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This online appendix contains some complements to the paper: extension to many factors;

the pricing of “equity strips;” details on the Epstein-Zin extension of the model; details on the

simulations.

VII. Theory Complements

VII.A. The Model with Many Factors

The paper derived the main economics of the variable severity of disasters model. It relied on one

nominal and one real risk factor. This section shows how the model readily extends to many factors,

including those with high- and low-frequency predictability of dividend growth or inflation.

VII.A.1. Extensions for Stocks

Variable-Trend Growth Rate of Dividends It is easy to add a predictable growth-rate

trend to the stock’s dividend. Postulate:
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¡
1 + +1

¢
(1 + b)×( 1 if there is no disaster at + 1

 if there is a disaster at + 1


where b is the deviation of the growth rate from trend and follows an LG-twisted process: Eb+1 =
1+∗

(1+)(1+)
−b. Calling b = ( −∗) (1 + b)  (1 +∗), postulate that

Eb+1 = 1 +∗
(1 + b) (1 +)

−b
Proposition 11 (Stock price with time-varying risk premia and time-varying growth rate of divi-

dends) The price of stock  in the model with stochastic resilience b and stochastic growth rate of

dividend b is in the limit of small time intervals:
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 (47)

The expected return on the stock, conditional on no disaster, is still  =  − ∗ − b.
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Proof. 

³
1bb´ is an LG process, so the P/D ratio obtains.

Eq. 47 nests the three main sources of variation of stock prices in a simple and natural way.

Stock prices can increase because the level of dividends () increases, because the expected future

growth rate of dividends (b) increases, or because the equity premium decreases ( b). The growth

and discount factors (b, b) enter linearly, weighted by their duration (e.g., 1 ( + )) which

depends on the speed of mean reversion of each process (  ) and the effective discount rate .

The price is independent of the correlation between the instantaneous innovations in b and b, as

is typical of LG processes.

Stocks: Many Factors To have several factors for the growth rate and the discount factor,

postulate: b = P

=1 b, b = P

=1
b, Eb+1 = 1+∗

(1+)(1+)
−b, and Eb+1 =

1+∗
(1+)(1+)

−b. For instance, the growth rates could correspond to different frequencies, i.e.,
a long-run frequency (for low ) and a business-cycle frequency (for a high ).

Proposition 12 (Stock prices with time-varying risk premium and time-varying growth rates of

dividends with an arbitrary number of factors) The price of stock  in the model with stochastic

resilience b = P

=1
b and stochastic growth rate of dividend b = P

=1 b is in the limit of
small time intervals:

 =
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 (48)

The expected return on the stock, conditional on no disasters, is still:  =  − ∗ − b.
Proof. 

³
1b1 b

b1 b 

´
is an LG process, so the P/D ratio obtains.

Formula (48) is very versatile, and could be applied to a large number of cases.

VII.A.2. Extensions for Bonds

Bonds: Variation in the Short-Term Real Rate To highlight the role of risk premia, the

real short-term interest rate is held constant in the baseline model. We can make it variable, e.g.,

as follows. Postulate that consumption follows  = e
∗
 , where 

∗
 follows the process seen so

far (Eq. 1) and e captures a deviation of consumption from trend. We could take e+1 e = ,

where  would follow an AR(1). In the LG spirit, let us take a twisted version thereof, e+1 e =

(1−)
−1

, where  follows an LG process, E [+1] = − (1 +) with innovations in

 that are uncorrelated with disasters and innovations in inflation variables  and  (the two

processes would be similar for  ' ). When the consumption growth rate is high,  is high.

The pricing kernel is  = e− ∗
 , where 

∗
 is given in Eq. 2.
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Proposition 13 (Bond prices in the extended model) The bond price in the extended model is:

$ ( ) = ∗$ ( )

µ
1− 1− −

1− −


¶


where ∗$ ( ) is the bond price derived earlier in Theorem 2.

Proof. Because e− (1 ) is an LG process, we have: E

∙ −
+−

¸
= 1 − 1−−

1−− . With  the

real value of one dollar, the nominal bond price is: $ = E
h
++

+

i
= E

h
∗
 +

∗
 +

i
E

∙ −
+−

¸
=

∗$ ( )E

∙ −
+−

¸
.

In the continuous-time limit, the short-term rate is  = −$ +  +. It now depends both

on inflation  and on the consumption growth factor .

Bonds: Many Factors The bond model admits more factors. For instance, assume that

inflation is the sum of  components,  = ∗ +
P

=1
b, which follow:

b+1 = 1− ∗
1− 

·
³

b + 1{Disaster at +1} ³∗ + b´´+ +1 for  = 1 

with b+1 = 1−∗
1− 

b + 

+1 and

¡
1   


1  




¢
mean 0 independently of whether or not

there is a disaster at . The -th component mean-reverts with an autocorrelation , which allows

us to model inflation as the sum of fast and slow components. If there is a disaster, the -th

component of inflation jumps by an amount b which will mean-revert quickly if  is small. I
state the bond price in the simple case with no average increase in inflation: ∀ ∗ = 0.

Proposition 14 (Bond prices with several factors) In the bond model with  factors, the bond

price is:

$ ( ) =
¡
− (1 +$) (1− ∗)

¢
(1−

X
=1

1− 
1− 

b
1− ∗

−
X
=1

1−


1− −
1−



1−
 − 

E
£

−
+1

¤ b
1− ∗

) (49)

The bond price decreases with each component of inflation, and more persistent components

have greater impact.

To sum up, the framework makes it easy to model a variety of multi-factor features of stocks

and bonds.
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VII.B. Equity Strips

An “equity strip” of maturity  is the claim at time  on the dividend paid at time +  . Equity

strips may allow the study of the maturity structure of equity risk premia.33 In that sense, they are

the equity analogue of the yield curve (Binsbergen, Brandt, and Koijen forth.)

Fortunately, it is easy to calculate properties of an equity strip of maturity  on stock ,  ( ) =

E [++]. Recall that 

³
1 b

´
is an LG process with (I use the continuous-time

limit here for simplicity) continuous-time generator  =

Ã
 −1
0  + 

!
, where  =  −∗ − .

So, by Theorem 3 in Gabaix (2009),

 ( ) = 
−

µ
1 +

1− −



b

¶
 (50)

while the stock price is  =




³
1 +



+

´
=
R∞
0

 ( )  .

The expected return on the strip (conditioning on no disaster, which is the common benchmark

in this nascent literature and which I think is the relevant comparison for post-Great-Depression

data) is, by the same reasoning as in Proposition 1,

 ( ) =  − (51)

Hence, the expected return is the same across maturities  . The reason is that strips of all

maturities are (in this simplest version of the disaster model) exposed to the same risk in a disaster:

the value of all equity strips will be reduced by a factor .

Let us now calculate the return volatility (also conditional on no disasters). Taking a lineariza-

tion, the return is:

 ( ) =  +
1− −


 

where  is the innovation to ln and  is the innovation to
b. So the volatility of the return

is:

 ( ) =

s
2 +

µ
1− −



¶2
2  (52)

We see that the return volatility is increasing with maturity. The reason is the same as for

bonds. Longer-maturity bonds have more volatility, because they have a higher duration: shocks

are compounded over a long maturity.

33I thank Ralph Koijen for prompting me to think about the price of equity strips.
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Finally, the Sharpe ratio is:

 ( ) =
 −r

2 +
³
1−−



´2
2



which is decreasing with maturity. Indeed, as the limit  → 0, the Sharpe ratio of short-maturity

strips becomes infinite. The reason is that in a disaster model, an asset can have zero “normal-times

volatility,” but a positive risk premium, which reflects the latent disaster risk.

Adding a stochastic growth rate can be useful to model growth stocks, as in Section VII.A.

Then, the price of the strip is:

 ( ) = 
−

µ
1 +

1− −



b +
1− −


b¶ 

so the volatility is:

 ( ) =

s
2 +

µ
1− −



¶2
2 +

µ
1− −



¶2
2

The expected return is still  −, so the Sharpe Ratio is:

 ( ) =
 −r

2 +
³
1−−



´2
2 +

³
1−−



´2
2



Thus, the prediction seems robust to adding a stochastic growth rate.

Given that the stock price is

 ( ) =




Ã
1 +

b

 + 
+

b
 + 

!


the stock price volatility is:

 =

s
2 +

2

( + )
2
+

2¡
 + 

¢2 
VII.C. Complement to the Cochrane-Piazzesi Part

Here I complement Section IV.C on Cochrane-Piazzesi. The baseline model has only 2 factors.

Let us consider a small deviation with 3 factors. Add an extra factor to the model (e.g., an extra

component to inflation, as in Section VII.A.2), , that mean-reverts at a low speed . Then, along
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the multi-factor model of Section VII.A.2, we would have, to the leading order:

 ( ) =  ( ) + −  + −  + Λ ( )

This is like in the paper, but with an extra −  term. Now, find the weights  on 3 maturities,

{  + 2} (e.g., {1 yr 3 yr 5 yr}), such that the combinationP=++2 ( ) is the bond

risk premium up to a constant:

 = constant+
X

=++2

 ( ) 

The combination is now generically unique (it is unique if  , , and  are different), and it

can be obtained by making sure the right-hand side of the above equation has zero weight on 

and . The weight  = ( + +2) is:

 =

¡
 − 

¢
(+2)¡

 − 
¢ ¡

 − 
¢ ¡−1  +  −(+)¢0 

In the case of interest (  , , so that the bond risk premium mean-reverts faster than

inflation), the weights have signs (−+−) and are, thus, tent-shaped. In the limit  ,  → 0

(used in the rest of the paper), we have

 =  (−1 2−1)0

for a constant  =




(1−−)2
, so that  ∼ 1

2
when  is small. This gives the “estimation-free”

combination proposed in (31).

VII.D. Additional Derivations

Proof of Theorem 2 in the continuous-time case In the proof, I normalize ∗ = 0. I

will show that  (1  ) is an LG process. I calculate its three LG continuous-time moments.

Successively,

E

∙
 ()



¸
 = − ( + )| {z }

No disaster term

+ 
¡
E
£
 $
+

−
+

¤− 1¢| {z }
Disaster term

= − +$ − 
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E

∙
 ()



¸
 = − ( + )  + E

 []| {z }
No disaster term

+ 
¡
E

−
  $

 E [+]− 
¢| {z }

Disaster term

= − ( + )  − ( − )  + 

³
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−
  $



³
 + ∗ + b´− 

´
= E

−
  $

 ∗ − ( +  −$)  + E
−
  $


b

=  ( − )− ( +  −$)  + 

as I defined E
−
  $

 ∗ =  ( − ) and  = 
−
  b. Finally:

E
 ()



 = − ( + ) + E| {z }
No disaster term

+ 
¡
E

−
  $

  − 
¢| {z }

Disaster term

= − ( −$ + ) − ( − ) = − ( −$ + )

I conclude that  (1  )
0
is an LG process with generator⎛⎜⎝  −$ 1 0

− ( − )  −$ +  −1
0 0  −$ + 

⎞⎟⎠ 

When  = 0 (inflation has no bias during disaster), the proof can directly go to its conclusion,

(53). When  6= 0, one more step is needed. Define e =  − . Then, the process 

³
1e ´

is LG with generator:

1 =

⎛⎜⎝ −$ +  1 0

0  −$ +  −  −1
0 0  −$ + 

⎞⎟⎠ = ( −$ + ) 3 +

⎛⎜⎝0 1 0

0  −1
0 0 

⎞⎟⎠ 

where  =  − 2,  =  − , and 3 the 3× 3 identity matrix. Theorem 3 in Gabaix (2009)

provides the bond price:

$ ( ) = (1 0 0) −(−$+) exp

⎛⎜⎝−
⎛⎜⎝0 1 0

0  −1
0 0 

⎞⎟⎠

⎞⎟⎠³1e ´0 (53)

= −(−$+)

Ã
1− 1− −



( − ∗∗)−
1−−


− 1−−



 − 



!


Proof of the Epstein-Zin part Here I provide the proofs for the Epstein-Zin part of the

model, including the exact results in the Appendix.

Stochastic discount factor
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We verify that the equilibrium price of a consumption claim is indeed consistent with (36); we

show that it leads to a consistent process. First, the return on a consumption claim is:

 =




+




 =




+
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+






=
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1 + 
+

+

Ã


1 + 
+
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+ +
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 +  + 
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+ + 
− ( +  + ) + ( +  + ) [(− 1)2 () +  () ]

 +  + 

 =




+
¡
 −  +  (− 1)2 ()

¢
+  ()  (54)

The SDF satisfies + = − (+)
−1()

(1 + )
1−1

in semi-discrete-time no-

tation (the fully-continuous-time machinery of Duffie-Epstein 1992 would give the same result), so

that in continuous time, if there is no disaster:
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¡
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2

¶
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¸
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∙µ
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¶
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If there is a disaster,  is multiplied by 
−1()+1−1
 = 

−
 . So,





=


 |

+
¡

−
 − 1

¢
J

= (− + (− 1)∗) + (− 1)
∙µ

 +
2 ()

2

¶
−  () 

¸


i.e., (37). Note that here are elsewhere, to be a purist, we could write 


−
rather than 


. Given

the context, I think that there’s no ambiguity and so little gain in augmenting the notational burden

with a −.

Price of a consumption claim

We now need to verify that a consumption claim satisfies (36). We will show that  (1 )
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is an LG process. From (37), we calculate:

 ()



= −+ (− 1)
µµ

∗ +  +
2 ()

2

¶
−  () 
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+ +
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 − 1¢ J

The first LG moment is:
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∙
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¸
 = − + (− 1)

µ
∗ +  +
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 − 1¤

= − +  + (− 1)
µ
∗ +  +
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¶
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µ
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¶
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2
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= − +  + ∗ + 
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The second LG moment is:
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À
= (− + )  − ( + )  + ( +  + ) (− 1)2 ()

+ (1− ) ( +  + )
2 ()

= − ( + ) 

The results on LG processes (Gabaix 2009, Theorem 4) give  = 

³
1 + 

+

´
, i.e., (36).

A general stock

We will show that 

³
1 b
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is an LG process.
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By the LG results, this proves (34).

The stock price is higher if the dividends covary with the price kernel in normal times, or if

resilience innovations covary with it.34

VII.E. On the Calibration of the Epstein-Zin Model

This section adds details on the calibration of the EZ model.

How big are the second-order terms? The Appendix presents an exactly solved EZ model,

and the main text presents its first-order impact in order to demonstrate the main economics. Here

I study how big the “second-order terms” are. We shall see that they are less than 1% or 0.1% of

the quantities of interest, so that the model in the main text is a very accurate rendition of the

more complex model in the Appendix.

To see this, I use an average volatility of the disaster probability  = 04% (in annualized

units) from the main text (it is an average, because it has to go to 0 when  is close to 0). We have

 = (
1− − 1), so for the  process in the Appendix, the volatility of  is:

 =
¡
1− − 1¢ = 10%

Recall that for an AR(1) process  = −+, the dispersion of  is  := E [2 ]12 = 
√
2.

To the leading term, this holds for a twisted process (Gabaix 2009), so the typical size of  (its

dispersion) is:

 =
p
2

= 20%

We can now evaluate how small the “second-order terms” are. For instance, in +1 and in

, the main text approximates  +
2()

2
by , neglecting the second-order term (see Eq. 32

vs. Eq. 37, and the expressions for  after those equations). How big is that second-order term
2()

2
compared to a first-order term  (or b)? It is only a fraction 0.0008 of the leading term,

34The latter effect can be seen in two ways: first, by just calculating the expected return as −
³



 

´
,

or otherwise by observing that, by (39), a positive average moment h


+ 


 

 i leads to a negative mean

for b
 ; as  is given in the partition  between b

 and ∗, this leads to a higher value for 
∗ , which

implies a higher price .
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 (=
2()

2


with 
= ), using a “ratio of average absolute values” as a metric. Likewise,

the approximation in the interest rate only amounts to the same fraction 0.0008.

Similarly, for the process of , the “second-order term,” which is in the Appendix but omitted

in the main text, is ( +  + ) (− 1)2 () (equation 35). It is very small compared to the
first-order term, : only a fraction 0008 (= | (++)(−1)

2



|).

Calibration of the rate of time preference The interest rate in the EZ model is given by

 = −E [], i.e., to the first order:

 =  +



− E

£

−
 (1 + (− 1))− 

¤


Targeting as in the power utility model a mean short-term rate of 1% yields  = 48%.

Quantitative impact of variable  vs variable  The variance given in the paper comes

from (56), with ∗ =  as in the paper:

b

 = b1−
+ ∗

− b

so that

 =

r³

1−´2

2 +
³
∗

−´2
2

= 101 

where  = ∗
−
 is the volatility of resilience in the power utility calibration.

The “normal-times” volatility of the SDF can be derived from +1 = (1− )
+1
+

and 
 =

E
£

1−
+1 − 1

¤
, which implies +1 = 


+1

³

1− − 1

´
, so that:


¡
+1

¢
= |(1− )|

³

1− − 1

´


 + 
= 64%

One could imagine several other useful calibrations (Wachter 2009 presents a different one) that

might be a combination of the above, e.g., with moderate variability of  and variability of .

Simulation of the Epstein-Zin model with both  and 
 variable The problem is

the following: consider the process for 
 defined in the main paper (Eq. 39). How is it derived

from movements of both  and ?

A simple way to solve this is as follows. For simplicity, I take the baseline case where
D



 



E

=

57



0. Call




 = E
£

−
+1 ( + (− 1))− 

¤
the “principal part” of 

 , so by (38), 

 = 



 +(− 1) 2()
2

. As 2 () is independent of

the asset, we want to simulate 


 . Call b = −∗ and b = −∗ the deviations from trends.

Heuristically, b

 ' 


∗ +






b + 





b. Thus, given a process for  and a process for




 , we can define a “subordinate” process for
b such that the following equation holds exactly:

b

 = b ¡E £−+1 ( + (− 1))− 
¤¢
∗ +

¡
E

£

−


¤¢
∗
b (56)

where
¡
E

£

−


¤¢
∗ is the constant part of E




£

−


¤
. The above gives a well-defined process

for b.

As in the rest of the paper, we first define the movement of the “high-level” variables (e.g.,

resiliences), and then define the appropriate movement for the “low-level” variables, e.g., b.

VIII. Complements to the Part on Options

In the options section, the paper assumes that the distribution of stock returns, conditional on no

disasters, is lognormal. This section shows how to ensure that by means of a more general result.

Position of the problem. Suppose we are given a random variable (r.v.)  with CDF  and a

desired CDF  with support in (0∞) such that the associated r.v. satisfies: E [ ] = E []. We
want to define a r.v.  such that  is uncorrelated with  and  has the CDF .

Can we find such a r.v. ? We provide sufficient conditions for this and a construction of .

Lemma 3 (Constructive way to “noise up” a r.v. to obtain a desired distribution) Consider two

positive independent random variables (r.v.)  and 0, with CDFs, respectively,  and , where

E [ ] = E [0]. Define the r.v. 1 = −1 ( ( )). Suppose that

 ≡ E
∙
1



¸
≤ 1 (57)

Then, define:

 =
1−

E [ ]E [1 ]−
∈ [0 1]

and the r.v.:

 =

(
0 with probability 

1 with probability 1− 


where the probability is taken independently of  , 0. Then,  has CDF , and is uncorrelated

with  and E [] = 1.
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Proof. Recall that if  ∼  [0 1] r.v., then the r.v. −1 () has CDF . Also,  ( ) ∼  [0 1].

Given this, it is straightforward to see that 1 and  =  have CDF . Also, E [ ]E [1 ] ≥ 1,
so that  = (1−)  (E [ ]E [1 ]−) ≤ 1. Finally,

E [] =  [0 ] + (1− )E [1 ]

=  [0]E [1 ] + (1− ) =  [ ]E [1 ] + (1− ) = 1.

Thus,  ( ) = E [ ]− E []E [ ] = E [0]− 1 · E [ ] = 0.
We can also show that if  ’s distribution is very tight around 1, then  ≤ 1. So, if  has very

little dispersion, then it is possible to find a required .

The intuition for the condition  ≤ 1 is the following. If  and  are independent, then

E [ ] = E []E [1 ] ≥ 1. So  and  need to be positively correlated or “affiliated.” The case

of maximum affiliation is 1 = −1 ( ( )). Thus, if  ≡ E [1 ] is ≤ 1, then there is a case of
“intermediate affiliation” such that E [ ] = 1. The above constructed  is one such example.

Condition (57) means roughly that  is more dispersed than  . To illustrate this, consider the

case where  and  are lognormal:  = exp (−22 + ),  = exp (−22 + ), where , 

are standard normal and ,  are non-negative. Then, 1 = exp (−22 + ) (as it has the right

distribution and is perfectly affiliated with  ) and:

 = E
∙
1



¸
= E

£
exp

¡−22 + − ¡−22 + 
¢¢¤

= exp
¡−22 + 22 + ( − )

2
2
¢

= exp ( (− )) 

Hence,  ≤ 1 iff  ≤ , which means that  is more dispersed than  .

I suspect that the condition (57) is close to necessary for the existence of . At the same time,

there are many ways to construct the r.v. .

Application to options In the paper, define  =
+


− 
1+−∗ ++1


+ 

 , 0 = ++1−
22,

and  = 1 + +1. Calling  the probabilities conditional on no disasters, we have E [0] =

E [ ]. The paper requires E [] = 1 and  ( ) = 0. So, we just apply Lemma 3,

which yields a r.v. . We then define 1+ +1 =  if there is no disaster, and 1+ +1 = 1 if there

is a disaster. Then, by construction, the distribution of +1 is as announced in (22).

IX. Details for the Simulations

Units are annual. I simulate at the monthly frequency, ∆ = 112. When the regressions have lower

frequencies (e.g., annual), I time-aggregate. I use the notation + = max (0 ).

59



Bonds Core inflation  = ∗ + b and the bond premium  are expressed in annual units.

They follow:

b+1 =
−∆b
1− b∆

++1
√
∆+1

+1 =
−∆

1− b∆
++1

√
∆+1

+1 = min

Ã
1

Ã
1−

b+


− +


!+
01

!


and +1, 

+1 are independent random variables with uniform distribution

£−√3√3¤, so that their
variance is 1. As distributions do not matter in LG processes, any other bounded distribution (e.g.,

a truncated Gaussian) could replace the uniform one. The “killing” term +1 ensures that the

volatility goes to 0 at the boundary of the region 1 − +

− +


≥ 0, which safeguards that bond

prices remain positive.

I then simulate 1,000 years of data, and report the results from this time series. I also check

that it does not make too much of a difference if I simulate many time series with 50 years of data.

Bond prices are as given in Theorem 2.

Stocks The stock’s normalized resilience b = −∗ b is expressed in annual units. I define:

 () =
−∆

1 + ∆

 () =
√
2

³
1− bmin´³1− bmax´

 () = min
³
 ()

√
3∆bmax − 

³b´   ³b´− bmin´
and simulate:35 b+1 = 

³b´+ 
³b´ +1 (58)

with +1 i.i.d. with uniform distribution [−1 1], so that their standard deviation is 1√3.
The function  () is simply the twisted AR(1) process simulated with time intervals ∆.

The function  () is the volatility discussed below.

In  (), the term  ()
√
3∆ ensures that the standard deviation of shocks is  () away from

the boundaries. The terms bmax−
³b´ and ³b´−bmin prevent b from hitting the boundary

in discrete time.

35Checking that the process satisfies (5) is trivial: multiplying (5) by −∗ shows that it is equivalent to Eb+1 =
1+∗

1+∗+ 

−b = −
1+ −b = 

³b´. Other verifications follow similar lines.
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The dividend follows a geometric random walk: ln+1 = ln+ ∆+
√
∆+1, where

+1 ∼ 
£−√3√3¤ is i.i.d. with unit variance.

The stock price is as in Theorem 1.

Avariance process vanishing at boundaries Suppose is an LG-twisted process centered

at 0 and  = − (+) +  ()  where  is a standard Brownian motion. Assume

that the support of  is some [min max], with −  min  0  max. The following variance

process makes that possible:

2 () = 2 (1−min)
2
(1−max)

2
 (59)

with   0. For the steady-state distribution to have a unimodal shape, it is useful to take

 = 02 ·  |min|max (the value used in the simulations), or a lower value.

The average variance of  is 2 = E [2 ()] =
R max

min
 ()

2
 () , where  () is the

steady-state distribution of . It can be calculated via the Forward Kolmogorov equation, which

yields  ln  ()  = 2 (+) 2 ()− ln2 () . Numerical simulations show that the
volatility of the process is fairly well approximated by  ' 12, with  = 13. Also, the stan-

dard deviation of ’s steady-state distribution is well approximated by ()
12
. Asset prices often

require that one analyze the standard deviation of expressions like ln (1 + ). Numerical analysis

shows that the Taylor expansion approximation is a good one. The average volatility of ln (1 + )

is ln(1+) ' 12 which numerical simulations also show to be a good approximation.

When the process is not centered at 0, one simply centers the values. For instance, in the

calibration, the recovery rate of a stock  has support [min max] = [0 1] centered around ∗. In

the simulation, for simplicity I assume that conditionally on a disaster  has a point mass. The

probability and intensity of disasters ( and ) are constant. Formula  =  (E [−] − 1)
gives the associated min, max, and ∗. The associated centered process is  = b = −∗.

61


