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A. The Logic of Residual Balancing

As noted in the main text, our goal is to construct a set of weights such that in the

reweighted sample, the association between parental income rank X and other attributes

Z does not depend on education. Specifically, we hope that the conditional density of Z

given X is the same between college graduates and non-graduates, i.e., f (z|x, c = 1) =

f (z|x, c = 0) = f (z|x). In principle, we could estimate both f (z|x, c) and f (z|x) from

data and construct the following weights:

wi =
f (zi|xi)

f (zi|xi, ci)
. (1)

It can be shown that in the reweighted data, the conditional density of z given x in any

educational group c will resemble that in the original population, i.e., fw(z|x, c) = f (z|x),

and controlled mobility can be estimated via a weighted regression of adult income rank

(Y) on parental income rank (X) among college graduates. However, since z is usually

multidimensional, estimation of f (z|x, c) and f (z|x) is practically difficult. Fortunately,

equation (1) can be rewritten as (by Bayes’ rule)

wi =
f (ci|xi)

f (ci|zi, xi)
. (2)
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Since C is a binary variable, the conditional densities f (ci|xi) and f (ci|zi, xi) reduce to

conditional probabilities, which can be estimated through two logistic regressions. This is

the standard inverse probability weighting (IPW) approach to adjusting for time-varying

confounding in causal inference (Robins et al. 2000).

However, it is widely recognized that IPW is highly sensitive to model misspecifi-

cation, relatively inefficient, and susceptible to large finite sample biases (e.g., Lefebvre

et al. 2008; Lunceford and Davidian 2004). The method of residual balancing, by contrast,

is not only more efficient but also more robust to model misspecification than IPW (Zhou

and Wodtke 2018). It can be seen as a generalization of the entropy balancing method

(Hainmueller 2012) to causal inference in longitudinal settings. The basic idea is to prior-

itize finite sample balance rather than asymptotic balance because (a) the latter can never

be achieved if the model for f (ci|zi, xi) is misspecified, and (b) even if the model for

f (ci|zi, xi) is correctly specified, exactly balanced samples always produce more efficient

estimates than probabilistically balanced samples (Imbens and Rubin 2015).

As mentioned earlier, our goal is to construct a set of weights such that in the reweighted

sample, fw(z|x, c) is as close to fw(z|x) as possible. But since z is high-dimensional, bal-

ancing on the entire conditional distribution is practically difficult. Thus we focus on the

conditional expectation Ew[Z|X, C] instead of the full conditional distribution. Specifi-

cally, we hope that in the reweighted sample, Ew[Zj|X, C] is as close to Ew[Zj|X] as pos-

sible for each covariate Zj. Define δ(Zj) = Zj −Ew[Zj|X]. We can write Ew[Zj|X, C] as

Ew[Zj|X, C] = Ew[(Ew[Zj|X] + δ(Zj))|X, C]

= Ew[Zj|X] + Ew[δ(Zj)|X, C].

Thus Ew[Zj|X, C] = Ew[Zj|X] if and only if Ew[δ(Zj)|X, C] = 0. The latter in turn implies

Ew[δ(Zj)h(X, C)] = 0 for any function h(X, C). Setting h(X, C) as 1 and C respectively

leads to the following balancing conditions:

Ew[δ(Zj)] = 0

Ew[δ(Zj)C] = 0
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To this end, we first estimate E[Zj|X] by fitting a generalized linear model (GLM) of Zj on

X or its nonlinear transformations (e.g., spline terms). Then δ(Zj) can be estimated using

the response residuals Z⊥j = Zj − g(β̂T
j r(X)), where r(X) = [r1(X), . . . rK(X)] is a vector

of regressors and g(·) is the inverse link function of the GLM. Hence the sample analogs

of the above balancing conditions become

∑
i

wiz⊥ij = 0 (3)

∑
i

wiz⊥ij ci = 0. (4)

Moreover, to ensure that the reweighting procedure does not alter the marginal depen-

dence of Zj on X, we require that the maximum likelihood estimates β̂ j of the GLM be

invariant before and after reweighting. This can be achieved by imposing the score con-

ditions for the reweighted sample:

∑
i

wiz⊥ij rk(xi) = 0 for each k=1,. . .K. (5)

Note that equations (3-5) have to hold for each covariate Zj. With these constraints, we

find a set of weights wi that are as close as possible to the original sampling weights qi by

the Kullback–Leibler divergence metric:

min
wi

∑
i

wi log(wi/qi).

This is a constrained optimization problem that can be solved via the method of Lagrange

multipliers (see Hainmueller 2012 for details).

A reassuring property of the residual balancing weights is that if we fit a linear/logit

regression of Zj on both r(X) and college completion C, the coefficient on C will be exactly

zero and the coefficients on all components of r(X) will be the same as those in the original

sample (i.e., β̂ j). Thus, if the linear/logit model is a correct specification of Ew[Zj|X, C],

we achieve our goal of conditional mean independence, i.e., Ew[Zj|X, C] = Ew[Zj|X].

Meanwhile, because it minimizes the discrepancy between the new weights wi and the
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original weights qi, the residual balancing algorithm is unlikely to produce extremely

large weights. As a result, subsequent analyses based on the reweighted sample are rela-

tively efficient (compared with inverse-probability-weighted samples).
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B. Alternative Methods for Adjusting for Selection

Compared with traditional methods for adjusting for selection, the residual balancing

approach prioritizes finite sample balance rather than asymptotic balance. As a result, it

is generally more efficient and less biased in finite samples. To check the robustness of my

main finding, I have also examined controlled mobility using two alternative methods:

inverse probability weighting (IPW) and propensity score matching.

Table B1: Estimates of Intergenerational Rank-Rank Slope by College Completion Where
Inverse Probability Weighting Is Used to Adjust for Selection.

Full Sample Men Women

Conditional
Mobility

Controlled
Mobility

Conditional
Mobility

Controlled
Mobility

Conditional
Mobility

Controlled
Mobility

Intercept 0.297***
(0.009)

0.306***
(0.010)

0.315***
(0.012)

0.324***
(0.013)

0.279***
(0.012)

0.287***
(0.013)

Parental Income
Rank

0.312***
(0.017)

0.322***
(0.020)

0.306***
(0.023)

0.317***
(0.027)

0.315***
(0.024)

0.329***
(0.028)

College Degree 0.323***
(0.024)

0.090
(0.089)

0.342***
(0.034)

0.239***
(0.046)

0.311***
(0.033)

0.022
(0.107)

Parental Income
Rank * College
Degree

-0.141***
(0.036)

0.088
(0.116)

-0.157**
(0.050)

-0.069
(0.063)

-0.131**
(0.050)

0.148
(0.146)

Sample Size 4,673 2,370 2,303

Note: †p<.1, *p<.05, **p<.01, ***p<.001 (two-tailed tests). Numbers in parentheses are
heteroskedasticity-consistent robust standard errors.

To implement IPW, we need to estimate both the numerator and the denominator of

equation (2). To this end, I fit two logit models, one with only parental income rank as

the predictor and one with both parental income rank and the nine pre-college covariates

(gender, race, Hispanic status, mother’s years of schooling, father’s presence, number of

siblings, urban residence, educational expectation, and the AFQT percentile score) as pre-

dictors. The fitted values of these models are used to construct the inverse probability

weights (equation 2). These weights are then multiplied by the NLSY custom weights to

account for the stratified multistage survey design of NLSY79. Figure B1 shows that in
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Figure B1: Fitted Conditional Means of Covariates Given Parental Income Rank among
the Full Sample and College Graduates, Inverse Probability Reweighted Sample
Note: All conditional means are fitted as a natural cubic spline of parental income rank
with three degrees of freedom and adjusted by inverse probability weights. Ribbons
represent 95% asymptotic confidence intervals.

the inverse probability weighted sample, the conditional means of the covariates given

parental income rank are reasonably balanced between college graduates and the full

sample. Table B1 reports the estimated intergenerational rank-rank slopes in both the

original sample and the inverse probability reweighted sample. We can see that the es-
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timates of controlled mobility do not differ significantly between college graduates and

non-graduates.

Figure B2: Fitted Conditional Means of Covariates Given Parental Income Rank among
the Full Sample and College Graduates, Propensity Score Matched Sample
Note: All conditional means are fitted as a natural cubic spline of parental income rank
with three degrees of freedom and adjusted by propensity score matching weights.
Ribbons represent 95% asymptotic confidence intervals.

To implement propensity score matching, I first estimate the propensity scores by fit-

ting a logit model of college graduation with both parental income rank and the nine pre-
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Table B2: Estimates of Intergenerational Rank-Rank Slope by College Completion Where
Propensity Score Matching Is Used to Adjust for Selection.

Full Sample Men Women

Conditional
Mobility

Controlled
Mobility

Conditional
Mobility

Controlled
Mobility

Conditional
Mobility

Controlled
Mobility

Intercept 0.297***
(0.009)

0.307***
(0.011)

0.315***
(0.012)

0.324***
(0.014)

0.279***
(0.012)

0.294***
(0.015)

Parental Income
Rank

0.312***
(0.017)

0.313***
(0.026)

0.306***
(0.023)

0.308***
(0.028)

0.315***
(0.024)

0.296***
(0.035)

College Degree 0.323***
(0.024)

0.171**
(0.057)

0.342***
(0.034)

0.197**
(0.076)

0.311***
(0.033)

0.185*
(0.077)

Parental Income
Rank * College
Degree

-0.141***
(0.036)

0.011
(0.079)

-0.157**
(0.05)

-0.007
(0.107)

-0.131**
(0.050)

-0.022
(0.113)

Sample Size 4,673 2,370 2,303

Note: †p<.1, *p<.05, **p<.01, ***p<.001 (two-tailed tests). Numbers in parentheses are
heteroskedasticity-consistent robust standard errors.

college covariates as predictors (i.e., the same model used for estimating the denominator

of equation 2). The estimated propensity scores are then used to construct a matched

sample for college graduates. Specifically, I use one-to-one matching with replacement

while allowing for ties. That is, for each college graduate, a non-graduate with the closest

propensity score is matched. But in cases where multiple non-graduates are sufficiently

close to the college graduate (with the absolute difference in propensity score smaller

than 10−5), they are all included in the matched dataset with evenly distributed fractional

weights. Similarly, we construct a matched sample for non-college graduates. I then

combine the two matched samples, collapse multiple records of the same individual onto

a single record by adding up her weights, and update each individual’s weights as the

product of her matching weight and NLSY custom weight. In this final matched sam-

ple, the joint distribution of parental income rank and the nine pre-college covariates is

expected to be the same between college graduates and the general population (assuming

correct specification of the propensity score model). Thus the conditional distribution of

the nine covariates given parental income rank is also expected to be the same between
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college graduates and the general population. Figure B2 shows that in this matched sam-

ple, the conditional means of the covariates given parental income rank are reasonably

balanced between college graduates and the full sample. Table B2 reports the estimated

intergenerational rank-rank slopes in both the original sample and the propensity score

matched sample. We can see that the results are substantively the same as those based on

residual balancing (Table 2).
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C. Results on Intergenerational Income Elasticity (IGE)

In the main text, we examined income mobility using the intergenerational rank-rank

slope. Alternatively, we can use the intergenerational income elasticity (IGE), i.e., the

slope parameter from a regression of log adult income on log parental income. To estimate

the IGE, I exclude a few respondents with zero or negative incomes. Tables C1 reports the

IGE-based results of conditional and controlled mobility. Echoing Table 2, the estimated

interaction effect between parental income and college completion is large and negative

in the original sample but drops substantially in magnitude in the reweighted sample.

Table C1: Estimates of Intergenerational Income Elasticity by College Completion

Full Sample Men Women

Conditional
Mobility

Controlled
Mobility

Conditional
Mobility

Controlled
Mobility

Conditional
Mobility

Controlled
Mobility

Intercept 6.438***
(0.220)

6.322***
(0.225)

6.895***
(0.318)

6.718***
(0.319)

6.025***
(0.298)

5.944***
(0.310)

Log Parental
Income

0.396***
(0.022)

0.412***
(0.022)

0.354***
(0.032)

0.376***
(0.032)

0.433***
(0.030)

0.447***
(0.031)

College Degree 1.987***
(0.497)

0.068
(1.113)

1.843*
(0.776)

0.015
(1.099)

2.248***
(0.630)

0.396†
(1.443)

Log Parental
Income * College
Degree

-0.135**
(0.048)

0.024
(0.105)

-0.118
(0.075)

0.038
(0.105)

-0.163**
(0.062)

-0.012
(0.137)

Sample Size 4,628 2,344 2,284

Note: †p<.1, *p<.05, **p<.01, ***p<.001 (two-tailed tests). Numbers in parentheses are
heteroskedasticity-consistent robust standard errors. Observations with zero or negative incomes are
excluded.
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D. Balance Plots for Three Educational Groups

To assess the role of college selectivity, we have coded education as a trichotomous vari-

able: non-college graduates, college graduates who attended only nonselective colleges,

and college graduates who attended selective colleges. Figures D1 and D2 show the es-

timated conditional means of the nine pre-college covariates given parental income rank

before and after reweighting, respectively. We can see that the conditional means of the

covariates are much more balanced across educational groups in the reweighted sample

than in the original sample.
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Figure D1: Fitted Conditional Means of Covariates Given Parental Income Rank among
the Full Sample, College Graduates from Nonselective Colleges, and College Graduates
from Selective Colleges, Original Sample.
Note: All conditional means are fitted as a natural cubic spline of parental income rank
with three degrees of freedom and adjusted by NLSY custom weights. Ribbons represent
95% asymptotic confidence intervals.
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Figure D2: Fitted Conditional Means of Covariates Given Parental Income Rank among
the Full Sample, College Graduates from Nonselective Colleges, and College Graduates
from Selective Colleges, Reweighted Sample.
Note: All conditional means are fitted as a natural cubic spline of parental income rank
with three degrees of freedom and adjusted by residual balancing weights. Ribbons
represent 95% asymptotic confidence intervals.
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E. Results under Alternative Sample Restriction Criteria

In the main analysis, I restricted my sample to those respondents who were at most 18

years old in 1979. To maintain a relatively large sample size, I retained all respondents

who had at least one valid observation of parental family income and one valid observa-

tion of adult family income. The results, however, are robust to different sample restric-

tion criteria. Table E1 reports the rank-rank slope estimates of conditional and controlled

mobility for the full NLSY79 sample (without age restriction). Table E2 reports the rank-

rank slope estimates of conditional and controlled mobility for those respondents who

had at least two valid observations for both parental family income and adult family in-

come. Both sets of results indicate that compared with conditional mobility, estimates

of controlled mobility are much less distinguishable, both substantively and statistically,

between college graduates and non-graduates.

Table E1: Estimates of Intergenerational Rank-Rank Slope by College Completion for the
Full NLSY79 Sample.

Full Sample Men Women

Conditional
Mobility

Controlled
Mobility

Conditional
Mobility

Controlled
Mobility

Conditional
Mobility

Controlled
Mobility

Intercept 0.288***
(0.007)

0.302***
(0.008)

0.301***
(0.010)

0.312***
(0.011)

0.276***
(0.010)

0.292***
(0.011)

Parental Income
Rank

0.335***
(0.014)

0.343***
(0.016)

0.335***
(0.020)

0.354***
(0.021)

0.327***
(0.021)

0.330***
(0.023)

College Degree 0.340***
(0.020)

0.186**
(0.064)

0.368***
(0.030)

0.214***
(0.063)

0.319***
(0.027)

0.158†
(0.082)

Parental Income
Rank * College
Degree

-0.175***
(0.031)

-0.070
(0.084)

-0.206***
(0.045)

-0.077
(0.082)

-0.146***
(0.043)

-0.047
(0.108)

Sample Size 6,532 3,214 3,138

Note: †p<.1, *p<.05, **p<.01, ***p<.001 (two-tailed tests). Numbers in parentheses are
heteroskedasticity-consistent robust standard errors.
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Table E2: Estimates of Intergenerational Rank-Rank Slope by College Completion, Ex-
cluding Respondents with Fewer Than Two Observations in Either Parental Family In-
come or Adult Family Income.

Full Sample Men Women

Conditional
Mobility

Controlled
Mobility

Conditional
Mobility

Controlled
Mobility

Conditional
Mobility

Controlled
Mobility

Intercept 0.295***
(0.010)

0.302***
(0.010)

0.307***
(0.013)

0.314***
(0.014)

0.282***
(0.014)

0.287***
(0.015)

Parental Income
Rank

0.317***
(0.019)

0.331***
(0.021)

0.318***
(0.027)

0.334***
(0.030)

0.314***
(0.028)

0.332***
(0.030)

College Degree 0.324***
(0.027)

0.184*
(0.078)

0.352***
(0.039)

0.211**
(0.068)

0.304***
(0.038)

0.179†
(0.106)

Parental Income
Rank * College
Degree

-0.145***
(0.041)

-0.059
(0.102)

-0.171**
(0.058)

-0.039
(0.091)

-0.127*
(0.058)

-0.088
(0.136)

Sample Size 3,620 1,855 1,765

Note: †p<.1, *p<.05, **p<.01, ***p<.001 (two-tailed tests). Numbers in parentheses are
heteroskedasticity-consistent robust standard errors.
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F. Results under Alternative Definitions of Income

In the main analysis, I defined adult income as the sum of husbands’, wives’, and other

co-residential family members’ annual disposable incomes from a variety of sources, in-

cluding wages and salary, farm and business income, and several government programs

such as unemployment compensation. Table F1 reports the rank-rank slope estimates of

conditional and controlled mobility where income is restricted to include only husbands’

and wives’ pre-tax earnings, i.e., wages and salary plus farm and business income.1 Table

F2 reports the rank-rank slope estimates of conditional and controlled mobility where in-

come is restricted to include only the respondent’s pre-tax earnings. We can see that our

main results are highly consistent under alternative definitions of income.

Table F1: Estimates of Intergenerational Rank-Rank Slope by College Completion where
Adult Income Is Defined as Total Family Earnings.

Full Sample Men Women

Conditional
Mobility

Controlled
Mobility

Conditional
Mobility

Controlled
Mobility

Conditional
Mobility

Controlled
Mobility

Intercept 0.303***
(0.008)

0.309***
(0.009)

0.310***
(0.011)

0.315***
(0.012)

0.296***
(0.012)

0.301***
(0.013)

Parental Income
Rank

0.301***
(0.017)

0.324***
(0.019)

0.298***
(0.023)

0.324***
(0.026)

0.302***
(0.025)

0.327***
(0.027)

College Degree 0.326***
(0.025)

0.149*
(0.067)

0.367***
(0.036)

0.242**
(0.084)

0.295***
(0.034)

0.105
(0.083)

Parental Income
Rank * College
Degree

-0.145***
(0.038)

-0.013
(0.090)

-0.191***
(0.054)

-0.115
(0.123)

-0.109*
(0.053)

0.033
(0.111)

Sample Size 4,673 2,370 2,303

Note: †p<.1, *p<.05, **p<.01, ***p<.001 (two-tailed tests). Numbers in parentheses are
heteroskedasticity-consistent robust standard errors.

1Technically speaking, farm and business income consists of both labor income and capital income,
although these two components cannot be separated from the NLSY data.
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Table F2: Estimates of Intergenerational Rank-Rank Slope by College Completion where
Adult Income Is Defined as Total Individual Earnings.

Full Sample Men Women

Conditional
Mobility

Controlled
Mobility

Conditional
Mobility

Controlled
Mobility

Conditional
Mobility

Controlled
Mobility

Intercept 0.346***
(0.008)

0.354***
(0.009)

0.405***
(0.012)

0.412***
(0.012)

0.293***
(0.010)

0.300***
(0.011)

Parental Income
Rank

0.233***
(0.018)

0.242***
(0.020)

0.296***
(0.022)

0.315***
(0.025)

0.142***
(0.023)

0.153***
(0.026)

College Degree 0.282***
(0.029)

0.161*
(0.082)

0.351***
(0.032)

0.247***
(0.058)

0.241***
(0.039)

0.134
(0.099)

Parental Income
Rank * College
Degree

-0.149**
(0.046)

-0.011
(0.103)

-0.210***
(0.048)

-0.122
(0.083)

-0.103
(0.063)

0.022
(0.124)

Sample Size 4,673 2,370 2,303

Note: †p<.1, *p<.05, **p<.01, ***p<.001 (two-tailed tests). Numbers in parentheses are
heteroskedasticity-consistent robust standard errors.
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G. Results under Alternative Age Cutoffs for Defining Col-

lege Graduates

In the main analysis, I coded college graduates as those who had received a bachelor’s

degree by age 30. Tables G1 and G2 report the rank-rank slope estimates of conditional

and controlled mobility where the age cutoff for defining college graduates is 25 and 35,

respectively. We can see that our main results are fairly robust under alternative age

cutoffs for defining college graduates.

Table G1: Estimates of Intergenerational Rank-Rank Slope by College Completion where
the Age Cutoff for College Graduation is 25.

Full Sample Men Women

Conditional
Mobility

Controlled
Mobility

Conditional
Mobility

Controlled
Mobility

Conditional
Mobility

Controlled
Mobility

Intercept 0.301***
(0.008)

0.306***
(0.009)

0.316***
(0.012)

0.322***
(0.012)

0.287***
(0.012)

0.289***
(0.013)

Parental Income
Rank

0.333***
(0.017)

0.356***
(0.017)

0.328***
(0.023)

0.348***
(0.024)

0.335***
(0.024)

0.363***
(0.025)

College Degree 0.336***
(0.027)

0.198*
(0.080)

0.373***
(0.036)

0.229***
(0.062)

0.302***
(0.038)

0.202†
(0.110)

Parental Income
Rank * College
Degree

-0.175***
(0.039)

-0.086
(0.100)

-0.200***
(0.054)

-0.080
(0.082)

-0.151**
(0.057)

-0.126
(0.137)

Sample Size 4,673 2,370 2,303

Note: †p<.1, *p<.05, **p<.01, ***p<.001 (two-tailed tests). Numbers in parentheses are
heteroskedasticity-consistent robust standard errors.
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Table G2: Estimates of Intergenerational Rank-Rank Slope by College Completion where
the Age Cutoff for College Graduation is 35.

Full Sample Men Women

Conditional
Mobility

Controlled
Mobility

Conditional
Mobility

Controlled
Mobility

Conditional
Mobility

Controlled
Mobility

Intercept 0.292***
(0.008)

0.303***
(0.009)

0.310***
(0.012)

0.320***
(0.013)

0.275***
(0.012)

0.285***
(0.013)

Parental Income
Rank

0.312***
(0.017)

0.326***
(0.019)

0.306***
(0.023)

0.324***
(0.027)

0.314***
(0.024)

0.33***
(0.027)

College Degree 0.337***
(0.023)

0.163*
(0.067)

0.353***
(0.032)

0.216***
(0.052)

0.327***
(0.032)

0.151†
(0.085)

Parental Income
Rank * College
Degree

-0.154***
(0.035)

-0.014
(0.086)

-0.166***
(0.048)

-0.047
(0.069)

-0.146**
(0.049)

-0.018
(0.110)

Sample Size 4,673 2,370 2,303

Note: †p<.1, *p<.05, **p<.01, ***p<.001 (two-tailed tests). Numbers in parentheses are
heteroskedasticity-consistent robust standard errors.
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H. The Effects of College Expansion on Intergenerational

Mobility: A Simulation Study

In this study, we have found that the “college premium” in intergenerational income mo-

bility is largely driven by selection processes rather than an equalizing effect of a bache-

lor’s degree. We have thus argued that simply expanding the pool of college graduates is

unlikely to be effective in promoting intergenerational mobility. Quite the contrary, given

the strong influence of parental income on educational attainment and the fact that col-

lege completion is still far from universal among high-income children in the US (Bloome

et al. 2018), a mechanical (non-preferential) expansion of higher education might attract

disproportionately more students from economically advantaged backgrounds. Thus, in

the short run, intergenerational income mobility might even increase as a result of col-

lege expansion. Below, I conduct a simulation study to investigate how intergenerational

income mobility would change as a result of gradual expansions of college education.

The key idea of this simulation is to change only the proportion of college graduates

while holding all other aspects of the status attainment process constant. To set up the

simulation parameters in a way that mimics empirical reality, I first fit two generalized

additive models (GAM), one modeling college graduation as a function of both parental

income rank and the nine pre-college covariates, and the other modeling log adult family

income as a function of parental income rank, education (a binary indicator for college

graduates), and the nine pre-college covariates. In the meanwhile, I create a hypothet-

ical population by replicating the NLSY79 sample 100 times, keeping only information

on parental income rank and the nine pre-college covariates. To examine the effect of a

“pure” college expansion, I construct a continuum of scenarios by gradually changing the

intercept of the college graduation model (the first GAM) from very negative to very posi-

tive values, while keeping all other parameters of the estimated GAMs unchanged. Then,

in each of these scenarios, I generate model-based draws of college graduation status and

adult family income for each individual of the hypothetical population, and then calcu-

late the intergenerational rank-rank slopes for college graduates, non-graduates, and the

20



Figure H1: Intergenerational Rank-Rank Slopes under Varying Proportions of College
Graduates in Simulated Data.

entire population.

The results are summarized in Figure H1. We can see that when the proportion of col-

lege graduates in the population is relatively low, the intergenerational rank-rank slope

is much lower among college graduates (long dashed line) than among non-graduates

(short dashed line), indicating a “college premium” in intergenerational income mobility.

Yet, as the proportion of college graduates increases, the college premium diminishes.

More important, the rank-rank slope in the general population (solid line) exhibits a non-

monotone trend. As the pool of college graduates expands, the overall rank-rank slope

increases at first, peaks when about half of the population are college-educated, and de-

clines thereafter. Thus, considering that the proportion of college graduates in recent US

cohorts is still below 50% (Bauman 2016), an incremental expansion of postsecondary

education (per se) is unlikely to have a considerable effect on intergenerational income

mobility.
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