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1 Introduction

The last three decades of financial research have established that stocks and bonds have time-varying
risk premia (Campbell 2003). As a way to represent stocks with time-varying growth rate and risk
premia Gabaix (2007) defines and analyzes the “linearity-generating” class of financial processes,
which yields simple closed for stocks and bonds, with an arbitrary number of factors.!

The LG class is a tractable and flexible class of processes for asset pricing. % In its generality,
it is comparable to the exponential-affine class of Duffie and Kan (1996), which has proven very
useful to analyze bonds. In the LG class bond and stock prices obtain in closed forms that are
affine functions of the factors. This contrasts with the exponential-affine class, in which bond prices
are an exponential-affine function of the factors and stocks are expressed as an infinite sum over
maturities rather than a simple closed-form expression, as in the LG class.

Gabaix (2007) assumes that the processes are well-defined, and in particular that pricing kernel
and dividends remain always positive. In this paper we show some simple conditions to guaranty
this result. As a corollary we exhibit some new concrete LG stochastic processes.

The following two examples describe the problem and present our solution.

Two Examples of LG processes with boundaries We start with a simple “LG twisted”

interest rate process (Gabaix 2007, Example 12).

Example 1 (Simple one-factor interest rate model) Consider the interest rate process:

Ty =Tx +T¢

dr; = —¢rdt + 77dt + o (7) dBy, (1)
where 1, is a constant, B; is a standard Brownian motion. Assume Ty < ¢, and that the process is
well-defined for t > 0. Then,

1 — e 9T _
E, [e— fOTrt+sd8] — e_T‘*T (1 _ Tfrt> , (2)

Tt unifies in a common framework antecedents such as Bhattacharya (1978), Menzly, Santos and Veronesi (2004),
and Santos and Veronesi (2006).

2For instance, it has been used to think about stocks and bond puzzles (Gabaix 2008), exchange rate puzzles
(Farhi and Gabaix 2008), and the econometrics of return and cash-flow predictibility (Binsbergen and Koijen 2007).



independently of the functional form for o (1;). Also, the price of a perpetuity is:
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The interest rate process (1) illustrates salient features of an LG process. (i) Its drift is approxi-

mately an autoregressive process (as in the term —¢r;dt) but with a “twist” introduced by the term
72dt. This term needs to have a coefficient of +1 to be in the LG class. Note that in many cases
the extra twist term will be small: if the deviation of the interest rate from trend (|7;]) is less than
5 percent then the extra drift term is less than 0.25 percent per year. Hence for many purposes,
the process behaves similarly to an autoregressive process.

Then, perhaps surprisingly at first, the bond price (2) is (ii) linear in the state variable, 7; (hence
the name “linearity-generating” process) and (iii) is independent of the value of the volatility term
o (77). As long as the process is well-defined, the value and functional form of the process volatility
does not affect bond prices.

Furthermore, while many other processes have closed forms for bond prices, the distinctive
feature of the LG class is that it also yields a closed form expression for the price of a perpetuity,
Eq. 3. This is useful for the case of the stock, which is isomorphic to a perpetuity (see many examples
in Gabaix 2007). These features are useful because they allow closed forms for perpetuities and
stocks and also prices are independent of the details of the system, e.g. of some variance terms.

However, the caveat in Example 1 was “Assume that the process is well-defined”. For the
process to be well-defined (in particular, for it not to explode) we require that for all times, 7y < ¢.
The Feller conditions, are the well-known tools to ensure this. Qualitatively, they say that o (7%)
should to go zero smoothly enough in a right neighborhood of 7; = ¢. Volatility dies down near the
boundary so the process never leaves the region {7; < ¢}.

The real challenge, for which this paper proposes a solution is: How can we generalize the
conditions of this example to n factors? What should the boundaries be for the process? How do
we ensure that volatility dies smoothly enough? We illustrate the question with the next example

(Gabaix 2007, Example 13), which generalizes Example 1.

Example 2 (Multifactor interest rate model) Consider the interest rate process:

n
Tt =Ty T E Tit
i=1

d?“jt = —qu?"jtdt + (

n

Tit) rj¢dt + dNjy, (4)

=1



where 1, is a constant, Ny = (Nyg, ..., Nyt) is a square-integrable martingale. Suppose that the process
s well-defined for t > 0. Then,

E, [67 Iy rt“ds} =e T (1 — Z —1 _;‘@Trit) . (5)

Also, the price of a perpetuity is:

& T 1 -~ r;
E T rersdsgp) = — (1 = ).
' |:/O °r I } T ( ; Ty + ¢z> (6)

Eq. 4 means that each component j of the deviation of the interest rate mean-reverts with a

speed ¢;, but with a “LG-twist”, namely the term (3., 7;) rj in (4). Then again, bond prices are
linear in the factors (Eq. 5), and the price of a perpetuity obtains in closed form (Eq. 6).

In this example work beyond Feller’s conditions is needed. Indeed, it is not completely trivial to
formulate “simple” conditions on ry, ..., 7, that ensure that bond prices (5) are always positive. In
this paper, we present various sufficient conditions for the process to be well-defined which implies
that bond prices are positive. In this introduction we give a flavor for the conditions. Order

01 < ... < ¢,, one sufficient condition is:

th

Condition D at time ¢: Vk = 1...n, Z ¢

(7)
Also, we show that if Condition D holds at time 0 and the noise is sufficiently small then Condition
D will hold for all time. This way the condition is “self-perpetuating.” We will specify the condition
on volatility, and the sense in which it should go to zero “smoothly enough” near the boundary of
Condition D. This will occupy us in Section 2, which is in discrete time, and Section 3, which is in
continuous time.

We note that other sufficient conditions could work. Gabaix (2007) proposes a simple condition,

which gives:

ax (ry,0
Condition C at time ¢: Z %ﬁ/)
=1 L

We will see that Condition C implies Condition D which implies that all bond prices are positive.

< 1. (8)

This paper will work this out systematically, in discrete and continuous time, with and without
risk premia, with one and several factors, and with continuous and jump processes. LG processes

allow a unified treatment. Appendix A reviews the basics on them.



Notations. We will use the following notation. For Z a vector in RY, for some N > 1:
Z =0

if and only if all components of Z are strictly positive. Also, diag (Z) is the diagonal matrix with
diagonal elements 71, ..., Zn, and ¢ is a vector with all components equal to 1.

Section 2 presents the results in discrete time. Section 3 presents the results in continuous time.
Section 4 provides extensions. Section 5 concludes. Appendix A provides a concise introduction to
the LG class. Appendix B shows some results on special matrices. Appendix C contains the longer

proofs.

2 Discrete Time

2.1 A One-Factor Introduction

We start with a basic 1-factor example (Gabaix 2007, Example 1 and Lemma 1). It will give us the

flavor for the type of regularity conditions that we will want to impose with n factors.

Example 3 (Basic LG stock process) The dividend satisfies:

D
lt)Jrl = (1+4g¢) (1 +ep41)
t
(1 =) g + 1
- 7 9
gt+1 1+ 4, ( )

and g, > —1 almost surely, Ey niy1] = Ey [eiv1] = Ey [err1mia1] = 0. Assume that the process is well-

defined, with g; > —1, for all non-negative times, and the price is P, = Ey |y 7 Diyr/ (1 + T)T] .

P 1
Tt +r 1+ gt ‘
D, r r+ ¢

When is the process well defined? Let us start with the case where there is no noise, Vt, 7,11 = 0.

Then, the equilibrium price is:

The application g — (1 — ¢) g/ (1 + ¢) has two fixed points, an attractive one g = 0, and a repelling
one that, g = —¢. To ensure that the process is economically meaningful, we require that gg be on
the right side of the repelling point, go > —¢. That will ensure (when there is no noise) that for
allt > 0, g¢ > —¢, and in particular g; > —1. If g9 < —¢, then for some t, g; < —1, which is not
a meaningful economic outcome. In conclusion in the deterministic growth rate case we want to
impose

g > g, for some g € [—¢,0). (10)

bt



When the growth rate is stochastic we still want to ensure (10). This means that for all

% > g = —¢,ie g +n41 > g. Hence the volatility of 7., has to go to zero near

the boundary g. For instance, suppose that 7,41 = o (9¢) V421, with o (g¢) > 0 and that there is an

m > 0 such that v;1; > —m almost surely. Then, we want: g, — o (g:) m > g, i.e. 0(g;) < gtT;Q. To

summarize:

Result 1 (Conditions for the existence of the process in the 1-factor, discrete time case). Consider

the process in Example 3:
(1—0) gt +0(g) visa
1+ gt

gt+1 =

Y

with Ey [vee1] = 0, and an m > 0 such that neq > —m with probability 1 and 0 < o (g9) < Z2 (the
volatility goes to 0 fast enough close to g) where g = —¢. Suppose gy > g. Then, almost surely, for
allt >0, g; > g, and the process is well defined.

2.2 The N-Dimensional Case in Discrete Time: Initial Conditions

2.2.1 Theory

We next study the N dimensional case. The task is the following: given an LG process (with
v, Y; € RN ¥ € RVXV),
Et D/t'i‘l] - \:[Jift and MtDt = V/}/t? (]_1)

we need simple conditions on Yy, and the innovations Y1 — E; [Y;41] so that for all nonnegative ¢,
M;D; > 0. We will say that the process is well-defined when it is defined for all dates ¢t > 0, with
M,D,; > 0.

We will make the following assumption:

Assumption 1 Generator matriz V is diagonalizable in the space of real matrices, i.e. there is a

real matriz g and a diagonal matriz A such that ¥ = qAq~'.

We order the coordinates by decreasing eigenvalues of A, i.e. Ay; > ... > Ayy. We define
ki = ¢7'Y;. This way: E; [k 1] = ¢ 'Y, and

Et [kt—i—l] = Akt and MtDt = VIQI{?t.
We next make a second assumption:

Assumption 2 The components of vector v'q are all different from zero.



Indeed, if that was not the case it would be enough to suppress some components of k;. We
define Q = ¢ diag (v'q)"" and K, = Q'Y; so that K, = diag (v/q) k;. Then,

Et [Kt+1] = AKt and MtDt = L,Kt (12)

with «/ = (1,...,1). In other terms, the state vector is now k;, and the process is diagonal, in the

sense that F [k;1] = Ak, where A is a diagonal matrix.

%

Finally, we define the matrix © = (1{i2j}) ;as in Lemma 1, and Z; = OK, i.e.

k
T =Y Ku, (13)
=1

for k=1..N, and M;D; = ('Z; > 0 with { = (0,...,0,1). Defining F = Q! we have Z; = FY}.
Lemma 1 in Appendix A shows that:

E; [Zt+1] = AZ; and M, D, = 5’Zt7

where A is a matrix with non-negative non-diagonal coefficients and positive diagonal coefficients,
and ¢ = (0,...,0,1). So, Z = 0 implies AZ = 0, and ATZ = 0 for all T > 0.

In this section, we start with a partial goal: finding conditions on Y such that for all ¢’s,
M;D; > 0, when there is no noise. We state the following Proposition, which is proven in Appendix
B.

Proposition 1 (Sufficient Condition D on the initial conditions, deterministic case). Suppose that
the process is deterministic, Yy = VY;. Suppose Yy's transform, Zy, satisfies for t =0, Condition
D:

Condition D at time t: Yk = 1...N, Z; > 0. (14)

Then, fort > 0, Condition D holds, and M;D; > 0.

Proposition 2 (Sufficient Condition D on the initial conditions for the prices to be positive).
Suppose that Yy'’s transform Zy satisfies Condition D (Eq. 14) at time 0. Then, for t > 0,
Eo [M:Dy] > 0.

For completeness we state two related Propositions (proven in Gabaix 2007).

Proposition 3 (Sufficient Condition C on the initial conditions in the deterministic case). Suppose

that the process is deterministic, Y1 = WY;. Suppose Yy’s transform Ky, satisfies for t = 0,

7



Condition C:
Condition C at time t: Ky + Zmin (0, Ki) > 0. (15)
i>1

Then, fort > 0, Condition C holds and M;D; > 0.

Proposition 4 (Sufficient Condition C on the initial conditions for the prices to be positive). Sup-
pose Yy's transform Ky satisfies Condition C (Eq. 15) at time 0. Then, fort >0, Ey [M;Dy] > 0.

Finally, Condition C is more restrictive than Condition D.
Proposition 5 For any time t, Condition C implies Condition D.

Proof. This follows from:

k k N
Zy = Ky>Ky+» min(0,Ky) > Ky + Y min (0, Ky).

=1 1=2 =2

2.2.2 Applications

Basic stock model We first study how the machinery of Proposition 2 applies to our basic

stock model in Example 3. The discount rate is M; = (1 + r)ft. So that with Y; = M;D, (1, gt)', we

1 1
have E,Y;,; = VY, with ¥ = (1 + r)*l (0 ) . Diagonalizing ¥ yields the following canonical
representation:
1+ 2
m=m&< g»
9
. . (1 0 ) .

with E; [K; 1] = AKy, with A = (1 +7) 0 1-¢ ,and M;D, = (1,1) K;. The vector Z; is:

142
Zt:MtDt< _‘i(ﬁ)

Condition D gives: 1+ % > 0,and 1 > 0, i.e. g4 > —¢, exactly the condition we found in the direct

investigation of the 1-dimensional case. Condition C is: 1+ % + min (—%, 0) > 0, is the same

conclusion.



Checking the conditions with 1 factor Suppose Y; = M;D,(1,x;), and the generator is

b
U= (g d) with a > d > 0. The condition for the process to be well-defined is:

a+ bx; > d. (16)

1 b
Indeed, write ¥ = a ( /a

01 (b) , gt = bxy/a. With 1 —¢ = d/a the above condition g;/¢+1 > 0

is (16)

N —factor stock model With N factors for the growth rate the canonical stock model is:

Dyy1/Dy =1+ Zgjt

=1

Ey [gitsa] = (1 — &4) gt/ (1 + Zth) ;

with 0 < ¢ < ... < ¢,. The discount factor is M; = (1 —i—r)_t. The canonical basis is: Ky; =
M:D; (14 git/bi), Kyt = — M Dy git/ ¢:, where we start the indices at ¢ = 0 which is natural in this
context. Indeed, the reader can verify E;K;., = AK,, with A = (14 7) " diag (1,1 — ¢y, ..., 1 — ¢y,).
Also, M;D; = 'K with ¢ = (1,..,1).
Condition D is: Vk = 0...n, Zf:o Ky >0, ie.
- Git

szl...n,l%—zg > 0. (17)
i=k 0

Condition Cis: 1+ gi/¢i +>_ min (0, —git/¢s), i.e.

1+ Y min (%,o) > 0. (18)
i=1 i

The idea remains that “the growth rate cannot become too negative”. The weighing by x;
means that there is a stronger penalty for persistent processes, which makes sense, as they have a

longer influence.



N —factor bond model The model is, in its simplest form:

My
M, 1+7”* ( Zm)

(1—¢i)ra
1‘2?:17%’

E [Tit+1] =

and for bonds, the dividend is D; = 1.
The diagonalized basis is: Ko, = Mt( Zrzt/gbz) Ky = Myry/¢;, and M, = /K, with
v=(1,..,1). Then, E,K, = (1 +7,) " diag (1,1 — ¢y, ... 1 — ¢,) K.
Condition D is
Vk = 1.. nl—Z@>o (19)

Condition C becomes: 1 — > .7 /¢; + > . min (0,7, /¢;), i.e

1> Zmax ( r”) . (20)

The idea remains that “the interest rate cannot become too high”.
We have now a better sense of what are sufficient conditions to ensure that the process remains
positive. We now turn to conditions that ensure that the noise “dies down” close enough to the

boundaries.

2.3 Making Sure that the Noise “Dies Down” Close to the Boundary
2.3.1 Theory

As in the 1-factor case of section 2.1, we need to ensure that the noise is close to zero near the
boundary region {Z; : Z; = 0} for the process. We specify here sufficient conditions for that to
happen.
We start from:
Yir = 9Y; + o (Y3) 141, (21)

where 7, is a p—dimensional vector with E; [11] =0, 0 (Y') is an N X p matrix.
We use a canonical basis Z;, with Z; = FY; and M;D; = ('Z, > 0, ¢ = (0, ...,0,1). We want to
ensure that, almost surely, for all ¢, Z; > 0. That will imply M;D; > 0. To ensure that, the next

Proposition states conditions that are reasonably easy to verify.

10



Proposition 6 (Sufficient conditions so that MyD; > 0 for allt). Call Ay > ... > \, the eigenvalues
of U, and F) = (Fij)j=1...n
components strictly positive), and that, for all t, any one of the conditions (SC1,2,3,4) is verified

the i-th row vector of matriz F. Suppose that Zy > 0 (i.e. has all its

almost surely:

(SC1) Zy = 0=Vi=1.n, FOUF'Z + F90 (FZ)n. = 0 (22)
(SC2) Zy = 0=Vi=1.n, FOUF'Z > ||FY (F'Z)|, Il (23)
(SC3) Zy = 0=Vi=1.n, \iZy+ F0 (F'Z) 01 >0 as. (24)
(SC4) Zy = 0= Vi=1..n, \Zy>||FD0 (F'Z,)]|, Inll (25)

where ||z, = S0 ||, |1nll,, = esssup|n|. Then, with probability 1, for allt >0, Z; = 0, and in
particular M;D; > 0.
Also, SC4 = SC3 = SC1 and SC4 = SC2 = SC1.

Proposition 6 provides sufficient conditions to express that the noise needs to be “small enough”

near the boundary. We turn to concrete examples to illustrate them.

2.3.2 Applications

Simple stock model Take (9), g;11 = (17‘]5)93?;&9’5)“”1, with v (¢) > 0. Weset M; = (1 +7)".

1+
As }/;5 = MtDt (17gt)/7 Zt = MtDt ( 1gt/¢> , SO that:

0

v (gt) Ut+1/¢> '

Ziyr = (1+ 7‘)71 (; > Zy+ (1+ 7“)71 M, D, (

Condition SC1 simply means that Z;;q > 0, i.e. 1+ g;/é + v (g¢) ugr1/¢ > 0, which is just the
condition we had seen in section 2.1.

Condition SC2 means v (¢:) < (¢ +g:)/ |lul|.: the volatility of the process goes to 0 near
g = —9.

11



N —factor bond model The model is now more specified, as:

M4 1 -
= 1— :
M, 1+ ( ;”J
(1= @) Tit + Tit * e

Tit41 = T )
1— Zj:l Tit

where 1,11 € RP? for some p, E; [n41] = 0, and for i = 1...n, 0;; € RP. As before, the diagonalized
basis is: Koy = My (1 — > 1), Kit = Myxy, and My = /K, with ¢ = (1,..,1). Then, B K; = AK},
with A = (14 7,)" " diag (1 — ..., 1 — ¢,,), calling ¢y = 0.

The associated Z = OK}, with © = (1;>;) So, fori =0..n—1, Z;; = M, (1 — Z;L:iﬂ th>,
and Z,; = M;. Also,

0<i,j<n’

Ly = 1 (@d’iag (1—- ®o,-.s 1 — bn) 0'Z + Mtvtﬂ) )

*

with vi41 = oy if ¢ > 0 and vo 41 = — Y 1 Taulletr.
Then, SC4 is simply:

n
2 7

j=it+1

V’L:O,,n—l,<1—¢z) Zit> . ||nt+1”oo

1

and SC3is: Vi =0,....,n—1,(1 — ¢;) Z > (Z?:Hl th1> - M41 almost surely

2.4 Killing Functions

In practice, a way to ensure the conditions of Proposition 6 is via a “killing function” at the borders.

Definition 1 (Killing functions) A “killing” function with 1 argument k : R — R, is a function
such that (i) k(z) = 0 if any x < 0; (i) here is an x* such that k (z) = 1 for x > z*, (iii) k is
uniformly Lipschitz, i.e. there is a ¢ such that |k(z) — k(y)| < c|lz —y|, for all x,y € R.

A “killing” function with N arguments k : RN — RE, (for positive integers N, p) is a function
such that (i) r (x) = 0 if 2" < 0 for at least onei = 1...N; (i) here is an x* such that x () = (1,...,1)
if Vi = 1..N, a' > wo, (iii) k is uniformly Lipschitz, i.e. there is a ¢ such that ||r(z) — k()| <
clx —yl|, for all z,y € RN,

A “killing function” « (z) is equal to 0 as soon as one of the components of = non-positive, and

is equal to 1 when all components of x are far enough from 0.

12



In practice, xg is small. An example of a killing function with one argument is the “ramp”
function k() = min (2 /2%, 1), equal to x/x when x € [0, 0], and 1 for z > zy. A generalization
with N arguments is k (z) = min (minizl,._n xf [z, 1), for x € RV,

Indeed, suppose one would like to have a process approximately equal to: Y; 11 >~ UY;+v (Y}) 741.
To make sure the process remains well-defined, one can set up the modified process (21), with
o (Y1) = K (Yy) v (Yy), and

FOUY, >
K (V) = k | min ——= : (26
09 == (s P, T )
Another possibility is a K (Y;) (with value in R, ) that ensures, for all Y} s.t. F'Y; > 0,
Vi=1..n, FOUY; + K (Y;) F9 (Y}) 41 > 0 (27)

where again F® is the i — th row vector of matrix F.

Proposition 7 Consider the LG process Vi1 = WY+ K (Yy) v (Yy) 1, with (26) or (27). Suppose
that F'Yy = 0. Then, for all timest > 0, FY; > 0 and M;D; > 0.

We now end our study of the discrete time case, and move on to its analogue for continuous

time.

3 Continuous Time

3.1 The N-Dimensional Case in Discrete Time: Initial Conditions
3.1.1 Standard Representations of the Processes

We start from a continuous-time LG process:
dY; = —ZY,dt + dN; and M;D; = V'Y;

where = is an N x N matrix, v, ¥; € RV, and N, a martingale with values in R". We want to find
conditions such that almost surely for all ¢ > 0, M,D; > 0.

We proceed as in the discrete time case, and make the following assumption.

Assumption 3 Generator matriz = is diagonalizable in the space of real matrices, i.e. there is a

real matriz q, and a diagonal matriz A, such that —= = qAq~'.

13



We order the rows so that A;; > ... > Ayy. We make assume that ¢'v has non-zero elements
(Assumption 2). We define Q = ¢ diag (¢v)”", and K, = Q'Y;. Then,

th = Atht + Q_ldNt and Mt-Dt = L,Kt,

with ¢ = (1,...,1)". Using matrix © in Lemma 1, we define: Z, = OK, = FY;, with F' = 6Q~*. So,
Z; satisfies:
dZt = Atht + FdNt and MtDt == SIZt (28)

where £ = (0,...,0,1) and A = ©AO~! has nonnegative non-diagonal elements, in virtue of Lemma
1.

3.2 Making Sure that the Noise “Dies Down” Close to the Boundary
3.2.1 A Preliminary Theorem

We first present an abstract result which is useful to establish more concrete sufficient conditions.
The reader may wish to skip this subsection in a first reading and to move directly to section 3.2.2.

Let n,p > 1 and consider the stochastic differential equation (SDE)
dzy = p(ze)dt + o (2, )dGy + diag (z—) dHy, 29 = xg € D, (29)

for an n + 1-dimensional process z; with components 20, 2}, ..., 2/". 2 is understood as a column
vector. D is the region
D={zeR" :2>0}.

p is a function from D to R™™ and ¢ maps D to the space of (n + 1) x p-matrices. G; is an
p-dimensional column vector whose components are continuous semimartingales G},...,GY. 3 H,
is a column vector consisting of n + 1 semimartingales (possibly with jumps) HY, H},..., H' with
the property (recall AH, = H, — H;-)

AH" > —1 for all m and ¢. (30)

This condition implies that starting from D, z; cannot be propelled outside D by a jump dH;.

By ™ we denote the m-th component of i and by o™ the row vector (6™, ..., ™). Moreover,

3For instance, every Brownian motion with drift, and, more generally, every solution of a SDE driven by a
Brownian motion, is a continuous semimartingale.

14



we set

n n p

S and ol = | S S (o2,

m=0 m=0 r=1

[l =

[en]

Assume there exist constants a > 0, by,by,--- > 0, ¢c € R, d > 0 and € > 0 such that the
following conditions hold:*
) )|V o (@) < a1+ |la]) for all & € D
(i) 1) — )|V llo(w) — o)l < bl — il for all 2y € D such that [[z]] 1y < &
(iii) p™(x) > ca™ for allm =0,...,n and x € D
(iv) ||e%(2)|] < dz° for all x € D with 2° < ¢

(v) |lo™(z)|| < da™ for all m > 1 and z € D with 2™ < (1 A 2°)

Then the following two properties hold.
Theorem 1 The SDE (29) has a unique strong solution that never leaves D.

Proposition 8 Suppose further than Gy and H, are a square-integrable martingales and p (z) = Bz

for B a (n+1) x (n+ 1) matriz. Then for all non-negative t, T, E;[zi17] = e 2.

3.2.2 Theory

We assume that the noise in process Z; (Eq. 28) can be parameterized:

dZ, = AZdt + Z v (%) dB; + diag (Z,-) dJ;, (31)
where A is an N x N matrix, B; is a standard K —dimensional Brownian motion, v (z) is a N X p-
dimensional matrix, and .J; has values in R" and is square-integrable martingale.

For instance, we could have J; = j; — At where j; is a finite-activity square-integrable jump
process and At is its compensator. We assume that:

(a) A has nonnegative non-diagonal terms.

(bl) For m = 0..N — 1, if 2 = 0, then v (z) = 0.

(b2) v is continuous and almost everywhere differentiable

(b3) There exists a constant C' such that for all z where v is differentiable, |0v* /02™| < C for
all 7,0.N -1, 7=1.pandm=1..N —1

4We could replace assumptions (i) and (ii) by an assumption that SDE (29) has a unique strong solution.
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(b4) There exists a constant C” such that for all z where v is differentiable, [v¥ — Z%;} z™ g% <
C'foralli=0..N—-1,j=1.7p".

(c) AJy > —1 (recall AJ, = J, — J;-)

Condition (a) ensures that the drift does not pull the process out of the positivity domain
D ={Zst. Z»0}.

Condition (b1-b3) make sure that the volatility is small enough near the boundary of the posi-
tivity domain. Condition (b1) ensures that, when Z? = 0, then the volatility of the i —th component
is at 0, so the volatility term does not expel the process outside of the positivity domain. Condition
(b2)-(b4) ensures that the volatility function o (Z) = Z% (Z/Z°) is Lipschitz.

Condition (c¢) means that the process cannot jump outside of the positivity domain D.

Theorem 2 (Sufficient condition to make the LG process dividend-augmented pricing kernel always
positive). Suppose Zy = 0, and conditions (a)-(c) above hold. Then, the SDE (31) has a unique
strong solution, that never leaves D = {Z s.t. Z > 0}. In particular, with probability 1, the process
satisfies, MyD; > 0 for all t > 0. Also, for all non-negative t, T, E; [Z;, 7| = e Z,.

3.3 Applications

Simple one-factor interest rate process Consider the simple interest rate process, with
e = ?t + T
dry = — (¢ —T3) Tydt + o (7) dBy, (32)

where By is a standard Brownian motion. We saw that it implies (2). We form: M; = e~ Jorsds and

set D; = 1. The LG vector is Y; = M, (1,7,)’, and the positivity test vector is:

M(1—ﬁ)
Zt: ! ¢

M,
so that:
dZ} = —r.Z}dt + M, (—ﬂ (1 - %) +(¢—7) % - gt)dBt) =z}t + 2 gt)zdet

d7% = —Myrydt = ¢ Z} — (r, + ¢) 22

—r. 0 20 724
az, = " 7 e (33)
¢ —Te—9 0

i.e.



The conditions above are Z} > 0, Z2 > 0. Applying Theorem 2 yields:

Result 2 (1-factor interest rate process) In the interest rate model above, suppose that: Ty < ¢;
o is continuous and almost everywhere differentiable; o' (7) and o' (7) (¢ — ) + o (F) are uniformly
bounded for all the T € (—o0, ) where o is differentiable. Then the SDE (32) are (33) have a
unique strong solution for all t > 0, and Eq. 2-3 hold for all t > 0. Also for allt >0, 7, < ¢, and
Zy = 0.

Other sufficient conditions can be found. In particular, we could ensure that some 7 € (0, ¢) is
a natural right boundary 7;, starting from 7 < 7. Using the general Feller conditions, it would be
enough to have, in a left neighborhood of ¢ |o (7)| < k(1 —7/7)”, for some k > 0 and 8 > 1/2.
Then we would have, for all ¢ > 0, 7 < ¢. Here we impose a condition with § = 1 (to ensure that

v is Lipschitz). Our goal is simply to provide simple sufficient conditions.

A two-factor interest rate process Consider M; = exp (— fot rsds>, Ty = Ts+ 714 + 79, and

driy = — (1 — 11¢ — Tot) T1edt + 01 (714, 72¢) dBye + wy (114, 721) AW
dryy = — (¢2 — Tt — 7‘2t) Toidt + 09 (Tlt, 7‘2t) dBay; + ws (7”1t7 7”2t) AW,

with 0 < ¢1 < ¢, and By, By, W independent standard Brownian processes. The drift terms mean
that r; mean-reverts to 0 according to a LG-twisted AR(1), with the typical speed ¢;. The dB;
shocks are specific to component ¢, and the dWW,; shocks are common to both components.

Weset Dy = 1. My (1,ry,r9) is a LG process, and, if the process is well-defined, then, according
to Gabaix (2007, Theorem 3 and Example 13)

T 1 — =17 1 — e ¢2T
E, lexp (—/ rtHds)} =e T (1 — ¢ T — ¢ rgt) . (34)
0 ¢1 b2

Here, we apply Theorem 2. The diagonal representation is:

— T
K, = M, it ,
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which satisfies E; [dK;] = diag (0, —¢1, —¢o) Kidt, and positivity test vector is

which satisfies (by direct calculation, or application of Lemma 1)

—r 0 0 _ oa(riprer)dBietwa (rae,re)dWe  o2(rae,rae)dBastwa (rae,ras)dWe
* o1 P2
dz, = o Z.dt-+ M. _o2(r1t,ret)dBattwa (r1e,r2t) AW
t 1 Te — @1 0 rat+ My o
G1 P2— 1 T — P2 0

We note that the drift matrix of dZ; has nonnegative non-diagonal coefficients, as expected.

Applying Theorem 2 yields:

Result 3 (2-factor interest rate model) Suppose that

1t Tt
—+—<1a d—<1 35
PR ™ (35)

holds fort =0, and

1
01(7’177“2 = 01Ke, 1— E—%
wy (r1,r2) = Wik, (1 E — %>
< (1-5-21-%)
o 7“,7" = 02K —=
sV e ¢1 ¢2 s

_ ™ T2 T
W (11,72) =Ry, | 1l —— ——,1 ——],
2(r1,72) =7 2( o1 P2 ¢2)

Where Ky, K, Koys Kuwy, are killing functions, as defined in Definition 1. Then, the process is well-
defined for all t > 0, and Eq. 34holds. Also, (35) holds for allt > 0.

Stock with a stochastic trend in dividend growth and a stochastic equity premium
We apply Theorem 2 to a stock model with stochastic growth rate and stochastic risk premium
(Gabaix 2007, Example 9). The stochastic discount factor M; and the dividend process D; follow

dM; /My = —rdt — Ed,z,g and dD;/D; = gidt + odz
o
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The price of the stock is P, = E; [ ftoo MSDSds} /M;. m; is a the stochastic equity premium, and g;
is the stochastic growth rate of dividends.
We assume that m; and g; follow the following LG process, best expressed in terms of their

deviation from trend, 7, = m; — Ty, Gt = g — Gs:

dg, = —gqidt + (Ty — G;) Gedt + 04 (G4, ;) - By
Aty = —Qumedt + (T — Gt) Tedt + 0 (Gr, 7t) - d By,

where the B, is a p—dimensional Wiener process independent of z;, and 0., and o, are processes
with values in R?. In particular, the innovations of g; and 7; can have quite general correlations.
We suppose that the process is defined in [t, 00). Again the processes dg; and dm; are to a first order
linear, but with quadratic “twist” terms added, (7, — g;) g:dt and (7, — g;) T, dt. The stock price is

gt — g« Tt — Ty .
p=L2t( _ thR=r+m —aq 36
t R< Y R+¢W> w Ty (36)

where R is the traditional Gordon rate. This example nests the three sources of variation in stock
prices: the movements in dividends (D;), in expected growth rate of dividends (g¢;), and in the
discount factor (7).

We next study how to ensure that the process is well-defined. For concreteness, we suppose
0 < ¢4 < ¢r. This may represent slow-moving innovations to the growth rate, as in Bansal
and Yaron (2003). This stock model is analogous to the 2-factor interest rate model above, with

ri = —¢; and roy = 7;. The diagonal representation of the process is

14+ G:/pg — T/ On
K, = M,D; — Gt/ g ;

/ﬂ\_t/¢7r

and B, [dK;] = AK,dt with A = (—R,—R — ¢4, —R — ¢). The positivity test vector Z; is:
L+G1/0g — Tt/ Ox

Zy = Ky = M D, 1 =7/ br :
1
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and

R 0 0 (Ug (Gr, 1) /¢g —0x (9, 7) [Ox) - dBy
dz, = ¢, —R—0, 0 Zy + Zydzy + M, Dy —0r (G, 7¢) /gbg -dBy
¢g ¢7r - ng _R - ¢7T 0

Hence, applying 2, we obtain the following.

Result 4 (Stock with a stochastic trend in dividend growth and a stochastic equity premium) Sup-
pose that
14+ G:/pg — /x>0 and 1 — 7T /pr > 0 (37)

holds fort =0, and

0g (96, 7) = kg (1 + G/ g — Tt/ d2) T,
9. 7) = Kr (L+ Gt/ g — Tt/ Or, 1L — Tt/ bx) O,

Q
3
Yy
S
3
S~—
Il

where kg, Ky are killing functions with values in Ry, as defined in Definition 1, and G4, o, are
p—dimensional vectors. Then, the process is well-defined for allt > 0, and Eq. 36 holds. Also, (37)
holds for all t > 0.

4 Some Other Possible Specifications

The conditions described in this paper are the existence of a vector-valued process Z; € RV, a
non-zero vector £ € RY, a N x N matrix A with nonnegative non-diagonal elements, and positive
diagonal elements, such that E; [Z;,1] = AZ; and M, D; = £'Z,. This way, in the deterministic case,
having Z; > 0 implies Z;,1 = AZ; > 0. In the case with noise, we had to ensure that the noise in
Zy1 — Ey[Z;11] goes to 0 close to the boundaries.

In the above construction we have used a particular positivity vector Z; = O K;, where © is the

matrix in Lemma 1. We now show three different ways to construct other positivity vectors Z;.

Specification with the II matrix One such vector is Z; = I1K; where II is defined in Lemma
2, which proves that the associated A matrix, A = IIAII"!, satisfies the nonnegativity conditions

on A, and also € = (0,...,0,1). It provides similar conditions to the ones we have expressed. In the
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2-interest rate factor example of section 3.3, it gives:

o1
Zy = M | ¢y 1—%—% )
1
so the positivity conditions are:
Tie Tt Tie | Tt
— 4+ —<land — + — < 1, 38
b1 P2 G2 P2 (38)

rather than the conditions (35), which came from using with matrix ©. Conditions (35) imply (38),
as gt + 2 =\ <% + %) +(1-2X) < %), with A = ¢1/¢2 € [0, 1]. This is a general phenomenon
(see Appendix B).

In this paper we chose to highlight the ©® matrix, because it is arguably simpler to use. It is

easy to verify that the logic of this paper would be the same if we used the II matrix.

Specification with an infinity of conditions Another possibility has an infinity of condi-
tions (N = o0):
Z, = (V'UY,) (39)

T=0,1,...7
which basically calculates the value of all prices of finite-maturity claims E; [M;, 7Dy 7] = v/ 91Y;
(see Appendix A).” Here A;; = 1gj—i113, and € = (1,0,0,...). This is the weakest sort of condition
(all other conditions imply positivity bond prices, hence v'¥7Y; = E;[My, 7Dy 7] > 0), but it
forces checking an infinity of inequalities, which is burdensome, at it requires some reasoning and

truncation.

A hybrid specification We can have a mixed example. Take J a positive integer, and
N=J+n+1, and

Zjp=UNTK, for j=1..J
=QUINK, for j=J+1...0+n+1,

where ©U~) is the j — J-th row vector in matrix ©. The first part of Z; is condition (39) for
T =0..J — 1 (indeed, v'¥TY; = /AT K;). The second part of Z; is the condition associated with

5Tt can also be normalized Z; = (V’\I/TYt/Aﬂ) , where A1; is the largest eigenvalue of W.

T=0,1,...
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© and applied to the expected value of the state vector in J periods E; [K;, ;] = A’K;. So, for
the first J period, the positivity of bond prices is checked while for the later periods the criterion
OK, = Ois used. ©

5 Conclusion

This paper has provided conditions ensuring that LG processes are well-defined. We have tried to
formulate them in a way that makes them easy to use in theoretical or empirical work. We have
illustrated the conditions via a series of economic examples.

As we end this paper we wish to highlight one remaining question on LG processes. Is there
a formulation of the volatility as function of the state variables, that allows calculation in closed
form of derivative prices with LG processes (perhaps up to a Fourier transform, as Duffie, Pan and
Singleton 2000 for affine processes) 7 Our conditions should be useful to guide the search of such a

formulation of volatility.

1{j=i+1} B

6¢ =(1,0,0,...) andA_< 0 OAO-!

> with B;; =0fori=1...J, j = 1..n+1, except bynt1 = 1.
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Appendix A. Results for Linearity-Generating processes

Here we present the some results on the Linearity-Generating (LG) processes identified and analyzed
in Gabaix (2007). LG processes are given by M;D;, a pricing kernel M, times a dividend D;, and
X;, a n-dimensional (n a non-zero integer) vector of factors (that can be thought as stationary).

For instance, for bonds the dividend is D; = 1.

Discrete time By definition, process M;D, (1,X;) is a LG process with generator ¥ =

5/
( “ ) € R(+1)x(+1) if and only if it follows, for all ¢’s:

~v T
M1 D4 y
By | ———"| = X 4
t |: MtDt :| O!"’(S t ( 0)
M,.1D
By l%){tﬂ} =v+IX,, (41)

where o € R,y € R", 9 € R", ' € R™*", and almost surely M;D, > 0 for all ¢t > 0.

Higher moments need not be specified. For instance the functional form of the noise does not
matter, which makes LG processes parsimonious.

The key property of LG processes is that stocks and bonds have simple closed-form expressions.
The price-dividend ratio of a “bond”, Z; (T') = By [MyyrDyi7| / (MDy), is, with I, the identity

matrix of dimension n, and 0,, is the row vector with n zeros.

Zt(T):<1 on)\DT<;<) (42)

T[n _ FT
=a’ + 5'OZI—FX75 when v = 0. (43)
al, —

!/

If all eigenvalues of generator ( ) have a modulus less than 1, then the price of a stock,

Y
P, =L, [Zszt MSDS} /M, is finite and equal to:

(44)

:Dt<1 071)([%1—\11)‘1(; ) (45)

There is a more compact way to think about LG processes. Define the process with values in
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Rn-‘,—l

M, D,
M, D M, D; X
e T B (146)
MtDtXt .
My Dy X
so that with vector v/ = (1,0, ...,0),
MtDt = VI}/;:. (47)

Y; stacks all the information relevant to the prices of the claims derived here (other assets, e.g.

options, require of course to know more moments). Conditions (40)-(41) can be written as:
Ey [Yt+1] = WY, (48)

Hence, the (dividend-augmented) stochastic discount factor of a LG process is simply the projection
(47) of an autoregressive process, Y;. The tractability of LG processes comes from the tractability

of autoregressive processes. Eq. 42 comes simply from:

Z (T) _ EO [MTDT] _ E() [V’YT] _ V/E() [YT] _ V/\IJTYO _ V/\I/T }/0 _ VI\IIT 1
0 My D, MoDy MyDq MyD, MyDy '

Also, Eq. 45 comes from:
R Ey [MyDr] — or( 1 ) [ 1
D, Z VD, Z o TE_:O \ > X

T=0
(1
=V (Iys — ) 1<Xt>'

If the process is well-defined, i.e. M;D; > 0 for all ¢, prices simply depend on (48). The central
task of this paper is to provide conditions on the process, so that indeed M;D; > 0 for all t.

Continuous time The following notation is useful when using LG processes. For xy,
processes, we say Fj[dz;] = dt, or Ey[dx;] /dt = p, to signify that there exists a martingale
N, such that: z; = zo + fot sds + Ny.

a
In continuous time, M;D; (1, X;) is a LG process with generator = = ( ; i > € R+ (n+1)
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if and if only it follows:

E, [d(M,Dy)] = — (a+ 5'X;) M,Ddt (49)
E,[d(M,D,X,)] = — (b+ ®X,) M, Dydt, (50)

witha € R, € R", b € R", & € R™" and almost surely M;D, > 0 for all t > 0
The price-dividend ratio of a “bond” is: Z; (T') = By [Myy1rDyyr| / (MyDy)

7, (T) = (1 0, )exp(—ET)< ! ) (51)

Xy
—o7") — —al) I,
=exp (—aT) + B,exp( q)) e};p( aT) X when b= 0.

The price of a stock, P,/D; = B, [ ftoo Mstds} / (M;Dy) , is, if all eigenvalues of generator =

have a positive real part (finite stock price):

1— 3o 1X,
a— [B'd-1bh

=<1 0")3_1<;t>'

To ensure that the process is well-behaved (hence prevent prices from being negative), the

P/ Dy =

volatility of the process has to go to zero near some boundary. The present paper sufficient conditions
for this.

Similarly to the discrete time case, one defines the vector Y; as in (46). Thus conditions (40)-(41)
can be written as:

E,[dY;] = —EY,dt, (52)
which is the continuous time analogue of (48). The formulas for bonds and stocks are derives as in
the discrete time case, observing F; [Y;, 7] = e =7Y;. The latter equation requires some regularity
conditions that are the topic of this paper.

Appendix B. Some Useful Lemmas on Positive Matrices

The following Lemma is useful in several parts of this paper. It is proven by simple verification of
(54).
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Lemma 1 (© matriz) Given an integer N > 1, a diagonal matriz A = diag (A1, ..., \n), define the
N x N matriz ©:

1 0 0
... 1 0 ..

©= (1{12j})ij - 1 ol (53)
1 ... ... 1

Then, (@A@il)zj =0 ZfZ <j, =N Zfl =7, and = )‘j — )‘j+1 Zfl > 7, i.€.

MO 0
A=A A 0
eret= |1 T ) N (54)

A=A . Ao — Ay A

In particular, if \1 > ... > Ay, then ©AO~! has non-negative coefficients, and, if the \; are positive,

positive diagonal coefficients.

The Lemma implies that, if Z,,, = OAO~1Z,, then Z, = 0 implies that for all t > 0, Z, = 0.

The next Lemma analyzes another matrix with a similar property.

Lemma 2 (II matriz) Given an integer N > 1, a diagonal matriz A = diag (M1, ..., \n), define the
N x N matriz 11:

IL;; = (Nig1 — Aj) Lisj fori=1..N—1

=1 fori=N,
1.€.,
AL — Ao 0 0
Al — A3 A — A3 0
II = 0 : (55)
)\1—)\]\[ )\Nfl—)\N )\Nfl—)\N
1 1 1 1

Then, (HAHfl)ij =0ifi<jorN=i>j, =Nifi=j,and=X\— N2 if N>i>j, and =1
ifi=N and j = N — 1.
In particular, if \y > ... > Ay, then ©AO~! has non-negative coefficients and, if the \; are

positive, positive diagonal coefficients.
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Proof. Call A the announced value for IIAII"'. One simply verifies that [IA = AII, which is
straightforward algebra. m

For instance, when N =5

A 0 0 0 0
A1 — A3 A2 0 0 0
OAIT = [ A\ = A3 X — Ny A3 0 0

A=A A= A3—XA Ay O
0 0 0 1 X5

The © matrix yields stricter conditions than IT matrix, in the sense that VZ € RY, 67 = 0 =
I[1Z = 0. This comes from the fact that II = 70 for a matrix © with non-negative coefficients,

namely m;; =0 fori>jori=N > j, tyy = 1, and m;; = \; — \j41 otherwise.

Appendix C. Additional Derivations

Proof of Proposition 1 In the deterministic case Y;;; = ¥Y}, hence Z,.; = OAO~1Z,.

Eq 14 is Z; = 0. The key fact is Lemma 1 in Appendix A which shows that ©A©~! has non-
negative non-diagonal coefficients, and positive diagonal coefficients. So Z; > 0 implies Z;; > 0.
By induction, for all ¢ > 0, Z; > 0.

Finally, M;D, = Z,;, > 0.

Proof of Proposition 2 It is proven like Proposition 1. Define z; = EyZ;. Then, 2z, =

OAO~1z. Observe that zy = 0, and 2; = 0 implies 2,41 = 0. Finally, Ey [M;D;] = z,; > 0.

Proof of Proposition 6 With 7, = FY}, Z;,y = FUVF'Z, + Fo (F'Z,)n:41. So (SC1)
simply expresses Z; > 0 = Z;11 > 0.
Because Fo (F7'Z)nq > — ||[FOo (F712Z)||, 0]l &, SC2 = SC1 and SC4 = SC3

Next, remark that \; = (FUF1),.. Because FWEF ! has nonnegative elements non-diagonal

elements, when Z; >~ 0,

n

FOUF—7z, =3 (FOWF™), Zy > (FOWF™Y)  Zy = \iZy,
j=1

i.e.

FOUF17, > \.Z,
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This implies SC3 = SC1 and SC4 = SC?2.
Proof of Proposition 7 Immediate, given SC1 and SC2 of Proposition 6.

Proof of Theorem 1 By (ii), # and ¢ have a unique continuous extension to the closure D
of D. From there we extend them to R™™ by setting fi(z) := u(|z|) and 6(x) := o(|z|), where |z
denotes the vector with components |z™|, m = 0, ...,n. Since |||z||| = ||z|| and |||z]|—|y||| < ||z—y]|
for all z,y € R", /i and & satisfy the conditions (i) and (ii) for all z,y € R"*. Therefore, the SDEs

dzi = [i(z—)dt + 6(z-)dGy + diag (z—)dHy, zy=1z9 €D, (56)

and
dAt = CAt,dt + (5'(1415,)th + dmg (At,) dHt s AO =9 € D, (57)

both have unique solutions. If we can show that A; does not leave D, then z; cannot leave D either.
Indeed, it follows by comparison from condition (iii) that z;* > A?* for all m and 0 < ¢ < 7, where
7 is the stopping time

T:=inf{t >0:2 ¢ D} .

So if A; does not leave D, then 7 = oo and z; does not leave D.

To show that A; does not leave D, introduce for all m = 0,...,n and k > 1 the functions

() = (zm)~to™(x) ifa™ #£0
’ (0,...,0) ifam=0

and

" (x) = v (@)™ (@),

where Uk

(“:—()') if [2°] < e
1 if [2° > ¢

and for m > 1,

(A0
1 if [2™ > e(1 A |2%)

L \7F 0
oy | () e <e(A )

k

V%% is continuous for all k > 1,

klirn VOF(x) =10(x) for all z € R™M,

28



and
[V0(z) =¥ (2)| <d forallk>1and x € R™'.

Hence, v%%(A;_) is a left-continuous process with right limits, and v°(A;_) is predictable and locally

bounded. In particular, v°(A4; ) is integrable with respect to G; and AY satisfies the SDE
dA) = A {cdt +1°(A_)dGy + dH} } .
It follows that A? is equal to the stochastic exponential £(2°); of the semimartingale
t
2 =ct +/ V(A )dG, + HY .
0

By (30) we have Az > —1 and therefore, AY = £(2°), > 0 for all ¢ > 0.

By (v), v™F is continuous on the set {x € R"™ : 20 # 0} for all m > 1 and k > 1. Moreover,
lim v™*(z) = v™(z) for allm > 1 and z € R,

k—o00

and
V"™ (@) —v"™*(z)| < d forall m,k >1and z € R,

It follows that v™"(A;_) is left-continuous with right limits and ™ (A;_) is predictable and locally
bounded. In particular it is integrable with respect to Gy, and A}* solves the SDE

dAT = AP (cdt + v™ (A )dGy + dH™) .
So it is equal to the stochastic exponential £(z); of the semimartingale
t
2"t =ct +/ V" (As-)dGs + H™ .
0

Since 2z > —1 for all t > 0, A7* = £(2™), > 0 for all ¢ > 0.
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Proof of Proposition 8 Under the assumptions of this Proposition, &7 = fOTa(zt,)th +
diag (z—) dH; is a martingale. Define for T'> 0, f (T') = Ey [2:+7|. Taking ¢ > 0, we have:

fT+e) - f(T) _ E, [u] = F, [1 /t o (2= )dt + 0(2-)dG, + diag (zt)dHt}

£ < N
1 T+e 1 P Z-dt
— EO [_ / Aztdt] + EEO ETJrs - éT] = AEO j‘jﬂ%] o

€Jr

Taking the limit ¢ — 0, we get that f(7) is differentiable, and
f'(T) = AEp [z] = Af(T),
which integrates to f (T) = T f (0) = e/ 2.

Proof of Theorem 2 SDE (31) is of the form (29), with p(Z) = AZ, 0 (Z) = Z% (Z/Z°),
Gt = Bt, and dt = Jt.

Condition (a) implies condition (iii) from Theorem 1, as for Z > 0 we have:

W (Z) = A Z™ + Y Ay Z) 2 Ay 2™ 2 2™,
j#Fm

if we define ¢ = min,,—g.. ny_1 Amm-
We next verify that conditions (b2-b4) imply that o (Z) = Z% (%) is Lipschitz. Indeed for

m=1.N—1,
do" (2) 70 1 ij Z ij Z

where 0,,v% is the derivative of v¥/ with respect to its m-th argument. So,

a”ij(z)‘ < C. Also,

ozm™
901 (2) B 0 il Z A [ — (7 e e L
— Z 1] _ — () _ Z . . 1] _ — 1] _ m
07 920 ( "\ 7 "\ Z +g_:1 zz O\ ) T mzlz 9zm’

with 27 = 77/7°. So, |22 < ¢
We conclude that o (Z) is Lipschitz. As p(Z) = AZ is also Lipschitz this implies (i), (ii) from

Theorem 1.
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Conditions (iv) and (v) come from the fact that ¢ is Lipschitz, and condition (bl), as

llo™(z)|| = ||e™(x) — ™ (z0, ..., 0,...2x_1)|| by condition (bl)

< o'l =™
Proof of Result 2 We observe that 7 = ¢ (1 — Z;/Z,), and we apply Theorem 2 to v (z) =

a(¢(1=2))
( 8 ) Condition (b3) means |o’| is bounded. Calculating:

L e-2) 0@, (1T
=Bl T -y - D (1- 1),

we see that condition (b4) means that |0 (r) 4+ ¢’ (r) ¢ is bounded.
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