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Abstract

Analyses of causal mediation are often complicated by treatment-induced confounders
of the mediator-outcome relationship. In the presence of such confounders, the natu-
ral direct and indirect effects of treatment on the outcome, into which the total effect
can be additively decomposed, are not identified. An alternative but similar set of
effects, known as randomized intervention analogues to the natural direct effect (R-
NDE) and the natural indirect effect (R-NIE), can still be identified in this situation,
but existing estimators for these effects require a complicated weighting procedure
that is difficult to use in practice. We introduce a new method for estimating the R-
NDE and R-NIE that involves only a minor adaptation of the comparatively simple
regression methods used to perform effect decomposition in the absence of treatment-
induced confounding. It involves fitting (a) a generalized linear model for the condi-
tional mean of the mediator given treatment and a set of baseline confounders and
(b) a linear model for the conditional mean of the outcome given the treatment, me-
diator, baseline confounders, and a set of treatment-induced confounders that have
been residualized with respect to the observed past. The R-NDE and R-NIE are sim-
ple functions of the parameters in these models when they are correctly specified
and when there are no unobserved variables that confound the treatment-outcome,
treatment-mediator, or mediator-outcome relationships. We illustrate the method by
decomposing the effect of education on depression at midlife into components oper-
ating through income versus alternative factors. R and Stata packages are available
for implementing the proposed method.
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1 Introduction

Researchers have become increasingly interested in uncovering the mediating pathways

through which one variable affects another.1 A common approach to assessing causal me-

diation involves decomposing a total effect of treatment on an outcome into an indirect

component operating through a mediator of interest and a direct component operating

through alternative pathways. This is typically accomplished via an additive decomposi-

tion in which the total effect is separated into natural direct and indirect effects.2–4

The natural direct effect (NDE) is the expected difference in an outcome of interest if

each individual were exposed, rather than unexposed, to treatment and then were subse-

quently exposed to the level of the mediator they would have experienced had they not

received treatment. It measures the effect of treatment on the outcome operating through

all pathways other than the mediator by comparing outcomes under different levels of

treatment after fixing the mediator to the level it would have “naturally” been for each

individual under the reference level of treatment.

The natural indirect effect (NIE), by contrast, is the expected difference in the outcome

if each individual were exposed to treatment and then were subsequently exposed to the

level of the mediator they experience as a result of being treated rather than the level of

mediator they would have experienced had they not been treated. It measures the effect

of treatment operating specifically through the mediator by fixing the level of treatment

for each individual and then comparing outcomes under the different levels of the me-

diator that individuals would have “naturally” experienced if they had previously been

exposed, rather than unexposed, to treatment.

Although the NDE and NIE neatly separate the effects of treatment operating through

the mediator versus alternative pathways, they can only be non-parametrically identified

under a set of highly restrictive assumptions. In particular, the NDE and NIE can only

be identified if there is (i) no unobserved treatment-outcome confounding, (ii) no un-

observed treatment-mediator confounding, (iii) no unobserved mediator-outcome con-

founding, and (iv) no treatment-induced mediator-outcome confounding.3 This last as-

sumption is especially restrictive because it requires that there must not be any variables
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that affect both the mediator and outcome and that are affected by treatment, whether

they are observed or not. It is therefore unreasonable in many analyses of causal media-

tion, where treatment-induced confounding is ubiquitous.

To circumvent this challenge, VanderWeele and colleagues3,5,6 proposed an alternative

set of estimands known as randomized intervention analogues to the natural direct effect

(R-NDE) and the natural indirect effect (R-NIE), which can be identified in the presence

of treatment-induced confounding (see also Didelez et al.7 and Geneletti8). The R-NDE

and R-NIE are similar to the NDE and NIE except that, instead of setting the mediator to

the level it would have naturally been for each individual under a particular treatment

status, these estimands involve setting the mediator to a value randomly drawn from

its population distribution under a given treatment status. Identifying these versions of

direct and indirect effects requires less restrictive assumptions that may be easier to satisfy

in practice. Specifically, identifying these effects requires assumptions (i) to (iii) above but

not assumption (iv).

Estimating the R-NDE and R-NIE, however, remains difficult. VanderWeele and

colleagues5 outlined an estimator based on inverse probability weighting (IPW) that re-

quires correct models for the probability of treatment given a set of baseline confounders,

the joint probability of the treatment-induced confounders given treatment and the base-

line confounders, as well as the probability of the mediator given treatment, the baseline

confounders, and the treatment-induced confounders. Because IPW estimators are rela-

tively inefficient, highly sensitive to model misspecification, and difficult to use with con-

tinuous variables,9–11 this approach may be challenging to implement with confidence

outside of stylized applications. It is also cumbersome to implement with standard soft-

ware, and it lacks the intuitive appeal of regression-based estimators commonly used to

analyze causal mediation in the absence of treatment-induced confounding (e.g., Vander-

Weele and Vansteelandt4).

In this article, we introduce a new method, termed “regression-with-residuals”

(RWR), for estimating the R-NDE and R-NIE. It involves only a minor adaptation of the

familiar regression-based approaches to effect decomposition that are widely used when

treatment-induced confounding is assumed away. Briefly, the method involves fitting (a)
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a generalized linear model for the conditional mean of the mediator given treatment and

a set of baseline confounders, (b) a generalized linear model for the conditional mean

of each treatment-induced confounder given treatment and the baseline confounders,

which are used to compute residual terms, and finally, (c) a linear model for the con-

ditional mean of the outcome given the treatment, mediator, baseline confounders, and

treatment-induced confounders that have been residualized with respect to the observed

past. These models can be fit using standard software, and estimates of the R-NDE and

R-NIE are given by simple functions of their coefficients. RWR estimates are consistent

and asymptotically unbiased when assumptions (i) to (iii) are satisfied and when all of

the models mentioned previously are correctly specified; otherwise, they may be biased.

In the sections that follow, we begin by formally defining the R-NDE and R-NIE and

outlining the conditions under which they can be identified. Then, we introduce RWR

and show that it can be used to estimate these effects in the presence of treatment-induced

confounders. Finally, with data from the 1979 National Longitudinal Survey of Youth

(NLSY79), we illustrate the proposed method by decomposing the effect of college com-

pletion on depression at midlife into components operating through family income versus

alternative pathways.

2 Notation, Estimands, and Identification

We adopt the notation used by VanderWeele, Vansteelandt, and Robins.5 Let Y denote

the outcome of interest, A the treatment, M a putative mediator, C a set of baseline con-

founders, and L a set of confounders for the mediator-outcome relationship that may be

affected by treatment. In addition, let Ya and Ma denote the values of the outcome and

mediator, respectively, that would have been observed had an individual previously been

exposed to treatment a, possibly contrary to fact. Similarly, let Yam denote the value of the

outcome had an individual been exposed to the levels of treatment and the mediator

given by a and m. Finally, let Ga|C denote a value of the mediator randomly selected from

the population distribution under exposure to treatment a conditional on the baseline

confounders C.
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With this notation, the randomized intervention analogue of the natural direct effect

can be defined as

R-NDE = E(Ya∗Ga|C −YaGa|C). (1)

This estimand represents the expected difference in the outcome if all individuals in some

target population were exposed to treatment a∗ rather than a and if they were subse-

quently exposed to a level of the mediator randomly selected from the distribution under

treatment a among those with baseline confounders C.5,7,8 It captures the effect of treat-

ment on the outcome that is not due to mediation via M. This is achieved by comparing

outcomes under different levels of treatment with the mediator randomly selected from

the distribution under the reference level of treatment.

Similarly, the randomized intervention analogue of the natural indirect effect can be

defined as

R-NIE = E(Ya∗Ga∗|C −Ya∗Ga|C). (2)

This estimand represents the expected difference in the outcome if all individuals were

exposed to treatment a∗ and then were subsequently exposed to a level of the mediator

randomly selected from the distribution under treatment a∗ rather than a.5,7,8 It captures

an effect of treatment on the outcome due to mediation via M. This is achieved by fixing

treatment at a∗ and then comparing outcomes with the mediator randomly selected from

the population distribution under different levels of treatment.

The sum of the R-NDE and R-NIE is equal to the randomized intervention analogue

of the total effect:

R-ATE = R-NDE + R-NIE = E(Ya∗Ga∗|C −YaGa|C). (3)

This estimand is similar to an average total effect except that it is defined in terms of both

a contrast between different levels of treatment and a randomized intervention on the

mediator. It gives the expected difference in the outcome if all individuals were exposed

to treatment a∗ rather than a with the mediator randomly selected from the distribution

under each of these alternative treatments.5,7,8

The R-NDE and R-NIE can be identified from observed data under the following
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conditional independence assumptions: (i) Yam ⊥⊥ A|C, (ii) Ma ⊥⊥ A|C, and (iii)

Yam ⊥⊥ M|C, A, L.5 In words, assumption (i) requires that there must not be any unob-

served treatment-outcome confounders conditional on C. Assumption (ii) requires that

there must not be any unobserved treatment-mediator confounders conditional on C.

And assumption (iii) requires that there must not be any unobserved mediator-outcome

confounders conditional on C, A, and L.a Figure 1 presents a directed acyclic graph in

which all of these assumptions are satisfied, as there are not any unobserved variables

that jointly affect treatment, the mediator, or the outcome.12 In this situation, the R-NDE

and R-NIE can be expressed in terms of the observed data as follows:

R-NDE = ∑
c

∑
m

∑
l
[E(Y|c, a∗, l, m)P(l|c, a∗)−E(Y|c, a, l, m)P(l|c, a)]P(m|c, a)P(c) (4)

R-NIE = ∑
c

∑
m

∑
l
[P(m|c, a∗)− P(m|c, a)]E(Y|c, a∗, l, m)P(l|c, a∗)P(c). (5)

Although the assumptions outlined previously are strong, they are still consider-

ably weaker than those needed to identify the components of more conventional effect

decompositions,4 which additionally require that (iv) Yam ⊥⊥ Ma∗ |C. Known as a “cross-

world independence assumption” because it involves a restriction on the joint distribu-

tion of two variables, Yam and Ma∗ , that can never be observed together, this condition is

violated anytime there are mediator-outcome confounders affected by treatment.5,13 For

example, it is violated in Figure 1 because L affects both M and Y and is also affected by

A.

The R-NDE and R-NIE evaluate idealized interventions on treatment and the distri-

bution of a putative mediator. Such interventions may not be practical or even feasible

in many applications. Nevertheless, these estimands can still inform the development

of more effective interventions in practice by answering “what if” questions about hy-

aSeveral other conditions referred to as the consistency and stable unit treatment value assumptions are
also needed to identify these effects. The consistency assumption here requires that Y = Yam and M = Ma
when A = a and M = m. The assumption of stable unit treatment values requires that there must not be
any interference between individuals in the target population or multiple versions of treatment. In addition,
non-parametric identification of the R-NDE and R-NIE requires Ga|C and Ga∗ |C to have the same support;
otherwise, model-based extrapolation is needed to identify E[Ya∗Ga|C ] and/or E[YaGa∗|C ], as the potential
outcomes Ya∗Ga|C and YaGa∗|C may not exist for certain values of the mediator.
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Figure 1: Causal Graph with Treatment A, Mediator M, outcome Y, baseline confounders
C, and post-treatment confounders L.

pothetical modifications to treatment, like “what would be the effect of treatment if its

components that only serve to improve a mediator were eliminated?” Answers to such

questions can guide researchers in imagining and then constructing alternative worlds

where the effects of treatment might be attenuated, neutralized, or amplified.14 If re-

searchers are interested in answering other types of questions about causal mediation,

then they should consider focusing instead on different estimands, such as controlled

direct effects or path-specific effects,5,15 that may better correspond with the particular

query of interest.

3 Regression-with-residuals Estimation

Regression-with-residuals (RWR) has been previously used to examine whether the ef-

fects of a time-varying treatment are modified by time-varying covariates,16,17 to estimate

the marginal effects of a time-varying treatment,11,18 and to estimate controlled direct

effects.15 In this section, we show that RWR can also be used to decompose causal effects

in the presence of treatment-induced confounding into direct and indirect components.

For simplicity, we introduce RWR by focusing on its implementation with linear models

for the outcome, mediator, and treatment-induced confounders. Later, we explain how
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RWR can also be implemented with a more general class of models for the mediator and

treatment-induced confounders.

3.1 Linear RWR

Randomized intervention analogues of natural direct and indirect effects can be estimated

from the following set of linear models. The first model is for the conditional mean of the

mediator given treatment and the baseline confounders. It can be expressed as

E(M|C, A) = θ0 + θT
1 C⊥ + θ2A, (6)

where C⊥ = C−E(C). This model is nearly identical to a conventional linear regression

except that the baseline confounders C have been centered around their marginal means.

The second model is for the conditional mean of the outcome given the treatment,

mediator, baseline confounders, and post-treatment confounders. It can be expressed as

E(Y|C, A, L, M) = β0 + βT
1 C⊥ + β2A + βT

3 L⊥ + β4M + β5AM, (7)

where L⊥ = L− E(L|C, A). This model is also nearly identical to a conventional linear

regression except that, as before, the baseline confounders C have been centered around

their marginal means and, in addition, the post-treatment confounders L have been cen-

tered around their conditional means given C and A. Thus, L⊥ is a vector of residual

terms that can be obtained from a third set of linear models for the conditional mean

of each post-treatment confounder given treatment and the baseline confounders. These

models can be expressed as

E(L|C, A) = τ0 + τT
1 C⊥ + τ2A. (8)

Under assumptions (i) to (iii) and provided that the models for E(M|C, A), E(L|C, A),
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and E(Y|C, A, L, M) are correctly specified, the R-NDE and R-NIE are equal to

R-NDE = [β2 + β5(θ0 + θ2a)](a∗ − a) (9)

R-NIE = θ2(β4 + β5a∗)(a∗ − a), (10)

and the R-ATE is equal to their sum. A derivation of these parametric expressions is

provided in Part A of the eAppendix.

RWR estimation of these effects proceeds according to the following steps:

1. For each of the baseline confounders, compute Ĉ⊥ = C − C, where the overbar

denotes a sample mean.

2. For each of the post-treatment confounders, compute L̂⊥ = L− Ê(L|C, A) by fitting

a linear regression of L on C and A and then extracting the residuals.

3. Compute least squares estimates of equation (6) with Ĉ⊥ substituted for C⊥, which

can be expressed as Ê(M|C, A) = θ̂0 + θ̂T
1 Ĉ⊥ + θ̂2A.

4. Compute least squares estimates of equation (7) with Ĉ⊥ and L̂⊥ substituted for C⊥

and L⊥, respectively, which can be expressed as Ê(Y|C, A, L, M) = β̂0 + β̂T
1 Ĉ⊥ +

β̂2A + β̂T
3 L̂⊥ + β̂4M + β̂5AM.

5. Compute R̂-NDE = [β̂2 + β̂5(θ̂0 + θ̂2a)](a∗ − a) and R̂-NIE = θ̂2(β̂4 + β̂5a∗)(a∗ − a).

These estimates are consistent under the assumptions outlined previously.16,17 Standard

errors and confidence intervals can be computed using the non-parametric bootstrap.19

Alternatively, Part B of the eAppendix provides analytic standard errors obtained using

the delta method.

Adjustment for post-treatment confounders in a conventional regression model would

typically engender bias due to over-control of intermediate pathways and collider

stratification.12,20,21 These problems occur because conditioning on a variable that is af-

fected by treatment may inappropriately block causal pathways and unblock non-causal

pathways from treatment to the outcome. RWR avoids these problems by adjusting only

for residual transformations of the post-treatment confounders. Because the residualized
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confounders are purged of their association with treatment, adjusting for them in a re-

gression model for Y is unproblematic.

3.2 Extensions

RWR requires correctly specified models for the outcome, mediator, and post-treatment

confounders. The model for the outcome must be linear, and thus RWR is best suited for

applications in which Y is continuous. It may also be used when the outcome is binary or

counts, provided that a linear model represents a defensible approximation for the true

conditional expectation function in any particular application.

Although linearity in the outcome model is restrictive, RWR is flexible in other ways.

For example, it can easily accommodate effect modification.15,18 This is achieved by in-

corporating two-way interactions between C⊥ and A, C⊥ and M, or L⊥ and M, which

allow the effects of treatment and the mediator to vary across levels of the confounders.

As long as these interaction terms are constructed with the residualized confounders,

computation of the R-NIE and R-NDE proceeds as outlined previously.

RWR is also flexible in that it can be easily used with nonlinear models for the me-

diator. Specifically, when the mediator is binary or counts, a generalized linear model,

such as logistic or Poisson regression, may be used to estimate E(M|C, A). In this case,

parametric expressions for the R-NDE and R-NIE will depend on levels of the baseline

confounders C and the model used for the mediator M. In general, they are given by

R-NDE(c) = [β2 + β5E(M|c, a)](a∗ − a) (11)

R-NIE(c) = (β4 + β5a∗)[E(M|c, a∗)− E(M|c, a)]. (12)

A derivation of these expressions is provided in Part C of the eAppendix.

Similarly, RWR can be implemented with a large class of models for the treatment-

induced confounders. These models may be linear, logistic, Poisson, or any other para-

metric or semi-parametric model, as appropriate depending on the level of measurement

for each element in L. A convenient feature of RWR is that the parametric expressions

for the R-NDE and R-NIE are insensitive to the choice of models for the post-treatment
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confounders. Thus, regardless of the models used to residualize L, computation of the

R-NIE and R-NDE proceeds exactly as outlined previously.

Because RWR may be biased under incorrect models for E(M|C, A), E(L|C, A),

or E(Y|C, A, L, M), analysts should attempt to avoid misspecification. This might be

achieved by using diagnostic procedures for detecting non-linearity (e.g., partial resid-

ual plots), by incorporating a large number of interaction terms, and/or by using con-

ventional model selection techniques (e.g., information criteria) for adjudicating between

competing models. When it is available, subject matter knowledge could also guide the

choice of models used with RWR.

4 Empirical Illustration

In this section, we decompose the effect of post-secondary education on depression into

direct and indirect components using RWR. Education may improve mental health by

providing access to greater financial resources, or it may affect mental health through

other channels—for example, by providing greater access to health information and im-

proving health behaviors.22,23 To investigate whether income mediates the effect of educa-

tion on depression, we use data from n = 2, 988 individuals in the NLSY79. The outcome,

Y, represents scores on the Center for Epidemiologic Studies - Depression Scale (CES-D)

when respondents were age 40. We standardize CES-D scores to have mean zero and unit

variance, where higher scores imply more depressive symptoms (in Part D of the eAp-

pendix, we present a parallel analysis in which the outcome is coded instead as binary

variable). The treatment, A, is defined as completion of a four-year college degree by age

25. The mediator, M, is the inverse hyperbolic sine of a respondent’s equivalized family

income averaged over age 35-40.b The vector of baseline confounders, C, includes gen-

der, race, Hispanic ethnicity, mother’s years of schooling, father’s presence in the home,

number of siblings, urban residence, educational expectations, and percentile scores on

the Armed Forces Qualification Test, which were measured when respondents were age

bThe inverse hyperbolic sine is a normalizing transformation for right-skewed variables, like income,
that is similar to the natural log except that it is defined at 0 and therefore accommodates respondents who
report earning no income.

11



13-17. Finally, the vector of post-treatment confounders, L, includes CES-D scores mea-

sured when respondents were age 27-30, the proportion of time a respondent was mar-

ried between 1990 and 1998, and the number of relationship transitions experienced by

a respondent between 1990 and 1998. These variables capture mental health and family

stability during young adulthood, which may be affected by college completion and may

also affect family income and depression at midlife.

We adopt the following models for the mediator and outcome:

E(M|C, A) = θ0 + θT
1 C⊥ + θ2A + θ3C⊥A (13)

E(Y|C, A, L, M) = β0 + βT
1 C⊥ + β2A + βT

3 L⊥ + β4M + β5AM + β6C⊥A, (14)

which allow the effects of college completion on family income and depression to vary

across levels of the baseline confounders. We estimate these models by first computing

residuals for each of the baseline confounders C and post-treatment confounders L. This

involves centering the elements of C around their sample means and centering the ele-

ments of L around their estimated conditional means given the past, which we compute

from linear models that include C, A, and two-way interactions between C and A as pre-

dictors. We then compute least squares estimates of equations (13) and (14) using these

residual terms, and finally, we construct estimates of the R-NDE, R-NIE, and R-ATE from

their coefficients.

We find that completing college has a sizable overall effect on depression. Specifically,

completing college is estimated to lower depression scores by 0.15 standard deviations on

average (95% CI: [-0.28, -0.01]). The R-NDE and R-NIE are estimated to be -0.11 (95% CI:

[-0.25, 0.03]) and -0.04 (95% CI: [-0.10, 0.005]), respectively. This suggests that only about

27% (−0.04/− 0.15 = 0.27) of the overall effect is mediated by family income, although

all of the estimates reported here are imprecise, as indicated by their wide confidence

intervals.

To assess the robustness of our estimates to unobserved confounding, we also con-

ducted a sensitivity analysis using methods outlined in Part F of the eAppendix. We

find that our estimate of the R-NIE is highly sensitive to unobserved confounding of the
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mediator-outcome relationship. Specifically, if the error terms from our models of family

income and depression were negatively correlated, our estimate of the R-NIE would be

biased downward, and a bias-adjusted estimate would reach zero under an error corre-

lation as small as -0.12. This suggests that the effect of college completion on depression

likely operates through pathways other than family income.

5 Discussion

Treatment-induced confounding complicates analyses of causal mediation. We proposed

the method of RWR for decomposing an overall effect of treatment into direct and indirect

components when treatment-induced confounding is present. The method involves, first,

fitting a generalized linear model for the mediator with treatment and a set of baseline

confounders as predictors, and second, fitting a linear regression of the outcome on treat-

ment, the mediator, the confounders at baseline, and a set of post-treatment confounders

that have been residualized with respect to the observed past. Estimates of the R-NDE

and R-NIE are constructed with simple functions of the coefficients in these models.

The method’s simplicity is premised on a set of strong modeling assumptions. In

particular, RWR requires correct models for the conditional mean of the mediator, the

outcome, and each of the post-treatment confounders. If any of these models are misspec-

ified, then estimates of direct and indirect effects may be biased. Part E of the eAppendix

presents simulations that evaluate the sensitivity of RWR to incorrect model specification.

An important direction for future research will be to explore the possibility of combining

RWR with methods of model selection and regularization in an effort to improve its ro-

bustness. Another option would be to explore combining RWR with propensity score

adjustment in a procedure similar to sequential g-estimation.24

RWR is also premised on a set of strong identification assumptions, which require that

all relevant confounders of the treatment-outcome, treatment-mediator, and mediator-

outcome relationships have been observed and appropriately controlled. In observational

studies where treatment has not been randomly assigned, all of these assumptions must

be carefully scrutinized. If any are violated, then RWR estimates of direct and indirect
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effects will be biased. In experimental studies where treatment has been randomly as-

signed, the assumptions of no unobserved treatment-outcome and treatment-mediator

confounding are met by design, but it remains possible that the mediator-outcome rela-

tionship is still confounded by unobserved factors. Thus, no matter the research design, it

is important to critically evaluate the identification assumptions on which RWR is based.

To this end, we have developed methods for assessing the sensitivity of RWR to hypo-

thetical patterns of unobserved confounding, as detailed in Part F of the eAppendix.

We focused on a two-way decomposition of an overall effect into randomized inter-

vention analogues of natural direct and indirect effects, which is designed to evaluate me-

diation. The methods discussed previously can also be used to estimate more nuanced

decompositions that evaluate the degree to which an effect is due to mediation versus

interaction.25–27 VanderWeele,25 for example, decomposes a total effect into components

due to mediation, interaction, both, or neither. In Part G of the eAppendix, we show that

the components of this four-way decomposition, when defined in terms of randomized

interventions, can also be estimated with RWR.

Because RWR involves only a minor adaption of conventional least squares regression,

it is based on computations that should be familiar to most applied researchers. Moreover,

the method can be easily implemented with off-the-shelf software. We therefore expect

that it will find wide application in analyses of causal mediation. To this end, we have

developed an open-source R package, rwrmed, as well as a Stata package by the same

name with similar functionality, for decomposing effects with RWR. The R package is

available at

https://github.com/xiangzhou09/rwrmed

and the Stata package at

https://github.com/gtwodtke/rwrmed.

In addition, Part H of the eAppendix provides the R code for implementing RWR in our

empirical example.
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eAppendix

A: Derivation of Parametric Expressions for the R-NDE and

R-NIE under Linear Models for M and Y

Under assumptions (i) to (iii) and the assumption that equations (6) and (7) from the main

text are both correctly specified, then the R-NDE is equal to

R-NDE = ∑
c

∑
m

∑
l
[E(Y|c, a∗, l, m)P(l|c, a∗)−E(Y|c, a, l, m)P(l|c, a)]P(m|c, a)P(c)

= ∑
c

∑
m

∑
l
[(β0 + βT

1 c⊥ + β2a∗ + βT
3 l⊥ + β4m + β5a∗m)P(l|c, a∗)−

(β0 + βT
1 c⊥ + β2a + βT

3 l⊥ + β4m + β5am)P(l|c, a)]P(m|c, a)P(c)

= ∑
c

∑
m
[(β0 + βT

1 c⊥ + β2a∗ + βT
3 E(L−E(L|c, a∗)|c, a∗) + β4m + β5a∗m)−

(β0 + βT
1 c⊥ + β2a + βT

3 E(L−E(L|c, a)|c, a) + β4m + β5am)]P(m|c, a)P(c)

= ∑
c

∑
m
[(β0 + βT

1 c⊥ + β2a∗ + β4m + β5a∗m)−

(β0 + βT
1 c⊥ + β2a + β4m + β5am)]P(m|c, a)P(c)

= ∑
c

∑
m
[(β2a∗ + β5a∗m)− (β2a + β5am)]P(m|c, a)P(c)

= ∑
c
[(β2a∗ + β5a∗E(M|c, a))− (β2a + β5aE(M|c, a))]P(c)

= ∑
c
[(β2a∗ + β5a∗(θ0 + θT

1 c⊥ + θ2a))− (β2a + β5a(θ0 + θT
1 c⊥ + θ2a))]P(c)

= (β2a∗ + β5a∗(θ0 + θT
1 E(C−E(C)) + θ2a))− (β2a + β5a(θ0 + θT

1 E(C−E(C))

+ θ2a))

= (β2a∗ + β5a∗(θ0 + θ2a))− (β2a + β5a(θ0 + θ2a))

= [β2 + β5(θ0 + θ2a)](a∗ − a),
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and the R-NIE is equal to

R-NIE = ∑
c

∑
m

∑
l
[P(m|c, a∗)− P(m|c, a)]E(Y|c, a∗, l, m)P(l|c, a∗)P(c)

= ∑
c

∑
m

∑
l
[P(m|c, a∗)− P(m|c, a)](β0 + βT

1 c⊥ + β2a∗ + βT
3 l⊥ + β4m + β5am)×

P(l|c, a∗)P(c)

= ∑
c

∑
m
[P(m|c, a∗)− P(m|c, a)](β0 + βT

1 c⊥ + β2a∗ + βT
3 E(L−E(L|c, a∗)|c, a∗)+

β4m + β5a∗m)P(c)

= ∑
c

∑
m
[P(m|c, a∗)− P(m|c, a)](β0 + βT

1 c⊥ + β2a∗ + β4m + β5a∗m)P(c)

= ∑
c

∑
m
[(β0 + βT

1 c⊥ + β2a∗ + β4m + β5a∗m)P(m|c, a∗)−

(β0 + βT
1 c⊥ + β2a∗ + β4m + β5a∗m)P(m|c, a)]P(c)

= ∑
c
[(β0 + βT

1 c⊥ + β2a∗ + E(M|c, a∗)(β4 + β5a∗))−

(β0 + βT
1 c⊥ + β2a∗ + E(M|c, a)(β4 + β5a∗))]P(c)

= ∑
c
[(E(M|c, a∗)− E(M|c, a)](β4 + β5a∗)P(c)

= ∑
c
[(θ0 + θT

1 c⊥ + θ2a∗)− (θ0 + θT
1 c⊥ + θ2a)](β4 + β5a∗)P(c)

= ∑
c
(θ2a∗ − θ2a)(β4 + β5a∗)P(c)

= θ2(β4 + β5a∗)(a∗ − a).

B: Analytic Standard Errors for RWR

In this appendix, we outline an approach to obtaining analytic standard errors for RWR

estimates of the R-NDE and R-NIE. With this approach, we assume that the variables

{C, A, L, M, Y} satisfy the Causal Markov assumption, that is, we assume that they are

represented by a recursive system of equations with independent errors.28 Let X denote

a p × 1 vector of ones, the treatment A, baseline confounders centered at their sample

means Ĉ⊥ , and any interactions between A and Ĉ⊥; let L denote a q× 1 vector of post-
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treatment confounders; and finally, let Z denote a r× 1 vector containing the mediator M

and any of its interactions with X. A “naive” least squares regression of the outcome Y

on {X, L, Z} can be expressed as follows:

Y = α̂TX + η̂T L + γ̂TZ + Ŷ⊥

= α̂TX + ∑
j

η̂jLj + γ̂TZ + Ŷ⊥, (15)

where Lj is the jth element of L and Ŷ⊥ denotes the residual. Similarly, a least squares

regression of each Lj on X can be expressed as follows

Lj = λ̂T
j X + L̂⊥j , (16)

where L̂⊥j denotes the residual.

Substituting (16) into (15) yields the following expression for the outcome:

Y = (α̂T + ∑
j

η̂jλ̂
T
j )X + ∑

j
η̂j L̂⊥j + γ̂TZ + Ŷ⊥. (17)

Since Ŷ⊥ is the least squares residual for regression (15), it is orthogonal to the span

of {X, L, Z}. Because each L̂⊥j is a linear combination of X and Lj, {X, L̂⊥, Z} and

{X, L, Z} span the same space. Thus, equation (17) represents the least squares fit of Y

on {X, L̂⊥, Z}, meaning that α̂T
RWR = (α̂T + ∑

j
η̂jλ̂

T
j ) are the RWR estimates of the coeffi-

cients on treatment, the baseline confounders, and any interactions between them, η̂ are

the RWR estimates of the coefficients on the post-treatment confounders, and γ̂ are the

RWR estimates of the coefficients on the mediator and any of its interactions with treat-

ment and/or the baseline confounders. Therefore, the asymptotic variance-covariance

matrix for the RWR estimates (η̂, γ̂) can be obtained directly via conventional methods

after fitting the naive regression (15).

The asymptotic variance-covariance matrix for α̂RWR can be obtained with the delta

method. Given the assumption that Y and L have mutually independent errors, each λ̂j is

independent of α̂ and η̂. The variance-covariance matrix for α̂RWR can then be estimated
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as

V̂(α̂RWR) = V̂(α̂) + Ĉov(α̂, η̂)Λ̂T + Λ̂V̂(η̂)Λ̂T + ∑
j,k

η̂jη̂kĈov(λ̂j, λ̂k), (18)

where Λ̂ = [λ̂1, λ̂2, ..., λ̂q] is a p× q matrix of estimated coefficients from model (16), V(· )

is the variance-covariance matrix of a random vector, and Cov(·, ·) is the covariance ma-

trix between two random vectors. In equation (18), the first three terms can be obtained

directly from the naive regression (15), and the covariance matrix between λ̂j and λ̂k in

the last term can be estimated as

Ĉov(λ̂j, λ̂k) =
(l̂⊥j )

T l̂⊥k
n− p

(XTX)−1, (19)

where n is the sample size, and l̂⊥j and l̂⊥k are n× 1 vectors of the residualized confounders

L̂⊥j and L̂⊥k . Similarly, the covariance matrix between α̂RWR and γ̂ can be estimated as

Ĉov(α̂RWR, γ̂) = Ĉov(α̂, γ̂) + Λ̂Ĉov(η̂, γ̂). (20)

Now consider the plug-in estimators of the R-NDE and R-NIE. Without loss of gen-

erality, assume that a∗ − a = 1. Given that the error terms for equations (6) and (7) are

independent, asymptotic variances for R̂-NDE and R̂-NIE can be estimated using the delta

method29:

V̂[R̂-NDE] = V̂(β̂2) + (θ̂0 + θ̂2a)2V̂(β̂5) + β̂2
5V̂(θ̂0 + θ̂2a) + (θ̂0 + θ̂2a)Ĉov(β̂2, β̂5) (21)

V̂[R̂-NIE] = (β̂4 + β̂5a∗)2V̂(θ̂2) + θ̂2
2V̂(β̂4 + β̂5a∗). (22)

In these equations, the terms involving θ̂0 and θ̂2 can be estimated by applying equations

(18-20) to the RWR regression of model (6) from the main text, and the terms involving

β̂2, β̂4, and β̂5 can be estimated by applying equations (18-20) to the RWR regression of

model (7) from the main text.
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C: Derivation of Parametric Expressions for the R-NDE and

R-NIE under a Nonlinear Model for M

When the mediator is binary or counts, a generalized linear model may be preferred for

estimating E[M|A, C]. Under assumptions (i) to (iii) and the assumption that both this

mediator model and the outcome model (7) from the main text are correctly specified,

then the R-NDE conditional on C = c is equal to

R-NDE(c) = ∑
m

∑
l
[E(Y|c, a∗, l, m)P(l|c, a∗)−E(Y|c, a, l, m)P(l|c, a)]P(m|c, a)

= ∑
m

∑
l
[(β0 + βT

1 c⊥ + β2a∗ + βT
3 l⊥ + β4m + β5a∗m)P(l|c, a∗)−

(β0 + βT
1 c⊥ + β2a + βT

3 l⊥ + β4m + β5am)P(l|c, a)]P(m|c, a)

= ∑
m
[(β0 + βT

1 c⊥ + β2a∗ + βT
3 E(L−E(L|c, a∗)|c, a∗) + β4m + β5a∗m)−

(β0 + βT
1 c⊥ + β2a + βT

3 E(L−E(L|c, a)|c, a) + β4m + β5am)]P(m|c, a)

= ∑
m
[(β2a∗ + β5a∗m)− (β2a + β5am)]P(m|c, a)

= [(β2a∗ + β5a∗E(M|c, a))− (β2a + β5aE(M|c, a))]

= [β2 + β5E(M|c, a)](a∗ − a)
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and the R-NIE conditional on C = c is equal to

R-NIE(c) = ∑
m

∑
l
[P(m|c, a∗)− P(m|c, a)]E(Y|c, a∗, l, m)P(l|c, a∗)

= ∑
m

∑
l
[P(m|c, a∗)− P(m|c, a)](β0 + βT

1 c⊥ + β2a∗ + βT
3 l⊥ + β4m + β5am)P(l|c, a∗)

= ∑
m
[P(m|c, a∗)− P(m|c, a)](β0 + βT

1 c⊥ + β2a∗ + βT
3 E(L−E(L|c, a∗)|c, a∗)+

β4m + β5a∗m)

= ∑
m
[P(m|c, a∗)− P(m|c, a)](β0 + βT

1 c⊥ + β2a∗ + β4m + β5a∗m)

= ∑
m
[(β0 + βT

1 c⊥ + β2a∗ + β4m + β5a∗m)P(m|c, a∗)−

(β0 + βT
1 c⊥ + β2a∗ + β4m + β5a∗m)P(m|c, a)]

= [(β0 + βT
1 c⊥ + β2a∗ + E(M|c, a∗)(β4 + β5a∗))−

(β0 + βT
1 c⊥ + β2a∗ + E(M|c, a)(β4 + β5a∗))]

= (β4 + β5a∗)[E(M|c, a∗)− E(M|c, a)].

D: Empirical Illustration with a Binary Outcome

In this section, we present a parallel analysis of the NLSY79 in which the outcome, Y, is

coded as a binary variable for illustrative purposes. Specifically, Y is coded 1 if a respon-

dent scored in the top quintile of the CES-D distribution, indicating he or she is among

the most depressed 20% of the population, and 0 otherwise. All other variables are de-

fined as in Section 4 from the main text. We use the following models for the mediator

and outcome:

E(M|C, A) = θ0 + θT
1 C⊥ + θ2A + θ3C⊥A (23)

E(Y|C, A, L, M) = β0 + βT
1 C⊥ + β2A + βT

3 L⊥ + β4M + β5AM + β6C⊥A, (24)

where E(Y|C, A, L, M) = P(Y = 1|C, A, L, M) and thus our model for the outcome is a

linear probability model. To estimate the R-NDE and R-NIE, we first compute residuals
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for each of the baseline confounders C and post-treatment confounders L, which involves

centering the elements of C around their sample means and centering the elements of L

around their estimated conditional means given the past. Specifically, we estimate con-

ditional means for each post-treatment confounder from a linear regression that includes

C, A, and all two-way interactions between them. We then compute least squares esti-

mates of equations (13) and (14), and finally, we use their coefficients to construct RWR

estimates of the R-NDE, R-NIE, and R-ATE.

Consistent with our analysis of continuous scores from the CES-D, results based on

the binary measure described previously also suggest that completing a post-secondary

education has a sizable overall effect on the risk of depression. Specifically, completing

college is estimated to lower the risk of depression by 7.7 percentage points (95% CI:

[-0.129,-0.021]). The R-NDE is estimated to be -0.058 (95% CI: [-0.105, -0.003]), which sug-

gests that attending college would still reduce the risk of depression by 5.8 percentage

points even after an intervention to fix the income distribution to that observed when no-

body receives a post-secondary education. The R-NIE is estimated to be -0.020 (95% CI:

[-0.042,-0.003]. This suggests that, if everyone already attended college, the risk of depres-

sion would be further reduced by only about 2 percentage points after an intervention to

shift the income distribution to that observed when everyone attends college from that

observed when nobody attends. Estimates of the R-NDE and R-NIE provide some mini-

mal evidence of mediation, although they are fairly imprecise, as indicated by their wide

confidence intervals.

These results are based on a linear probability model for the outcome. As with any

model, researchers should consider the possibility of bias due to misspecification and take

steps to avoid it (e.g., by using regression diagnostics, interaction terms, model selection

techniques, and subject matter knowledge). With a linear model for a strictly bounded

outcome, researchers should take additional precautions to ensure that it is a reasonable

approximation for the true conditional expectation function and does not suffer from se-

vere misspecification. For example, with a linear probability model, researchers should

confirm that it does not yield many nonsensical predictions well outside the logical [0, 1]

range.
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E: Simulation Study of Bias due to Model Misspecification

Even when assumptions (i) to (iii) are satisfied, RWR may still yield biased estimates if

models for the outcome, mediator, and/or treatment-induced confounders are incorrectly

specified. In this section, we use a series of simulation experiments to investigate the sen-

sitivity of RWR to several types of model misspecification, including incorrectly modeled

effect modification and non-linearity.

Specifically, we simulate n = 500 observations and estimate the R-NDE and R-NIE

of a binary treatment A on a continuous outcome Y via a continuous mediator M in the

presence of a baseline confounder C, a treatment-induced confounder L, and an “unob-

served” variable U that affects both L and Y but not A or M. In each simulation, we

generate these variables as follows: U ∼ N(µU = 0, σU = 1); C ∼ N(µC = 0, σC = 1);

A|C ∼ Bernoulli(πA|C = Φ(−0.3 + 0.5C)); L|U, C, A ∼ N(µL|U,C,A = 0.5U + C(0.5 −

ηC)+ A(0.5+ αC), σL|U,C,A = 1); M|C, A, L ∼ N(µM|C,A,L = C(0.5− ηC)+ A(0.5+ αC)+

0.5(L − µL|C,A), σL|U,C,A = 1); and Y|U, C, A, L, M ∼ N(µY|U,C,A,L,M = 0.5U + C(0.5 −

ηC) + A(0.5+ αC) + (L− µL|C,A)(0.5+ λC) + M(1+ γC− 0.2A), σY|U,C,A,L,M = 1). Here,

Φ is the standard normal cumulative distribution function; α is a parameter that controls

the degree to which C modifies the effects of A on L, M, and Y; γ is a parameter that con-

trols the degree to which C modifies the effect of M on Y; λ is a parameter that controls the

degree to which C modifies the effect of L on Y; and finally, η is a parameter that controls

whether the effects of C on L, M, and Y are linear versus parabolic. In all simulations, the

R-NDE and R-NIE are identified, and their true values are 0.5 and 0.4, respectively.

With these data, we implement RWR exactly as outlined in Section 3.1. That is, in all

simulations, we implement RWR by fitting a model for L that is linear and additive in A

and C, a model for M that is linear and additive in A and C, and a model for Y that is

linear and additive in C and L but multiplicative in A and M. These modeling constraints

are satisfied in some simulations but not in others, as we vary the values of {α, γ, λ, η} to

introduce different types of effect modification and non-linearity. We then evaluate the

performance of RWR in terms of its absolute bias, the magnitude of its absolute bias rela-

tive to the true effect of interest, its root mean squared error (RMSE), and the magnitude

25



of its RMSE relative to the RMSE of the RWR estimator with correctly specified models,

which are computed from 10,000 simulated datasets in each experiment.c

Table 1 presents results from a set of simulation experiments that evaluate the per-

formance of RWR when its models for L, M, and Y are incorrectly specified because the

effects of treatment on these variables are constrained to be invariant when in fact they

differ across levels of C. The effects of A on L, M, and Y are made to differ across C by

varying the value of α from 0.0 to 0.5 while setting all other tuning parameters equal to

zero. When α = 0.0, the effects of treatment are invariant, and there is no model misspec-

ification. When α = 0.5, by contrast, the unit-specific effects of treatment have a standard

deviation as large as their mean, and models that constrain these effects to be invariant

are badly misspecified. Results show that RWR is biased for the R-NDE and R-NIE when

its models for L, M, and Y incorrectly constrain the effects of A to be invariant in C, as ex-

pected. The magnitude of bias, however, is not especially large in this particular scenario.

Table 2 presents results from a second set of simulation experiments that evaluate the

performance of RWR when its model for Y is incorrectly specified because the effects

of the mediator on the outcome are constrained to be invariant when in fact they differs

across levels of C. The effect of M on Y is made to differ across C by varying the value of γ

from 0.0 to 0.5 while setting all other tuning parameters equal to zero. When γ = 0.0, the

effect of the mediator is invariant, and there is no model misspecification. When γ = 0.5,

the unit-specific effects of the mediator vary considerably in C, and thus an outcome

model that constrains these effects to be invariant is badly misspecified. Consistent with

findings from Table 1, the results in Table 2 also demonstrate that RWR is biased when its

outcome model is misspecified, in this case because it incorrectly constrains the effects of

M on Y to be invariant across C.

Table 3 presents results from a third set of simulation experiments that evaluate the

performance of RWR when its model for Y is incorrectly specified because the effects of L

on Y are constrained to be invariant when in fact they differ across levels of C. The effects

of L on Y are made to differ across C by varying the value of λ from 0.0, in which case

there is no effect modification, to 0.5, in which case the unit-specific effects of L have a

cThe relative bias is computed as the ratio of the absolute bias to the true effect of interest.
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Table 1: Misspecification bias in RWR due to incorrectly modeled A → Y, A → M, and
A→ L effect modification by C

α

0.0 0.1 0.2 0.3 0.4 0.5
R-NDE

Absolute Bias 0.003 0.009 0.020 0.026 0.034 0.046
Relative Bias 0.005 0.019 0.041 0.052 0.069 0.091
RMSE 0.140 0.142 0.142 0.143 0.144 0.148
Relative RMSE 1.000 1.016 1.012 1.018 1.029 1.053

R-NIE
Absolute Bias 0.002 0.014 0.032 0.049 0.067 0.086
Relative Bias 0.005 0.035 0.079 0.121 0.167 0.216
RMSE 0.096 0.099 0.104 0.112 0.123 0.135
Relative RMSE 1.000 1.033 1.084 1.164 1.273 1.403

Note: Results are based on 10,000 simulations. Across all simulations, γ = 0, λ = 0, and
η = 0.

standard deviation as large as their mean. As before, the remaining tuning parameters

are all set to zero. Consistent with the results discussed previously, this set of simulations

shows that RWR is also biased when its outcome model incorrectly constrains the effects

of L on Y to be invariant across C, although the magnitude of this bias is fairly small

across all scenarios.

Finally, Table 4 presents results from a fourth set of simulation experiments that eval-

uate the performance of RWR when its models for L, M, and Y are incorrectly specified

because the effects of C on these variables are assumed to be linear when in fact they

are parabolic. The effects of C on L, M, and Y are made to be nonlinear by varying the

value of η from 0.0 to 0.5 while setting all other tuning parameters to zero. As η increases

from zero, the effects of C become increasingly nonlinear, and the results in Table 4 show

that RWR becomes increasingly biased, as expected. Nevertheless, the bias due to non-

linearity in these simulations is generally small. For reference, we also computed a set

of naive regression estimates that do not adjust for the treatment-induced confounder L

but that are otherwise based on correct models for E(M|C, A) and E(Y|C, A, M). These

estimates suffer from bias due to uncontrolled mediator-outcome confounding by L but
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Table 2: Misspecification bias in RWR due to incorrectly modeled M → Y effect modifi-
cation by C

γ

0.0 0.1 0.2 0.3 0.4 0.5
R-NDE

Absolute Bias 0.003 -0.025 -0.048 -0.075 -0.099 -0.123
Relative Bias 0.005 -0.050 -0.096 -0.150 -0.198 -0.245
RMSE 0.140 0.143 0.148 0.161 0.176 0.195
Relative RMSE 1.000 1.024 1.060 1.150 1.259 1.390

R-NIE
Absolute Bias 0.002 0.028 0.059 0.088 0.118 0.149
Relative Bias 0.005 0.070 0.147 0.221 0.296 0.373
RMSE 0.096 0.108 0.126 0.149 0.174 0.201
Relative RMSE 1.000 1.126 1.312 1.544 1.810 2.092

Note: Results are based on 10,000 simulations. Across all simulations, α = 0, λ = 0, and
η = 0.

Table 3: Misspecification bias in RWR due to incorrectly modeled L → Y effect modifica-
tion by C

λ

0.0 0.1 0.2 0.3 0.4 0.5
R-NDE

Absolute Bias 0.003 -0.012 -0.022 -0.035 -0.048 -0.056
Relative Bias 0.005 -0.024 -0.044 -0.071 -0.095 -0.113
RMSE 0.140 0.143 0.144 0.148 0.154 0.159
Relative RMSE 1.000 1.020 1.026 1.053 1.098 1.137

R-NIE
Absolute Bias 0.002 0.008 0.018 0.026 0.037 0.046
Relative Bias 0.005 0.019 0.044 0.066 0.091 0.116
RMSE 0.096 0.100 0.104 0.108 0.114 0.120
Relative RMSE 1.000 1.042 1.078 1.125 1.186 1.242

Note: Results are based on 10,000 simulations. Across all simulations, α = 0, γ = 0, and
η = 0.
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Table 4: Misspecification bias in RWR due to incorrectly modeled non-linearity in the
C → Y, C → M, and C → L effects

η

0.0 0.1 0.2 0.3 0.4 0.5
R-NDE

Absolute Bias 0.003 0.012 0.023 0.028 0.032 0.038
Relative Bias 0.005 0.024 0.046 0.056 0.063 0.076
RMSE 0.14 0.144 0.145 0.148 0.153 0.158
Relative RMSE 1.000 1.026 1.036 1.057 1.090 1.125

R-NIE
Absolute Bias 0.002 -0.011 -0.017 -0.021 -0.023 -0.025
Relative Bias 0.005 -0.029 -0.044 -0.052 -0.059 -0.062
RMSE 0.096 0.098 0.100 0.104 0.108 0.112
Relative RMSE 1.000 1.020 1.039 1.077 1.119 1.164

Note: Results are based on 10,000 simulations. Across all simulations, α = 0, γ = 0, and
λ = 0.

not from bias due to effect modification or nonlinearity that has been incorrectly modeled,

as above. Results from this ancillary analysis indicate that naive regression estimates un-

derstate the true R-NDE by -0.165, or 32.9 percent, and that they overstate the true R-NIE

by 0.169, or 42.3 percent. Thus, in the simulations considered here where the magnitude

of confounding is fairly large, bias arising from incorrect model specification is generally

less severe than bias arising from uncontrolled mediator-outcome confounding.

F: Sensitivity Analysis for Unobserved Confounding

Assumptions (i) to (iii) require that there must not be any unobserved confounding of

the treatment-outcome, treatment-mediator, or mediator-outcome relationships. The first

two of these assumptions are similar to the conventional “exogeneity of treatment” as-

sumption required in observational studies, where it is justified by adjusting for a suffi-

cient set of baseline confounders, or in experimental studies, where it is met by design

via random assignment. The third assumption, however, may fail to hold even in ran-

domized experiments, and if unobserved confounding exists for the mediator-outcome
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relationship, RWR estimates of the R-NDE and R-NIE will be biased. In this section,

we outline a parametric approach to sensitivity analysis that permits an assessment of

whether RWR estimates are robust to violations of these three assumptions.

Consider the following set of linear structural equations characterizing the true causal

relationships between A, M, and Y:

A = γ0 + γT
1 C⊥ + εA, (25)

M = θ0 + θT
1 C⊥ + θ2A + εM, (26)

Y = β0 + βT
1 C⊥ + β2A + βT

3 L⊥ + β4M + β5AM + εY. (27)

The assumptions of no unobserved confounding imply that the error terms (εA, εM, εY)

are pairwise independent.

When the mediator-outcome relationship is confounded by unobserved factors (but

not the treatment-outcome or treatment-mediator relationships), εM and εY are correlated.

A linear projection of εY on εM can be expressed as

εY = φMYεM + ψMY. (28)

Under the assumption that E[ψMY|C, A, L, M] = 0, substituting (28) into (27) and taking

the conditional expectation of Y yields

E[Y|C, A, L, M] = (β0 − φMYθ0) + (β1 − φMYθ1)
TC⊥ + (β2 − φMYθ2)A + βT

3 L⊥+

(β4 + φMY)M + β5AM. (29)

Thus, in this case, RWR estimates of (β0, β1, β2, β4) suffer from an asymptotic bias of

φMY(−θ0,−θ1,−θ2, 1). Accordingly, the bias terms for the RWR estimators of the R-NDE

and R-NIE can be expressed as

Bias[R-NDE] = −φMYθ2(a∗ − a) (30)

Bias[R-NIE] = φMYθ2(a∗ − a). (31)
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The biases for the R-NDE and R-NIE are equal in magnitude but opposite in direction.

This implies that the overall effect, defined as the sum of the R-NDE and R-NIE, is not

affected by unobserved mediator-outcome confounding, as expected. These expressions

also imply that the R-NIE, and thus the mediating role of M, will be overstated if φMY

and θ2 are in the same direction and understated if they are in the opposite direction.

In practice, neither the sign nor the magnitude of φMY is known. Moreover, φMY is not

on an interpretable scale. To circumvent this problem, φMY can be re-expressed in terms

of the correlation between εY and εM as follows:

φMY =
sd(ψMY)

sd(εM)

ρMY√
1− ρ2

MY

, (32)

where ρMY = Corr[εY, εM]. Substituting (32) into (30) yields

Bias[R-NDE] = −θ2 · sd(ψMY)

sd(εM)

ρMY√
1− ρ2

MY

(a∗ − a). (33)

The bias for the R-NIE can be expressed analogously. Under the assumptions of no unob-

served treatment-mediator or treatment-outcome confounding, θ2, sd(εM), and sd(ψMY)

can be consistently estimated from the mediator and outcome regressions described in

the main text. Thus, we can evaluate the bias terms as functions of ρMY and construct a

range of bias-adjusted RWR estimates for the R-NDE and R-NIE across different values

of ρMY. In addition, we can identify the value of ρMY that would suffice to reduce the

estimated R-NDE or R-NIE to zero, or alternatively, the value that would suffice to render

the estimated R-NDE or R-NIE statistically insignificant.

Next, consider the case where the treatment-outcome relationship is confounded by

unobserved factors (but not the treatment-mediator or mediator-outcome relationships).

In this case, εA and εY are correlated, and a linear projection of εY on εA can be expressed

as

εY = φAYεA + ψAY. (34)

Under the assumption that E[ψAY|C, A, L, M] = 0, substituting (34) into (27) and taking
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the conditional expectation of Y yields

E[Y|C, A, L, M] = (β0 − φAYγ0) + (β1 − φAYγ1)
TC⊥ + (β2 + φAY)A + βT

3 L⊥+

β4M + β5AM.

Thus, in this case, RWR estimates of (β0, β1, β2) suffer from an asymptotic bias of

φAY(−γ0,−γ1, 1). Accordingly, the bias for the RWR estimator of the R-NDE can be ex-

pressed as

Bias[R-NDE] = φAY(a∗ − a),

and because the treatment-mediator and mediator-outcome relationships are uncon-

founded, the RWR estimator of the R-NIE is asymptotically unbiased. As before, the

bias for the R-NDE can also be expressed as a function of ρAY = Corr(εA, εY):

Bias[R-NDE] =
sd(ψAY)

sd(εA)

ρAY√
1− ρ2

AY

(a∗ − a).

Finally, consider the case where the treatment-mediator relationship is confounded by

unobserved factors (but not the treatment-outcome or mediator-outcome relationships).

In this case, εA and εM are correlated, and a linear projection of εM on εA can be expressed

as

εM = φAMεA + ψAM. (35)

Under the assumption that E[ψAM|C, A] = 0, substituting (35) into (26) and taking the

conditional expectation of M yields

E[M|C, A] = (θ0 − φAMγ0) + (θ1 − φAMγ1)
TC⊥ + (θ2 + φAM)A

In this case, RWR estimates of (θ0, θ1, θ2) suffer from an asymptotic bias of

φAM(−γ0,−γ1, 1). Accordingly, bias terms for the RWR estimators of the R-NDE and
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R-NIE can be expressed as

Bias[R-NDE] = φAMβ5(a− γ0)(a∗ − a),

Bias[R-NIE] = φAM(β4 + β5a∗)(a∗ − a).

Defining ρAM = Corr(εA, εM), the above formulas can also be expressed as

Bias[R-NDE] =
sd(ψAM)

sd(εA)

ρAM√
1− ρ2

AM

β5(a− γ0)(a∗ − a),

Bias[R-NIE] =
sd(ψAM)

sd(εA)

ρAM√
1− ρ2

AM

(β4 + β5a∗)(a∗ − a),

where sd(εA) and sd(ψAM) can be estimated by fitting models (25) and (26) to the ob-

served data.

G: A Four-way Decomposition

As shown by VanderWeele,25 the R-NDE can be further decomposed into the following

two components:

R-NDE = E(Ya∗m −Yam) + [E(Ya∗Ga|C −YaGa|C)−E(Ya∗m −Yam)]

= CDE(m) + R-INTre f (m). (36)

The first term in (36), CDE(m) = E(Ya∗m − Yam), is a controlled direct effect that gives

the expected difference in the outcome under treatment a∗ rather than a if the mediator

were set to m for all individuals. It represents the component of the total effect due to

neither mediation nor interaction. The second term, R-INTre f (m) = [E(Ya∗Ga|C −YaGa|C)−

E(Ya∗m − Yam)], is a so-called reference interaction effect. It represents the component of

the total effect due to an interaction between treatment and the mediator occurring in the

absence of mediation. Under assumptions (i) to (iii) and the assumption that equations

(6) and (7) from the main text are both correctly specified, the controlled direct effect is
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equal to

CDE(m) = ∑
c

∑
l
[E(Y|c, a∗, l, m)P(l|c, a∗)−E(Y|c, a, l, m)P(l|c, a)]P(c)

= (β2 + β5m)(a∗ − a). (37)

By extension, the reference interaction effect is equal to

R-INTre f (m) = R-NDE−CDE(m) = β5(θ0 + θ2a−m)(a∗ − a). (38)

VanderWeele25 also shows that the R-NIE can be further decomposed as follows:

R-NIE = E(YaGa∗|C −YaGa|C) + [E(Ya∗Ga∗|C −Ya∗Ga|C)−E(YaGa∗|C −YaGa|C)]

= R-PIE + R-INTmed. (39)

The first term in (39), R-PIE = E(YaGa∗|C −YaGa|C), is a randomized intervention analogue

of a so-called pure indirect effect, which captures the component of the total effect due to

mediation in the absence of any interaction between the effects of treatment and the me-

diator on the outcome. The second term, R-INTmed = [E(Ya∗Ga∗|C − YaGa∗|C)−E(Ya∗Ga|C −

YaGa|C)], is a randomized intervention analogue of a so-called mediated interaction effect.

It captures the component of the total effect due to mediation and interaction operating

jointly. Under the same assumptions outlined previously, the R-PIE is equal to

R-PIE = ∑
c

∑
m

∑
l
[P(m|c, a∗)− P(m|c, a)]E(Y|c, a, l, m)P(l|c, a)P(c).

= θ2(β4 + β5a)(a∗ − a) (40)

By extension, the mediated interaction effect is equal to

R-INTmed = R-NIE− R-PIE = θ2β5(a∗ − a)2. (41)

And thus the randomized intervention analogue to the average total effect can be ex-
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pressed as

R-ATE = R-NDE + R-NIE = CDE(m) + R-INTre f (m) + R-PIE + R-INTmed. (42)

RWR estimates of equations (6) and (7) from the main text can be used to construct es-

timates for each component of this four-way decomposition. This is accomplished merely

by substituting the appropriate parameter estimates from these models into formulas

(37-38) and (40-41). Standard errors and confidence intervals can be computed using

either the non-parametric bootstrap or the analytic approach outlined in Part B of the

eAppendix.

H: Implementation of RWR in R

Below, we illustrate the implementation of RWR in R for estimating the R-NDE and R-

NIE of college completion on depression. The output also includes the four-component

decomposition outlined in Part G of the eAppendix.

# R code #

rm(list=ls(all=TRUE))

devtools::install_github("xiangzhou09/rwrmed")

library(rwrmed)

# load data #

load("depression.RData")

# baseline confounders #

pre_cov <- c("male", "black", "test_score", "educ_exp", "father", "hispanic",

"urban", "educ_mom", "num_sibs")

# mediator transformation #

depression$ihsinc<-log(depression$tfinc_dest_b+sqrt(depression$tfinc_dest_b+1))

# mediator and outcome equations #

m_form <- ihsinc ~ (male + black + test_score + educ_exp + father + hispanic +
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urban + educ_mom + num_sibs) * college

y_form <- cesd40 ~ (male + black + test_score + educ_exp + father + hispanic + urban +

educ_mom + num_sibs) * college + ihsinc + college * ihsinc +

cesd92 + prmarr98 + transitions98

# models for the post-treatment confounders #

m1 <- lm(cesd92 ~ (male + black + test_score + educ_exp + father + hispanic +

urban + educ_mom + num_sibs) * college, weights = weights,

data = depression)

m2 <- lm(prmarr98 ~ (male + black + test_score + educ_exp + father + hispanic +

urban + educ_mom + num_sibs) * college, weights = weights,

data = depression)

m3 <- lm(transitions98 ~ (male + black + test_score + educ_exp + father + hispanic +

urban + educ_mom + num_sibs) * college, weights = weights,

data = depression)

# RWR estimation #

fit <- rwrmed(treatment = "college", pre_cov = pre_cov, zmodels = list(m1, m2, m3),

y_form = y_form, m_form = m_form, weights = weights, data = depression)

# effect decomposition #

out <- decomp(fit, rep = 500)

print(out, digits = 2)
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