm = 0

.

and

νm,k(x) := νm(x)ϕm,k(x) ,

where

ϕ0,k(x) :=

⎧⎨⎩
³
|x0|
ε

´1/k
if |x0| < ε

1 if |x0| ≥ ε
.

and for m ≥ 1,

ϕm,k(x) :=

⎧⎨⎩
³

|xm|
ε(1∧|x0|

´1/k
if |xm| < ε(1 ∧ |x0|)

1 if |xm| ≥ ε(1 ∧ |x0|)
.

ν0,k is continuous for all k ≥ 1,

lim
k→∞

ν0,k(x) = ν0(x) for all x ∈ Rn+1,
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and ¯̄
ν0(x)− ν0,k(x)

¯̄
≤ d for all k ≥ 1 and x ∈ Rn+1 .

Hence, ν0,k(At−) is a left-continuous process with right limits, and ν0(At−) is predictable and locally

bounded. In particular, ν0(At−) is integrable with respect to Gt and A0t satisfies the SDE

dA0t = A0t−
©
cdt+ ν0(At−)dGt + dH0

t

ª
.

It follows that A0t is equal to the stochastic exponential E(z0)t of the semimartingale

z0t = ct+

Z t

0

ν0(As−)dGs +H0
t .

By (30) we have Λz0t > −1 and therefore, A0t = E(z0)t > 0 for all t ≥ 0.
By (v), νm,k is continuous on the set {x ∈ Rn+1 : x0 6= 0} for all m ≥ 1 and k ≥ 1. Moreover,

lim
k→∞

νm,k(x) = νm(x) for all m ≥ 1 and x ∈ Rn+1 ,

and ¯̄
νm(x)− νm,k(x)

¯̄
≤ d for all m, k ≥ 1 and x ∈ Rn+1.

It follows that νm,k(At−) is left-continuous with right limits and νm(At−) is predictable and locally

bounded. In particular it is integrable with respect to Gt, and Am
t solves the SDE

dAm
t = Am

t− (cdt+ νm(At−)dGt + dHm
t ) .

So it is equal to the stochastic exponential E(zm)t of the semimartingale

zmt := ct+

Z t

0

νm(As−)dGs +Hm
t .

Since zmt > −1 for all t ≥ 0, Am
t = E(zm)t > 0 for all t ≥ 0.
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Proof of Proposition 8 Under the assumptions of this Proposition, ξT ≡
R T
0
σ(zt−)dGt +

diag (zt−) dHt is a martingale. Define for T ≥ 0, f (T ) = E0 [zt+T ]. Taking ε > 0, we have:

f (T + ε)− f (T )

ε
= E0

∙
zT+ε − zt

ε

¸
= E0

∙
1

ε

Z T+ε

t=T

μ(zt−)dt+ σ(zt−)dGt + diag (zt−) dHt

¸
= E0

∙
1

ε

Z T+ε

T

Azt−dt

¸
+
1

ε
E0 [ξT+ε − ξT ] = AE0

"R T+ε
T

zt−dt

ε

#
+ 0.

Taking the limit ε→ 0, we get that f (T ) is differentiable, and

f 0 (T ) = AE0 [zt] = Af (T ) ,

which integrates to f (T ) = eATf (0) = eATz0.

Proof of Theorem 2 SDE (31) is of the form (29), with μ (Z) = AZ, σ (Z) = Z0v (Z/Z0),

Gt = Bt, and dt = Jt.

Condition (a) implies condition (iii) from Theorem 1, as for Z Â 0 we have:

μm (Z) = AmmZ
m +

X
j 6=m

AmjZ
j ≥ AmmZ

m ≥ cZm,

if we define c = minm=0....N−1Amm.

We next verify that conditions (b2—b4) imply that σ (Z) = Z0v
³

Z
Z0

´
is Lipschitz. Indeed for

m = 1...N − 1,
∂σij (Z)

∂Zm
= Z0 · 1

Z0
· ∂mvij

µ
Z

Z0

¶
= ∂mv

ij

µ
Z

Z0

¶
,

where ∂mvij is the derivative of vij with respect to its m-th argument. So,
¯̄̄
∂σij(Z)
∂Zm

¯̄̄
≤ C. Also,

∂σij (Z)

∂Z0
=

∂

∂Z0

µ
Z0vij

µ
Z

Z0

¶¶
= vij

µ
Z

Z0

¶
+

N−1X
m=1

Z0 · −Zm

Z20
· ∂mvij

µ
Z

Z0

¶
= vij −

N−1X
m=1

zm
∂vij

∂zm
,

with zm = Zm/Z0. So,
¯̄̄
∂σij(Z)
∂Z0

¯̄̄
≤ C 0.

We conclude that σ (Z) is Lipschitz. As μ (Z) = AZ is also Lipschitz this implies (i), (ii) from

Theorem 1.

30



Conditions (iv) and (v) come from the fact that σ is Lipschitz, and condition (b1), as

||σm(x)|| = ||σm(x)− σm(x0, ..., 0, ...xN−1)|| by condition (b1)

≤ kσ0k∞ xm.

Proof of Result 2 We observe that br = φ (1− Z1/Z2), and we apply Theorem 2 to v (z) =Ã
σ(φ(1−z))

φ

0

!
. Condition (b3) means |σ0| is bounded. Calculating:

v1 − z
∂v1

∂z
=

σ (φ (1− z))

φ
+ zσ0 (φ (1− z)) =

σ (br)
φ

+ σ0 (br)µ1− br
φ

¶
,

we see that condition (b4) means that |σ (r) + σ0 (r)φ| is bounded.
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