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Abstract

Opinion surveys often employ multiple items to measure the respondent’s underlying value,

belief, or attitude. To analyze such types of data, researchers have often followed a two-step

approach by first constructing a composite measure and then using it in subsequent analysis.

This paper presents a class of hierarchical item response models that help integrate measure-

ment and analysis. In this approach, individual responses to multiple items stem from a latent

preference, of which both the mean and variance may depend on observed covariates. Com-

pared with the two-step approach, the hierarchical approach reduces bias, increases efficiency,

and facilitates direct comparison across surveys covering different sets of items. Moreover, it

enables us to investigate not only how preferences differ among groups, vary across regions,

and evolve over time, but also levels, patterns, and trends of attitude polarization and ideolog-

ical constraint. An open-source R package, hIRT, is available for fitting the proposed models.
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1 Introduction

Opinion surveys often employ a battery of items to measure the respondent’s underlying value,

belief, or attitude toward a subject. In the American National Election Studies (ANES), for exam-

ple, racial resentment (toward blacks) is tapped by attitudes toward four different statements: (1)

Generations of slavery and discrimination have created conditions that make it difficult for blacks to work

their way out of the lower class; (2) Irish, Italians, Jewish and many other minorities overcame prejudice

and worked their way up. Blacks should do the same without any special favors; (3) It’s really a matter of

some people not trying hard enough; if blacks would only try harder they could be just as well off as whites;

(4) Over the past few years blacks have gotten less than they deserve. For each of these items, the re-

spondent can choose among a number of ordered responses, such as agree strongly, agree somewhat,

neither agree or disagree, disagree somewhat, and disagree strongly.

To analyze such types of data, researchers have often followed a two-step approach—by first

combining the multiple ordinal responses into a composite measure and then using this compos-

ite measure as a dependent or independent variable in subsequent analysis. In fact, the rationale

of using multiple items to measure a single underlying concept is that, by appropriately pooling

multiple responses, a more precise indicator can be obtained of the underlying value, belief, or

attitude. A number of dimension reduction techniques can be used for this purpose. First, one

could use a simple additive scale, that is, to treat the ordinal responses as integers and take their

arithmetic sum (or mean) as a composite measure of the underlying construct (e.g, DiMaggio,

Evans and Bryson 1996). The problem with this approach is twofold. First, for each item, it treats

the different response categories as evenly spaced on a latent continuum—a highly questionable

assumption that, if violated, may lead to erroneous conclusions (Mouw and Sobel 2001). Second,

the arithmetic mean as a composite measure weighs all items equally, thus assuming away po-

tential heterogeneity across items in their “discriminatory power.” Oftentimes, some items are

more effective than others to elicit different responses among people with different views. In this

regard, more effective items should be weighted more heavily in deriving the composite mea-

sure. To address the second problem, social scientists have increasingly used modern dimension

reduction techniques such as principal component analysis (PCA) and confirmatory factor analy-

sis (e.g., Layman and Carsey 2002; Inglehart and Welzel 2005; Ansolabehere, Rodden and Snyder

2008). Although these techniques automatically assign weights to different items—presumably

in a way that accounts for their heterogeneity in discriminatory power, they still take the integer
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scores as input and thus leave the first problem unaddressed.

A more principled approach to scaling categorical data is item response theory (IRT) (see Baker

and Kim 2004 for an introduction). Originally developed in educational testing and psychomet-

rics, IRT treats responses to tests and questionnaires—be they binary, ordinal, or nominal—as

resulting from explicitly specified statistical models in which both item and person characteristics

are represented as unknown parameters. Over the past two decades, IRT models—especially the

binary variant—have been widely used by political scientists to estimate the ideological positions

or ideal points of legislators, executives, and judges (e.g., Poole and Rosenthal 1991; Londregan

2000; Bailey and Chang 2001; Lewis 2001; Martin and Quinn 2002; Clinton, Jackman and Rivers

2004; Bailey 2007; Imai, Lo and Olmsted 2016). After the ideal points are estimated, subsequent

statistical analyses are often conducted to explore their spatial and temporal variations. However,

until very recently, IRT models have seldom been used to analyze public opinion data (for recent

applications, see Jessee 2009; Treier and Hillygus 2009; Bafumi and Herron 2010; Tausanovitch

and Warshaw 2013; Caughey and Warshaw 2015; Hill and Tausanovitch 2015; Jessee 2016). This

is partly because the mass public, compared with political elites, are perceived to carry limited

ideological constraint across issues (Converse 1964). Thus it would be imprudent to scale pub-

lic opinion onto a single dimension by pooling survey responses across different issue domains.

Yet within each domain, the number of survey items is often not large enough for precise esti-

mation of individual positions. Therefore, a tension seems to exist between the dimension of the

ideological space (i.e., the number of issue domains assumed) and the precision with which ide-

ological positions can be estimated. Nonetheless, if we consider that a major goal in most public

opinion studies is to identify the individual and contextual predictors—rather than the exact po-

sitions—of policy preferences in different domains, the two-step approach discussed above, be

the first step a simple additive scale, PCA, or a conventional IRT model, is analytically wasteful.

Since individual-level preferences are neither precisely estimated nor necessarily needed, why not

directly link the original item responses to observed covariates in an integrated model?

This paper aims to fill this lacuna. Specifically, I present a class of hierarchical IRT models that

can be fruitfully applied to analyze public opinion data. Different from conventional ideal point

models, this approach accommodates non-binary or a mixture of binary, ordinal, and nominal

response data. More important, the latent preferences (or ideal points) are not treated as fixed

parameters, but modeled as following a normal prior where both the mean and variance may de-

pend on a set of observed covariates. Compared with the two-step approach, the hierarchical IRT

3



approach has several distinct advantages. First, statistically, the embedding of a hierarchical struc-

ture into IRT allows us to jointly estimate the effects of individual covariates and item parameters.

The joint estimation—via maximizing the marginal likelihood—is computationally fast, statisti-

cally efficient, and offers valid asymptotic inference for all parameters. By contrast, the two-step

approach, as I will show in a Monte Carlo study, can lead to substantial bias, inefficiency, and inad-

equate coverage of confidence intervals. Second, practically, the hierarchical IRT approach allows

us to directly compare public opinion across surveys covering different sets of items. Oftentimes,

as is the case with the ANES, the specific questions asked on a given subject vary from year to year,

making it difficult for conventional scaling methods to generate comparable scores over time. Yet

with the the hierarchical IRT approach, even a limited overlap of items across surveys enables us

to identify the latent preferences on a common scale. Third, substantively, as I illustrate with the

ANES data, simultaneous modeling of the mean and variance of individual preferences allows

us to examine not only how preferences differ among groups, vary across regions, or evolve over

time, but also levels, patterns, and trends of attitude polarization and ideological constraint, two

recurring themes in public opinion research.

The hierarchical approach proposed in this paper advances item response modeling in political

science in three ways. First, it generalizes the existing hierarchical ideal point models (Londregan

2000; Bailey 2001; Lewis 2001; Bafumi et al. 2005; Caughey and Warshaw 2015) to settings where

we have non-binary or a mixture of binary, ordinal, and nominal response data, as is the case with

most public opinion studies.1 In a recent paper, Caughey and Warshaw (2015) propose a hierarchi-

cal binary IRT model for estimating group-level political opinions. The present approach is similar

to that model in that it also augments item response data by “borrowing strength” from units with

similar characteristics. Yet, departing from Caughey and Warshaw’s framework, the present ap-

proach models individual-level preferences directly (rather than preference data aggregated at the

group-level), thus allowing us to examine temporal and spatial variations more flexibly. Second,

in contrast to almost all existing ideal point models, it allows both the mean and variance of la-

tent preferences to vary according to individual characteristics, thus offering a highly flexible tool

for investigating patterns of preference heterogeneity and attitude polarization.2 Finally, despite

1Several recent studies have also used ordinal/multinomial IRT models to measure public opinion (Hill and Tau-
sanovitch 2015; Treier and Hillygus 2009) and other latent concepts such as democracy (Treier and Jackman 2008) and
state policy liberalism (Caughey and Warshaw 2016). The models proposed in this paper can be seen as a hierarchical
version of these ordinal/multinomial IRT models. Yet, in contrast to these previous studies, which have all adopted
a Bayesian approach, the hierarchical IRT models are now implemented via the expectation–maximization (EM) algo-
rithm, which is computationally much more efficient.

2Lewis (2001) also models both the mean and variance of vote preference distributions, but, like Caughey and
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this flexibility, the whole class of models are implemented via the expectation–maximization (EM)

algorithm, which is orders of magnitude faster than existing Bayesian implementations of even

more restrictive models (e.g., Martin, Quinn and Park 2011; see Supplementary Materials D). An

open source R package for fitting the proposed models, hIRT (Zhou 2017), is available from the

Comprehensive R Archive Network (CRAN).

In addition, we note that the hierarchical IRT approach has close precursors and parallels in

several other strands of literature. In particular, it is closely related to the Multiple Indicators and

Multiple Causes (MIMIC) model, a structural equation model that facilitates estimation of a latent

variable by leveraging information from both the observed indicators and covariates (Jöreskog

and Goldberger 1975; Jackson 1983; Muthén 1984; Armstrong et al. 2014). The hierarchical IRT ap-

proach can be seen as a variant of the MIMIC model with a single latent variable, where the single

latent variable is allowed to be heteroscedastic and its variance modeled as a function of manifest

predictors. Moreover, the second level of the hierarchical model is akin to a standard heteroscedas-

tic regression (Cook and Weisberg 1983; Aitkin 1987; Verbyla 1993), which has recently been used

to model the unpredictability of policy preferences (Jacoby 2006; Lauderdale 2010) and economic

inequality (Western and Bloome 2009; Zhou 2014).

The rest of the paper is organized as follows. The next section provides a brief review of con-

ventional IRT models for binary, ordinal, and nominal response data, all of which, as we will see,

can be augmented with a hierarchical structure that depicts both the mean and variance of individ-

ual preferences. These hierarchical models can all be fitted with an extension of the EM algorithm

originally proposed by Bock and Aitkin (1981) for fitting conventional binary IRT models. Next,

I use Monte Carlo simulation to demonstrate the superiority of the hierarchical approach over a

number of two-step methods in statistical performance. I then illustrate the utility of the hierarchi-

cal IRT approach with three substantive applications: party polarization, mass polarization, and

ideological constraint. The final section discusses possible extensions of the proposed models and

concludes.

Warshaw (2015), only at the group level.
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2 A Class of Hierarchical Item Response Models

2.1 Level I: Conventional IRT Models for Binary, Ordinal, and Nominal Data

To explain item response theory models in relation to public opinion data, let us consider an at-

titude survey where N individuals respond to J items on a given issue, say abortion. For each of

these items, the response format can be binary, ordinal, or nominal. Let us denote by Hj the num-

ber of response categories for question j. Assuming that the underlying attitude toward abortion

runs along a single spatial dimension, say, from conservative to liberal, we can use a scalar θi to

represent the position of individual i. Given these notations, item response theory posits that for

item j, the probability that individual i chooses response category h is a function of her latent

position θi:

Pr(Yij = h) = Pjh(θi), h = 0, 1, 2, . . . , Hj − 1. (1)

In the parlance of IRT, Pjh(·) is the item characteristic function for response category h of item

j. Depending on the response format, it can be parameterized in different ways. For binary re-

sponses, the item characteristic function typically takes a logit (or probit) form (Lord, Novick and

Birnbaum 1968):

Pjh(θi) =
exp

[
h(αj + β jθi)

]
1 + exp(αj + β jθi)

, h = 0, 1, (2)

where αj, β j, and θi are called item difficulty parameters, item discrimination parameters, and

ability parameters, respectively. In the context of ideal point estimation, items correspond to bills

and the ability parameters reflect the ideological positions of legislators. When applied to public

opinion data, items correspond to survey questions and the ability parameters reflect the policy

preferences of respondents. Note that when β j = 1 for all items, the above model reduces to the

Rasch model (Rasch 1960, 1961).

For ordinal responses, we can apply the logit transformation to the cumulative probabilities

Pr(Yij ≥ h), resulting in the graded response model (Samejima 1970):

Pjh(θi) = Pr(yij ≥ h)− Pr(yij ≥ h + 1)

=
exp(αjh + β jθi)

1 + exp(αjh + β jθi)
−

exp(αj h+1 + β jθi)

1 + exp(αj h+1 + β jθi)
, h = 0, 1, 2, . . . , Hj − 1, (3)

where ∞ = αj0 > αj1 . . . > αj Hj−1 > αj Hj = −∞. If the ability parameters θi were known, equation

(3) would correspond exactly to the proportional odds cumulative logit model. Alternatively, we
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could apply the logit transformation to the conditional probabilities between adjacent categories

Pr(Yij = h|Yij ∈ {h− 1, h}), resulting in the generalized partial credit model (Masters 1982; Muraki

1992):

Pjh(θi) =
exp{∑h

s=0(αjs + β jθi)}

∑
Hj−1
t=0 exp{∑t

s=0(αjs + β jθi)}
, h = 0, 1, 2, . . . , Hj − 1, (4)

where αj0 = 0.3 If the ability parameters θi were known, equation (4) would correspond exactly to

the adjacent category logit model (see Agresti 2013). In either the graded response model or the

generalized partial credit model, there are Hj − 1 distinct item difficulty parameters αjh but only

one item discrimination parameter β j for item j. This latter fact means that both models require

a proportional odds assumption, that is, the effects of the ability parameter θi are assumed to be

homogeneous across the Hj − 1 cumulative logits or adjacent logits for the same item. When this

assumption is questionable, we could allow the item discrimination parameter β j to be hetero-

geneous (thus written as β jh) across the Hj − 1 cumulative logits or adjacent logits. In the case

of cumulative logits, we would obtain an item response equivalent of the partial proportional

odds model (Peterson and Harrell 1990).4 In the case of adjacent logits, we would arrive at the

full multinomial logit specification, or, in the parlance of IRT, the nominal categories model (Bock

1972):

Pjh(θi) =
exp (αjh + β jhθi)

∑
Hj−1
h=0 exp (αjh + β jhθi)

, h = 0, 1, 2, . . . , Hj − 1. (5)

To identify this model, we typically select a reference category, say h = 0, and constrain the cor-

responding parameters, αj0 and β j0, to be zero. In contrast to the graded response model and the

generalized partial credit model, the nominal categories model has Hj − 1 distinct item discrimi-

nation parameters β jh in addition to Hj − 1 item difficulty parameters αjh for item j.

2.2 Level II: A Heteroscedastic Regression Model

Although the above IRT models were all developed several decades ago, they have seldom been

used in public opinion studies. One obstacle to their application is that when the number of items

is small, as is often the case with opinion surveys, the latent preferences θi cannot be precisely

estimated at the individual level. However, as noted earlier, a major goal in most public opinion

3A special case of the generalized partial credit model is the rating scale model (Andrich 1978), where the item
difficulty parameters are forced to take an additive form αjh = ζ j + β jηh. This additive form means that the relative
distances between different response categories are the same across items.

4In this model, additional constraints must be imposed to ensure that the item choice probabilities Pjh(θi) fall be-
tween zero and one.
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studies is not to pinpoint the latent preferences of all survey respondents, but to investigate the

ways in which preferences differ among groups, vary across regions, or evolve over time. To

achieve this goal, it is natural to include a hierarchical structure in which the latent preferences

θi depend on a set of individual and contextual characteristics. Specifically, let us assume that θi

follows a normal prior:

θi
indep∼ N(µi, σ2

i ), (6)

µi = γT x̃i (7)

log σ2
i = λT z̃i (8)

where x̃T
i = (1, xT

i ), z̃T
i = (1, zT

i ), and xi and zi are two column vectors of covariates predicting

the mean and variance of θi respectively. In the trivial case where both xi and zi are empty vectors,

the model reduces to the standard random effects IRT model (see Baker and Kim 2004). Of course,

we can also make the latent preferences homoscedastic by setting only zi to be an empty vector

(e.g., Mislevy 1987; Bailey 2001). However, given that the dispersion of policy preferences can

vary widely across time, space, and population subgroups, the heteroscedastic model offers a

more realistic way to depict the contours of mass opinion. Moreover, as we will see, simultaneous

modeling of the mean and variance of individual preferences enables us to accurately estimate

levels and trends of attitude polarization among the mass public.

2.3 Identification Constraints

In its current form, the hierarchical model is not identified. To see this, let us consider the binary

logit case (2). Plugging level II into level I, we can write the model as

logit Pr(Yij = 1) = αj + β j{γT x̃i + εi exp(λT z̃i/2)}, (9)

where εi is a standard normal error. The above equation implies that the model would be invariant

under any of the following transformations:

Translation: γ0 (the intercept in equation 7) increases by a constant c and all αj decrease by cβ j;

Scaling: λ0 (the intercept in equation 8) increases by a constant c, γ multiplies by a factor of

exp(c/2), and all β j deflate by a factor of exp(c/2);
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Reflection: γ and all β j switch signs.

Therefore, three identification constraints have to be imposed. To address translation invariance,

we can set ∑i γT x̃i = 0 so that the arithmetic mean of the prior means of the latent preferences

equals zero. To address scale invariance, we can set ∑i λT z̃i = 0 so that the geometric mean of

the prior variances of the latent preferences equals one. Alternatively, if we want to make the

variance component comparable across models with different items, we can let the discrimination

parameters have a geometric mean of one, i.e., ∏j β j=1. Finally, to address reflection invariance,

we can restrict the sign of one discrimination parameter, say β1, to be positive (or negative).

2.4 Estimation and Inference

In an influential paper, Bock and Aitkin (1981) developed an EM algorithm for estimating the

item parameters for a conventional IRT model with binary responses (equation 2). The basic idea

is to treat the ability parameters θi as missing data and maximize the marginal likelihood for the

item parameters αj and β j. Mislevy (1987) shows that the same procedure can be extended to fit a

hierarchical binary response model where the ability parameter follows a prior distribution with

constant variance (σ2
i = 1) (see also Bailey 2001). In fact, hierarchical IRT models in general—be

the response format binary, ordinal, or nominal, and be the ability parameter homoscedastic or

heteroscedastic—can be fitted in the same framework. In this framework, all of the item param-

eters αj and β j and hierarchical parameters γ and λ are estimated via maximizing the marginal

likelihood. Their asymptotic standard errors can be derived from either the Hessian matrix or the

outer product of gradients of the log marginal likelihood. As a byproduct of the EM algorithm,

empirical Bayes estimates of individual-specific latent preferences can be easily constructed. The

details of estimation and inference are shown in Supplementary Materials A, B, and C.

The same class of hierarchical IRT models can also be fitted using a full Bayesian approach,

in which all of the level I and level II parameters are given priors and estimated as posterior

draws via Markov Chain Monte Carlo (MCMC) simulation. In fact, the full Bayesian approach

has already been implemented for the simplest case—binary response data with homoscedastic

preferences (Martin, Quinn and Park 2011). In practice, however, the EM algorithm described in

the Supplementary Material is computationally much more efficient. For example, for fairly large

data sets (N=20,000-40,000; J=10-40), the runtime of the EM algorithm on a personal computer

rarely exceeds a minute, whereas the full Bayesian implementation can take many hours if not
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days.5 Supplementary Material D provides a systematic comparison in computation time between

the EM algorithm and MCMC simulation for relatively small sample sizes (N=500-10,000).

3 Comparison with Two-step Methods: Monte Carlo Evidence

As noted earlier, empirical studies of public opinion in recent decades have predominantly relied

on a two-step approach, i.e., first combine the multiple ordinal responses into a composite measure

and then use that composite measure as a dependent variable in subsequent analysis. In theory, we

know that this approach is statistically inefficient as it does not model the data generating process

directly. For practitioners, however, the question is whether the cost of the two-step approach is

so high as to justify the use of more principled methods. Below I use a Monte Carlo simulation to

explore and demonstrate the potential costs of the two-step approach.

First, let us consider a simple data generating process in which the latent preferences θi follow

a normal linear model with a constant variance:

θi
indep∼ N (γ0 + γ1xi, σ2),

where γ1 = 1 and xi is an observed covariate following a standard normal distribution. For this

setup, the level II of the hierarchical IRT model is correctly specified. To explore its robustness to

potential violations of the normal prior, let us also consider an alternative data generating process

where the latent preferences θi follow a uniform distribution with the same mean γ0 + γ1xi and

variance σ2:

θi
indep∼ Unif(γ0 + γ1xi −

√
3σ, γ0 + γ1xi +

√
3σ)

For identification purposes, I assume γ0 = 0 and σ2 = 1. Next, I generate J items and for each

item j, the number of response categories Hj is randomly drawn from the set {2, 3, 4, 5, 6, 7}, and

the item discrimination parameter follows a log-uniform distribution over the interval (−1, 1)6:

Hj
indep∼ Unif {2, 3, 4, 5, 6, 7},

log β j
indep∼ Unif (−1, 1).

5Imai, Lo and Olmsted (2016) proposed a computationally efficient solution for estimating ideal points from large
data sets. The main advantage of that approach (a closed-form EM algorithm), however, is confined to non-hierarchical
IRT models.

6In an auxiliary analysis where 40% of the items are specified to be “pure noise” (i.e., β j = 0), the results are very
similar to those presented in Figure 1 (available upon request).
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The item difficulty parameters for item j, {αj1, αj2, . . . αj Hj−1}, are then generated from the order

statistics of (Hj − 1) independent draws from the uniform distribution over the interval (−Hj +

1, Hj − 1). Finally, with the item parameters in hand, I simulate the item response data yij accord-

ing to the graded response model (3).

In this simulation, I fix the sample size N at 2,500 but let the number of items J take one of

five values: 5, 10, 20, 40, and 80.7 In each of the five settings, I generate 1,000 random samples of

the latent preferences θi, item parameters αj and β j, and response data yij using the procedures

described above.8 Then, for each sample, I estimate the effect of xi on the latent preference θi using

five methods:

1. For each item j, rescale the response data yij so that they range from 0 to 1, use their sim-

ple average across items ȳi as a composite measure of preference, and run a simple linear

regression of ȳi on xi. (Simple Average + Regression)

2. Conduct a PCA of the response data yij (using the correlation matrix), extract the first princi-

pal component PC1i as a composite measure of preference, and run a simple linear regression

of PC1i on xi. (PCA + Regression)

3. For each item j, dichotomize the response data using the sample mean of yij as the cutoff

point, run a conventional binary IRT model on the dichotomized data, extract the latent

preference estimates θ̂i, and run a simple linear regression of θ̂i on xi. (Binary IRT + Regres-

sion)

4. For each item j, run a conventional graded response model, extract the latent preference

estimates θ̂i, and run a simple linear regression of θ̂i on xi. (Grade Response Model + Re-

gression)

5. Run a hierarchical graded response model. (Hierarchical Grade Response Model)

To make the estimated coefficient of xi comparable across the five methods, we need to impose

a common scale constraint. As mentioned earlier, we assume the error variance σ2 = 1 for the

purpose of identification. So the variance of the true latent preferences V[θi] = γ2
1V[xi] + 1 = 2.

7Different sample sizes, such as 500 or 10,000, yield qualitatively the same results.
8Resampling both the latent preferences θi and the item parameters αj and β j in addition to the response data yij

means that we smooth out sampling variations with regard to both persons and items. Alternatively, we can fix θi, αj
and β j at given values and resample only yij in each Monte Carlo sample. Auxiliary analyses show that the results are
largely the same.
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Thus, in the four two-step methods, I rescale the latent preference estimates θ̂i such that V[θ̂i] = 2.

Then, with the 1,000 random samples, I evaluate the performance of the five methods using four

criteria: (a) bias: E(γ̂1 − γ1); (b) root mean squared error (RMSE):
√

E(γ̂1 − γ1)2; (c) coverage

of the 95% asymptotic confidence interval of γ̂1; and (d) average correlation between the true

preferences θi and the constructed/estimated preferences (ȳi for Simple Average, PC1i for PCA, or

θ̂i for IRT models).

The results are summarized in Figure 1, where the two columns correspond to the two data

generating processes, the four rows correspond to the four indicators of performance, the hori-

zontal axis denotes the number of items, and the five methods are represented by different point

shapes and line types. First of all, we can see that by all four criteria and regardless of the number

of items, the hierarchical graded response model always outperforms all of the two-step methods.

This is true for either the correctly specified model (left panel) or the misspecified model where

the latent preferences follow a uniform distribution (right panel). This is not altogether surprising

given that the response data yij still follow the graded response model (3) and we have followed

the likelihood principle to estimate the effects of xi. However, contrary to what one might expect,

the cost of the two-step approach can be substantial unless the number of items is very large. For

example, in a typical wave of the ANES, about 10-15 items are used to tap the respondent’s eco-

nomic attitudes (see Section 4). Our results suggest that in this case, all of the two-step methods

suffer from a downward bias of about 0.10, or 10% of the true effect size. This downward bias

occurs because in the two-step approach, when estimates of the latent preferences θi are fed into

subsequent analyses, estimation uncertainty becomes measurement error. And because estimates

of θ̂i are standardized such that V[θ̂i] = V[θi] = 2 (to ensure comparability across methods), noisy

estimates of θi tend to depress the regression coefficients of its predictors. This downward bias

also means that the proportion of the variation in θi that can be explained by the covariate xi is

underestimated. Such a bias leads to an RMSE of similar magnitude (far higher than that from the

hierarchical model), and virtually zero coverage of the 95% confidence intervals. When the num-

ber of items increases, the amount of bias tends to decrease. This is because a larger number of

items enable us to estimate the latent preferences more precisely, and more precise estimates of the

latent preferences necessarily allow for more accurate assessments of the effect of the covariate.

Yet, even when the number of items reaches an unrealistically high of 40, the two-step methods

still suffer a nontrivial amount of bias. This bias in turn translates into relatively large RMSEs and

inadequate coverage of the confidence intervals.
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Figure 1: Comparison in Statistical Performance among Five Methods: (a) Simple Average + Re-
gression, (b) Principal Component Analysis (PCA) + Regression, (c) Binary IRT + Regression, (d)
Graded Response Model + Regression, and (e) Hierarchical Graded Response Model.

Note: The Binary IRT model was fitted by the function binIRT in the R Package emIRT (Imai, Lo
and Olmsted 2016). The graded response model and hierarchical graded response model were
both fitted using the function hgrm in the R package hIRT accompanied with this paper.
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The last panel shows the average correlation between the true preferences θi and the con-

structed/estimated preferences from the five methods. On the one hand, it is easy to notice that

the hierarchical graded response model always yields the best estimates of the latent preferences

(in terms of their correlation with the true values). On the other hand, we can see that all of the

two-step methods perform reasonably well in constructing/estimating the latent preferences, es-

pecially when the number of items is relatively large. For instance, when the number of items

reaches 20, the first principal component of the raw responses (treated as interval variables) ex-

hibits an average correlation of 0.95 with the true latent preferences. However, as we can see from

the other three panels, when these first principal components are used as dependent variables

in the second-step regressions, the estimated effects of the covariate xi are substantially biased,

highly inefficient, and accompanied with grossly misleading confidence intervals. Thus, even a

composite measure that has a correlation of 0.95 with the true values may not salvage the two-step

approach from its statistical costs. Paradoxically, accurate estimation of the hierarchical parame-

ter γ1 does not hinge on precise reconstruction of the latent preferences. For example, when there

are only five items, even the correctly specified hierarchical graded response model cannot pin-

point the latent preferences θi precisely, as the average correlation between the empirical Bayes

estimates θ̂i and θi does not even reach 0.9. Yet this does not prevent the hierarchical parameter γ1

from being reliably estimated. In sum, good measurements cannot replace hierarchical modeling,

but hierarchical modeling can compensate for poor measurements.

4 Applications to ANES Data

In this section, I illustrate the hierarchical IRT approach with the ANES time series cumulative

data file, 1948-2016. Following Baldassarri and Gelman (2008), I focus on the period from 1972 on-

ward, include attitude questions that were asked at least three times, and classify them into four

issue domains: economics, civil rights, morality, and foreign policy. This procedure yields a total

of 46 items, 15 on economics, 17 on civil rights, 10 on morality, and 4 on foreign policy. Further,

in domain-specific analysis, I include only years in which at least three items were administered

in the corresponding domain. As a result, my analyses of the four issue domains span slightly

different periods: 1984-2016 for economic issues, 1972-2016 for civil rights issues, 1986-2016 for

moral issues, and 1984-2008 for foreign policy issues. The details of the 46 items (variable ID,

question wording, number of response categories, number of years available) are shown in Table
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Table 1: ANES Survey Items in Four Issue Domains
Variable ID Question Wording # Response

Categories
# Years

Available
Economics
VCF0806 Support for government or private health insurance 7 10
VCF0809 Support for government guarantee jobs and income* 7 12
VCF0839 Should government reduce or increase spending?* 7 12
VCF0886 Federal spending on the poor 3 8
VCF0887 Federal spending on child care* 3 11
VCF0888 Federal spending on crime 3 10
VCF0889 Federal spending on AIDS 3 7
VCF0890 Federal spending on public schools* 3 12
VCF0891 Federal spending on college aid 3 4
VCF0893 Federal spending on homeless 3 4
VCF0894 Federal spending on welfare 3 9
VCF9046 Federal spending on food stamps 3 8
VCF9047 Federal spending on environment* 3 12
VCF9049 Federal spending on Social Security* 3 13
VCF9050 Federal spending on assistance to blacks 3 7

Civil Rights
VCF0813 How much has the position of Negroes improved? 3 8
VCF0814 Civil rights have pushed too fast 3 9
VCF0816 Should the government ensure school integration? 2 7
VCF0817 Support for school busing for integration 7 5
VCF9037 Should the government ensure fair jobs for blacks? 2 9
VCF0830 Should the government help blacks?* 7 17
VCF0867a Opinion on affirmative action* 4 11
VCF9013 Society should ensure equal opportunity* 5 12
VCF9014 We have gone too far in pushing equal rights in this country* 5 12
VCF9015 Big problem: we don’t give everyone an equal chance* 5 11
VCF9016 Not big problem if some people have more of a chance in life* 5 12
VCF9017 Country better off if we worried less about how equal people are* 5 12
VCF9018 We would have fewer problems if people were treated more equally* 5 13
VCF9039 Slavery and discrimination have made it difficult for blacks 5 10
VCF9040 Many other minorities overcame prejudice; blacks should do the same* 5 11
VCF9041 If blacks would try harder they could be just as well off as whites 5 10
VCF9042 Over the past few years blacks have gotten less than they deserve* 5 11

Morality
VCF0834 Should women have equal role in business, industry, and government? 7 9
VCF0851 The newer lifestyles are contributing to the breakdown of our society* 5 12
VCF0852 We should adjust our view of moral behavior to changes* 5 12
VCF0853 Fewer problems if there were more emphasis on traditional family ties* 5 12
VCF0854 We should be more tolerant of people with different moral standards* 5 12
VCF0876a Favor or oppose laws to protect homosexuals against job discrimination 4 8
VCF0877a Should gays be allowed to serve in the military? 4 6
VCF0878 Should gays/lesbians be able to adopt children? 2 6
VCF9043 Should school prayer be allowed? 4 7
VCF0838 When should abortion be permitted?* 4 12

Foreign Policy
VCF0841 Should we try hard to get along with Russia? 7 3
VCF0843 Should we spend more or less on defense?* 7 6
VCF0892 Federal spending on foreign aid 3 3
VCF9048 Federal spending on space/science/technology* 3 6

Note: Items with an asterisk are used for principal component analysis (PCA) in the example of party polarization.
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1.9 It is easy to see that our data are highly unbalanced for all of the four domains, as many (if

not most) questions have not been asked consistently over the years. This inconsistency would

pose a serious challenge for conventional scaling methods, such as PCA, to produce comparable

scores across years. As a result, in many empirical applications, researchers have focused on a

set of common items that were asked consistently across years (e.g., Layman and Carsey 2002).

By contrast, the hierarchical IRT approach does not require balanced data for identification. Since

item parameters are assumed to be fixed (i.e., no differential item functioning over time), overlap-

ping of items across years allows us to bridge data over time and identify the means and variances

of latent preferences on a common scale.10 In this application, since all of the attitude questions

come with Likert-type responses, I use the graded response specification. Below, I use the hierar-

chical graded response model to demonstrate patterns and trends in three macro-level outcomes:

(a) party polarization, (b) mass polarization, and (c) ideological constraint.

4.1 Party Polarization

A large body of research has reported a surge of party polarization in the US over recent decades.

Democratic and Republican party elites, as suggested by Congressional roll call votes, have grown

increasingly separated along a single ideological dimension (e.g., McCarty, Poole and Rosenthal

2016). Elite polarization has also generated a mass response. In the electorate, self-identified

Democrats and Republicans have diverged in all of the three domestic issue domains: economics,

civil rights, and morality (Layman and Carsey 2002; Layman, Carsey and Horowitz 2006; Baldas-

sarri and Gelman 2008). Moreover, Layman and Carsey (2002) report that party polarization in the

electorate has been confined to “party identifiers who are aware of party polarization,” a finding

that comports with Zaller’s (1992) argument that only politically aware citizens pay attention to

elite discourse, receive political cues, and selectively internalize political messages. Given that

political awareness correlates strongly with education (Delli Carpini and Keeter 1996), we should

also expect party polarization to be more salient among highly educated citizens than others.

Given these considerations, let us now examine trends in mass opinion in each of the four

issue domains, with party identification (Democrat, Republican, independent), education (high

school or less, some college or above), year splines, and their full interactions as predictors in

9For some of these items, question wording has changed from time to time. In this exercise, we assume that all
item parameters are fixed over time. This assumption can be easily relaxed by assigning different item parameters to
questions worded in different ways.

10When differential item functioning is allowed (Aldrich and McKelvey, 1977; Hare et al., 2015; King et al., 2004),
identification of the model becomes much more challenging and often requires stringent parametric assumptions.
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Figure 2: Trends in Policy Conservatism in Four Issue Domains, by Education and Party Identifi-
cation.

Note: Ribbons represent 95% asymptotic confidence intervals.
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the mean equation (7). To obtain smooth estimates of temporal trends, we use quadratic splines

of survey year with four degrees of freedom.11 Alternatively, if we are interested more in year-

to-year fluctuations of public opinion than in medium- and long-term trends, we can use year

dummies instead of splines. Since our primary interest here is in the mean structure, we assume

a constant variance by setting z̃i = 1.12 Fitted values of policy conservatism (γ̂T x̃i), along with

their 95% confidence intervals, are shown in Figure 2.13 We can draw several observations from

them. First, in all four issue domains and throughout the entire period, partisan differences are

more pronounced among college-educated individuals than among individuals with only a high

school diploma or less, reflecting a significant role of education in strengthening issue partisan-

ship. Second, echoing previous studies, we find a marked growth of partisan differences in all of

the three domestic issue domains. The divergence is especially salient for moral issues, on which

Democrats and Republicans barely disagreed back in the mid 1980s but have become increasingly

divided over the past three decades. Moreover, contrary to what one might expect, party polariza-

tion has not been confined to the college-educated group. Even among individuals with no more

than a high school diploma, self-identified Democrats and Republicans have decidedly diverged

in their attitudes toward economic, civil rights, and moral issues.

Figure 2 also indicates the timing and sources of party polarization for different issue do-

mains. Specifically, party divergence in economic issues results primarily from Republicans and

independents moving to the right since the early 2000s, whereas party divergence in moral issues

reflects more of Democrats and independents moving to the left starting from the late 1980s. The

phrase “party polarization” is particularly apt for trends in civil rights issues, as they are char-

acterized simultaneously by Democrats drifting to the left and Republicans drifting to the right.

Finally, trends in foreign policy preferences are highly bipartisan, as Democrats, Republicans, and

independents have moved in tandem, apparently toward a consensus, over the entire period (be-

coming more dovish in the late 1980s and more hawkish thereafter). In sum, our results are largely

consistent with previous findings on party polarization in the American electorate. However, as

we have seen, the hierarchical model has enabled us to see a more nuanced picture of the patterns,

sources, and timing of party polarization in different issue domains.

11In the foreign policy domain, as data are relatively sparse in time (available at only six time points: 1984, 1986, 1988,
1990, 2004, 2008), we use quadratic splines with three degrees of freedom (with one interior knot at 1988).

12Auxiliary analyses allowing for variance heterogeneity yield substantively the same results as those reported in
Figure 2.

13The estimates of item discrimination parameters, along with their 95% confidence intervals, are reported in Sup-
plementary Material E.
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Figure 3: Trends in Policy Conservatism in Four Issue Domains, by Education and Party Identifi-
cation, with Policy Preferences Measured Using Principal Component Analysis (PCA).

Note: Ribbons represent 95% bootstrapped confidence intervals.
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Let us now compare the above results with those from a two-step method. As mentioned

earlier, since the ANES did not ask the same set of questions in each year (for any of the four do-

mains), it would be hard for conventional scaling methods to generate comparable scores across all

survey years. Fortunately, in the ANES, there are some questions that have been asked relatively

consistently over time. Thus, for each issue domain, I conduct a PCA on a set of common items,

as marked with an asterisk in Table 1, and accordingly restrict my analysis to those years in which

these items appeared. Then, I treat the first principal component as a measure of latent preference

and regress it on party identification, education, year splines, and their full interactions. As in the

Monte Carlo simulation, to make results comparable, the dependent variable in this regression

is rescaled such that its total variance equals that of θi in the fitted hierarchical IRT model. The

results are shown in Figure 3. In general, this two-step method produces quite similar patterns of

party polarization in the economic, civil rights, and moral domains. However, a few differences

are noteworthy. First, in the civil rights domain, the hierarchical IRT model offers comparable

estimates of preferences all the way back to 1972, whereas the two-step method only allows us

to track trends from 1984 onward due to a lack of common items. Second, in a few instances, the

estimated variation in preference appears to be smaller under the two-step method than under the

hierarchical model. For example, in the moral domain, the hierarchical IRT model suggests that

independents have shifted decidedly to the left, but the two-step method suggests that they have

barely moved. This difference echoes our simulation result that the estimated effects of covariates

tend to be downwardly biased in two-step methods. Finally, in the foreign policy domain, the hier-

archical IRT model suggests a growing bipartisan consensus for both educational groups, whereas

the two-step method suggests a persistent ideological gap between Democrats and Republicans

in the college-educated group.

4.2 Mass Polarization

It might be supposed that the rise of party polarization reflects growing polarization in the broader

society. This is not necessarily true, however, as the divergence in issue attitudes between Democrats

and Republicans may have resulted simply from a realignment of party labels in the electorate

(e.g., Fiorina, Abrams and Pope 2006; Baldassarri and Gelman 2008; Hill and Tausanovitch 2015).

As party elites have moved increasingly toward the ideological poles, voters may have become

simply better at sorting themselves into different camps. In this case, the rise of party polarization

would be no more than a tightened alignment of party affiliation with policy preferences. On the
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other hand, increased polarization among party elites may have caused real changes in issue at-

titudes, especially among voters who are deeply attached to one of the major parties (Carsey and

Layman 2006). If Democrats and Republicans in the electorate have indeed followed their elite

cues and adjusted their policy preferences, the rise of party polarization should have translated

into growing levels of mass polarization.

Several previous studies have examined long-term trends in mass polarization, especially in

moral issues. Using social attitude items from the ANES and the General Social Survey (GSS),

DiMaggio, Evans and Bryson (1996) find little evidence of increased polarization from the early

1970s to the early 1990s, with the issue of abortion being an exception (see Evans 2003 for an

update). A similar conclusion has been reached by Fiorina, Abrams and Pope (2006, 2008), who

contend that the narrative of “culture war” (i.e., mass polarization in moral issues) is largely a

myth, even for such hot-button issues as abortion and homosexuality. However, in gauging polar-

ization, these studies either analyzed different items separately or constructed composite scores

by treating ordinal or nominal scales as interval data. Given substantial measurement error as-

sociated with single items (e.g., Ansolabehere, Rodden and Snyder 2008), the former approach

is obviously statistically inefficient. The latter approach, as mentioned at the beginning, hinges

on two highly questionable assumptions, which could have easily contaminated previous find-

ings (see Mouw and Sobel’s [2001] critique on DiMaggio, Evans and Bryson[1996]). As a result

of these methodological issues, the existence and extent of public polarization continues to be de-

bated (e.g., Abramowitz and Saunders 2008; Abramowitz 2010; Fiorina and Abrams 2012; Hill and

Tausanovitch 2015).

The hierarchical IRT approach offers an ideal tool for us to revisit trends in mass polarization,

not only because it scales ordinal response data in a principled way, but also because it allows

simultaneous modeling of the mean and variance of latent preferences. Because variance is the

simplest and perhaps the most commonly used measure of mass polarization (e.g., DiMaggio,

Evans and Bryson 1996; Mouw and Sobel 2001; Evans 2003; Hill and Tausanovitch 2015), we can

interpret an increase in variance as evidence of growing polarization. Specifically, we now model

both the mean and variance of latent preferences as linear functions of year splines (with no other

predictors), and, as above, examine the four issue domains separately. In addition, in each of

the four issue domains, we address scale invariance by setting the geometric mean of the item

discrimination parameters (β j) at one. This procedure ensures that the estimates of the variance

component are relatively comparable across domains. The results are shown in Figure 4, in which
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Figure 4: Trends in Means and Variances of Policy Conservatism by Issue Domain

Note: Ribbons represent 95% asymptotic confidence intervals.

the upper and lower panels present the means and variances of policy conservatism respectively

(along with 95% confidence intervals). Several findings have emerged. First, we can see that in

the economic domain, the average opinion stayed stable for most of the period and but has moved

decidedly to the right since around 2010. In the meanwhile, the variance component has increased

dramatically since the early 2000s, indicating a growing level of mass polarization over economic

issues. Second, on civil rights issues, the average opinion grew more liberal up to the early 1980s

but stayed highly stable over the past three decades. Trends in the variance component are non-

monotone, suggesting that civil rights attitudes became less polarized during the 1970s and 1980s

but, over the past decade, has reverted to, or even exceeded, the level of polarization in the early

1970s. Third, on moral issues, the average opinion has become increasingly more liberal since

the early 1990s. And, contrary to popular accounts of escalating “culture war,” the variance of

moral attitudes was remarkably stable until around 2010, after which it slightly increased. Finally,
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on foreign policy issues, the average opinion has changed rapidly over time—becoming consid-

erably more dovish in the late 1980s but far more hawkish in the 1990s and 2000s. The variance

component, on the other hand, has been exceptionally low throughout the period, suggesting that

at a given point in time, foreign policy issues are not only highly bipartisan, but also relatively

consensual in the broader society. Overall, our findings suggest that mass opinion has indeed

polarized in recent years, especially on economic and civil right issues.

4.3 Ideological Constraint

In assessing trends in opinion polarization, we have employed the fitted means and variances of

the hierarchical IRT model. As noted earlier, the EM algorithm also allows us to construct em-

pirical Bayes estimates of the latent preferences at the individual level. These individual-level

preference estimates, which can be interpreted as ideological positions in the corresponding issue

domain, in turn enable us to gauge the levels and trends in ideological constraint across domains.

In his landmark study, Converse (1964) contends that the vast majority of the electorate are politi-

cally innocent and do not hold stable and coherent policy preferences. Although this perspective

has been highly influential in public opinion scholarship over the past half century, a number of

studies have challenged Converse’s conclusions by pointing out that the apparent instability and

incoherence in issue attitudes are largely driven by measurement error associated with survey

responses (Judd and Milburn 1980; Jackson 1983; Norpoth and Lodge 1985; Hurwitz and Peffley

1987; Ansolabehere, Rodden and Snyder 2008). In particular, Ansolabehere, Rodden and Snyder

(2008) show that once measurement error is accounted for by averaging across multiple items,

voter preferences exhibit not only temporal stability, but also a high degree of constraint between

issues in the same domain. Relatively underexplored, however, is ideological constraint across

issue domains. A notable exception is Layman and Carsey (2002), who used confirmatory factor

analysis to construct latent attitudes in the three domestic issue domains (for a limited number

of items that were asked consistently in ANES 1992, 1996, and 2000), assessed correlation coef-

ficients between these latent attitudes among different groups, and found that only politically

aware party identifiers exhibited statistically significant constraint across domains, i.e., aligned

their social welfare, racial, and cultural attitudes with one another. More recently, Baldassarri and

Gelman (2008) examined long-term trends in pairwise correlations of issue attitudes and found

that the average correlation between issues from different domains was very weak (around 0.12)

and barely increased over time. Their analysis, however, was based on correlation coefficients be-
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Figure 5: Trends in Ideological Constraints Between Issue Domains.

tween single items, and, therefore, could have easily been contaminated by measurement error. In

what follows, we use the hierarchical IRT approach to reassess the levels and trends of ideological

constraint in the American electorate.

Specifically, we fit the same hierarchical graded response model as in the previous example

(with both the prior mean and the prior variance modeled as linear functions of year splines)

and extract empirical Bayes estimates of the latent preferences at the individual level (equation

(13) in Appendix A).14 Then, for each survey year, we calculate Pearson’s correlation coefficients

between these latent preference estimates for economic, civil rights, and moral issues. The results

are shown in Figure 5. Two patterns are worth noting. First, ideological constraint seems to

be stronger between economic and civil rights issues (left panel) than between economic/civil

rights issues and moral issues (middle/right panel). The correlation coefficient between economic

14For our data, empirical Bayes estimates of latent preferences from different models are extremely close, with Pear-
son’s correlation coefficient around 0.99.
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and civil rights attitudes has been hovering around 0.5-0.6 for most of the study period. Such

strong correlations, as noted in Layman and Carsey (2002), may reflect a common philosophical

concern underlying economic and civil rights issues, as both speak to the role of government in

promoting economic and social equality. Second, ideological constraint between moral issues and

the other two domains, although relatively moderate, has greatly strengthened over the past three

decades. For instance, the correlation coefficient between civil rights attitudes and moral attitudes

increased from less than 0.2 in 1986 to about 0.5 in 2016. Thus, with a longer time series and

a more principled approach to gauging policy preferences, we have reached a finding that runs

counter to Baldassarri and Gelman (2008), that American public opinion has not only aligned more

closely with party identification, but also grown considerably more coherent across different issue

domains. This finding echoes a recent study by Caughey, Dunham and Warshaw (2018), who

find that at the level of state-party publics, economic, racial, and social attitudes have also become

increasingly aligned.15

5 Concluding Remarks

In this paper, I have shown that a class of hierarchical item response models, in which both the

mean and variance of the ability parameters (i.e., latent policy preferences) may depend on ob-

served covariates, can be fruitfully applied to analyze public opinion data. The hierarchical IRT

models—be the responses in binary, ordinal, or nominal format—can be fitted via an extension

of the EM algorithm proposed in Bock and Aitkin (1981). In practice, the hierarchical approach

can serve two distinct purposes. First, given that a major goal of public opinion research is to

examine how policy preferences differ among groups, vary across regions, or evolve over time,

the hierarchical approach helps integrate measurement and analysis, as it pools information from

multiple items and estimates the effects of observed covariates simultaneously. The joint estima-

tion—via maximizing the marginal likelihood—is computationally fast, statistically efficient, and

offers valid asymptotic inference for all parameters. By contrast, the widely adopted two-step

approach, be the first step simple average, PCA, or a conventional IRT model, can lead to sub-

stantial bias, inefficiency, and inadequate coverage of confidence intervals. As we have seen, with

party ID, education, and year splines specified as the inputs of the mean equation, the hierarchical

15Auxiliary analyses (not reported) indicate that the growth in ideological alignment at the individual-level has been
almost entirely driven by increased ideological alignment between—rather than within—self-identified Republicans,
independents, and Democrats.
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model offers a comprehensive picture of how party polarization in the American electorate has

varied by issue domain, differed across educational groups, and evolved over time. Moreover,

with year splines specified as the sole inputs of both the mean and variance equations, the hier-

archical model enables us to examine whether opinion polarization has occurred not only along

party lines, but also in the broader society.

Second, the hierarchical IRT models also permit us to construct empirical Bayes estimates of

latent policy preferences at the individual level. Akin to ideal points now routinely estimated for

legislators, judges, and executives (from conventional binary IRT models), these latent preferences

can be interpreted as ideological positions of ordinary citizens in specific issue domains. Because

the model pools information across multiple items, estimates of these latent preferences are rela-

tively precise indicators of these ideological positions (as shown in the last row of Figure 1), and,

therefore, can be used to examine a variety of outcomes, such as ideological constraint, voting

behavior, and representation. For example, we have used empirical Bayes estimates of the latent

preferences to assess how ideological constraints between different issue domains have evolved

over time.

As mentioned at the beginning, compared with political elites, the belief system among the

mass public tends to be relatively amorphous and multidimensional. Thus it would be inap-

propriate to scale public opinion onto a single dimension using the whole panoply of attitude

questions in an opinion survey. The position taken in this article, as illustrated with the ANES

data, is to classify survey items into different domains and conduct dimension-specific analysis.

Occasionally, however, we may encounter survey items that could reflect more than one latent

dimension of preference. For example, the ANES question on federal spending on assistance to

blacks may tap a combination of economic attitudes and racial attitudes. In such cases, it would

be useful to consider a multidimensional hierarchical IRT model in which the latent preference

vector θi follows a multivariate normal prior:

θi
indep∼ N (µi, Σi). (10)

Depending on the research question, the prior means (reflecting average opinion), prior variances

(reflecting opinion heterogeneity or polarization), and prior correlation coefficients (reflecting ide-

ological constraint) may all be parameterized as functions of observed covariates. As noted in

Clinton, Jackman and Rivers (2004), for a d-dimensional conventional IRT model, a minimum of
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d2 + d identification constraints are needed. This is because the model is invariant under any

affine transformation of the latent preference vector θ∗i = Aθi + b, where A is a d× d invertible

matrix and b is a d× 1 vector. For a hierarchical IRT model characterized by equation (10), where

both µi and Σi are modeled as functions of observed covariates, d constraints are needed for the

model of µi and d2 constraints for the model of Σi. It should be noted, however, that constraints

for the model of Σi may imply unintended restrictions on the relative degree of polarization in

different domains as well as the levels of ideological constraint between domains. To avoid such

restrictions, we could impose alternative constraints on the item parameters. For example, with

prior knowledge about the nature of different items, we could restrict some item discrimination

parameters to be zero. Then, given the identification constraints, the EM algorithm presented in

Supplementary Material A can be directly extended to estimate the hierarchical parameters, ex-

cept that the second component of the M-step is now analogous to a covariance regression model

(e.g., Hoff and Niu 2012) rather than a univariate heteroscedastic regression. Undoubtedly, future

work is needed to explore and implement such extensions.

Apart from generalization to multiple dimensions, the hierarchical IRT approach presented in

this paper can also be extended to accommodate multiple levels of variation. The level II model,

for example, can itself be specified as a hierarchical linear model with individuals nested in geo-

graphic areas such as US states and regions. Such a model would be useful if we are interested

in how contextual-level variables shape and predict individual preferences. When combined with

post-stratification, it could also be used to estimate public opinion at the level of geographic units

that are not self-represented in national surveys (Park, Gelman and Bafumi 2004). To implement

this extension, the EM algorithm needs to adapted as the M-step now involves fitting a hierarchi-

cal linear model. I leave this extension for future work.

Despite its advantages over conventional scaling methods, the hierarchical IRT approach is

not without limitations. In fact, by pooling information from multiple items, it runs the risk of

masking potentially unique patterns of attitudinal variation for highly specific issues. In my anal-

ysis of the ANES data, for example, the moral domain includes ten questions covering a wide

range of issues such as gender equality, gay rights, school prayer, and abortion (see Table 1).

While it is reasonable to assume a common moral dimension underlying attitudes toward these

issues, there may still be idiosyncratic variations in attitude toward particular issues. For instance,

while Democrats and Republicans have likely polarized on hot-button issues such as gay rights

and abortion, they may have moved toward a consensus on gender equality. Thus, when the
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researcher is concerned with a particular issue, it might be more fruitful to focus on variations

and trends in the original responses to the corresponding question(s). However, even for specific

issues, multiple items are often used to gauge the respondent’s underlying preference. For ex-

ample, in ANES, three questions have been asked to tap attitudes toward gay rights, and in GSS,

six questions have been asked to tap attitudes toward abortion. In those cases, hierarchical item

response models can and should still be exploited to streamline analysis, reduce bias, and increase

efficiency.

Finally, it is worth noting that although our applications to the ANES data are descriptive in

nature, the models presented in this paper can be readily applied to study the causal effects of

various “treatments”—such as elite position-taking (e.g., Broockman and Butler 2017), political

socialization (e.g., Mendelberg, McCabe and Thal 2017), and economic inequality (e.g., Rueda

and Stegmueller 2016)—on public opinion.16 For example, in a survey experiment where policy

attitudes are tapped by a battery of items, the hierarchical IRT approach would be a natural tool

to estimate the causal effect of the treatment on the underlying preference of interest. Similarly,

the level II model can be easily adapted to accommodate matched data, time-series cross-sectional

data, and regression discontinuity designs. Given its statistical validity, computational efficiency,

and analytical flexibility, we see no reason why future research on public opinion should shy away

from the hierarchical approach.

16If, however, we want to use latent opinion as a “treatment” or independent variable, a different type of structural
model (or an appropriate technique to adjust for measurement error) is needed (see Treier and Jackman 2008; Armstrong
et al. 2014).
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A: Estimation and Inference

For notational simplicity, let us consider a simple random sample with no missing data. In prac-

tice, survey weights and nonresponses can be easily incorporated. In the current implementation,

all item nonresponses are omitted from the level-I likelihood, meaning that they are treated as

missing as random and can be predicted a posteriori.

First, let us define the following shorthands

α = {αjh; 1 ≤ j ≤ J, 0 ≤ h ≤ Hj − 1}, αj = {αjh; 0 ≤ h ≤ Hj − 1},

β = {β jh; 1 ≤ j ≤ J, 0 ≤ h ≤ Hj − 1}, βj = {β jh; 0 ≤ h ≤ Hj − 1},

θ = {θi; 1 ≤ i ≤ N}, x = {xi; 1 ≤ i ≤ N},

y = {yij; 1 ≤ i ≤ N, 1 ≤ j ≤ J}, yi = {yij; 1 ≤ j ≤ J}.

Since the covariates x̃i and z̃i are treated as fixed quantities, I suppress them in most of the follow-

ing derivation. Given equation (1) and the prior distribution (6), we can write the complete data

likelihood as

p(y, θ|α, β, γ, λ) = p(y|θ, α, β) p(θ|γ, λ)

=
N

∏
i=1

{ J

∏
j=1

p(yij|θi, αj, β j)
}

p(θi|γ, λ).

Suppose we now have a set of existing parameter estimates α∗, β∗, γ∗, λ∗. Treating θ as missing

data, the Q-function of the EM algorithm, i.e., the conditional expectation of the log complete data

likelihood, is

Q(α, β, γ, λ) = E
[
log p(y, θ|α, β, γ, λ)|α∗, β∗, γ∗, λ∗, y

]
=
∫

θ

{ N

∑
i=1

[ J

∑
j=1

log p(yij|θi, αj, β j) + log p(θi|γ, λ)
]}

p(θ|α∗, β∗, γ∗, λ∗, y)dθ

=
N

∑
i=1

∫
θi

[ J

∑
j=1

log p(yij|θi, αj, β j) + log p(θi|γ, λ)
]
p(θi|α∗, β∗, γ∗, λ∗, yi)dθi. (11)

The latter equation holds because the posterior distribution of the ability parameters are indepen-
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dent across individuals:

p(θ|α∗, β∗, γ∗, λ∗, y) ∝ p(y|α∗, β∗, θ) p(θ|γ, λ)

=
N

∏
i=1

J

∏
j=1

p(yij|α∗j , β∗j , θi)
N

∏
i=1

p(θi|γ∗, λ∗)

=
N

∏
i=1

{[ J

∏
j=1

p(yij|α∗j , β∗j , θi)
]
p(θi|γ∗, λ∗)

}
∝

N

∏
i=1

p(θi|α∗, β∗, γ∗, λ∗, yi).

The unidimensional integrals in equation (11) can then be evaluated using quadrature methods.

The basic idea is to select a number of nodes, say θk (1 ≤ k ≤ K) that range from −C to C, where

C is a sufficiently large number such that [−C, C] captures almost all of the mass of the posterior

distribution p(θi|α∗, β∗, γ∗, λ∗, yi) for all individuals. In practice, if we impose the scale constraint

∑i λT z̃i = 0 such that the geometric average of estimated error variances σ̂2
i equals one, setting

K = 25 and C = 5 would be sufficient. Given a set of quadrature points θk and quadrature weights

wk, the final weights that enter the numerical evaluation of integral (11) will be

wik =
wk
[

∏J
j=1 p(yij|α∗j , β∗j , θk)

]
p(θk|γ∗, xi, zi)

∑K
k=1 wk

[
∏J

j=1 p(yij|α∗j , β∗j , θk)
]
p(θk|γ∗, xi, zi)

. (12)

Thus equation (11) can be approximated as

Q(α, β, γ, λ) ≈
N

∑
i=1

K

∑
k=1

wik
[ J

∑
j=1

log p(yij|θk, αj, β j) + log p(θk|γ, λ, xi, zi)
]

=
N

∑
i=1

K

∑
k=1

J

∑
j=1

Hj−1

∑
h=0

wik1(yij = h)log Pjh(θ
k) +

N

∑
i=1

K

∑
k=1

wiklog p(θk|γ, λ, xi, zi)

=
J

∑
j=1

[ K

∑
k=1

Hj−1

∑
h=0

f jh
k log Pjh(θ

k)
]
+

N

∑
i=1

K

∑
k=1

wiklog p(θk|γ, λ, xi, zi),

where f jh
k = ∑N

i=1 wik1(yij = h) can be interpreted as the number of individuals around the pref-

erence level θk who choose category h for item j (given α∗j and β∗j ). As a result, the M-step of the
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EM algorithm boils down to

argmaxαj,β j

K

∑
k=1

Hj−1

∑
h=0

f jh
k log Pjh(θ

k) for all j, and argmaxγ,λ

N

∑
i=1

K

∑
k=1

wiklog p(θk|γ, λ, xi, zi).

It is not hard to show that the first optimization problem is equivalent to fitting J separate

generalized linear models—one for each item—to the “pseudo data” f jh
k . Specifically, binary logit

(or probit) models are fitted for items with dichotomous responses, proportional odds models (or

adjacent category logit models) for items with ordinal responses, and multinomial logit models

for items with nominal responses. The second optimization problem is akin to the heteroscedastic

regression model developed in Cook and Weisberg (1983), Aitkin (1987), and Verbyla (1993), ex-

cept for the weights wik attached to the log likelihood log p(θk|γ, λ, xi, zi). To solve for γ and λ,

we can employ the conditional maximization procedures outlined in Aitkin (1987) with a slight

modification. The algorithm is detailed in Appendix B. Although both components of the M-step

involve iterative procedures, they prove to be very fast in practice. For the first optimization, the

generalized linear models are fitted to grouped data, where the number of observations equals the

number of quadrature points (K) times the number of response categories (Hj) for the correspond-

ing item. For the second optimization, the procedures described in Appendix B typically take few

steps to converge. As a result, the runtime of the entire EM algorithm on a personal computer

rarely exceeds a minute even for fairly large data sets (N=20,000-40,000; J=10-40).

Upon convergence of the EM algorithm, we obtain our final estimates α̂, β̂, γ̂ and λ̂. We can

then treat them as true parameters and conduct empirical Bayes inference of the latent preferences

θi. For example, we can directly use the final posterior means, giving the expected a posterior

(EAP) estimates

θ̂i = E(θi|α̂, β̂, γ̂, λ̂, y) =
K

∑
k=1

wikθk. (13)

Finally, to conduct inference for the key parameters α, β, γ and λ, we can calculate the asymptotic

variance-covariance matrix Î(α, β, γ, λ) using either the Hessian matrix or the outer product of

gradients of the log marginal likelihood. The latter approach is illustrated in Appendix C.
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B: The M-step for Updating γ and λ

To update γ and λ, we first note that the objective function can be written as

f (γ, λ) =
N

∑
i=1

K

∑
k=1

wiklog p(θk|γ, λ, xi, zi)

= −1
2

N

∑
i=1

K

∑
k=1

[wik log 2π + wikλT z̃i +
wik(θk − γT x̃i)

2

exp(λT z̃i)
]

= −1
2

N

∑
i=1

[log 2π + λT z̃i +
(θ̃i − γTxi)

2 + σ̃2
θi

exp(λT z̃i)
],

where θ̃i = ∑K
k=1 wikθk is the working posterior mean of θi and σ̃2

θi
= ∑K

k=1 wik(θ
k)2 − θ̃2

i is the

working posterior variance of θi (given α∗, β∗, γ∗, λ∗). Thus we can maximize f (γ, λ) iteratively:

1. Fit a simple least squares of θ̃i on xi, saving the residuals ri,

2. Fit a gamma regression with a log link of r2
i + σ̃2

θi
on zi, saving the fitted values s2

i = exp(λ̂T z̃i),

3. Fit a weighted least squares of θ̃i on xi with weights 1/s2
i , updating the the residuals ri,

4. Iterate steps 2 and 3 until convergence, updating γ∗ and λ∗.

C: Asymptotic Inference for Hierarchical IRT Models

To construct the observed information matrix, we use the outer product of gradients of the log

marginal likelihood. For individual i, the log marginal likelihood can be numerically evaluated as

log Li ≈ log
K

∑
k=1

Lik pikwk,

where

Lik =
J

∏
j=1

p(yij|θk, αj, β j)

pik = [2π exp(λTzi)]
− 1

2 exp[− (θk − γTxi)
2

2 exp(λTzi)
],

and wk are quadrature weights associated with θk. Given the above expression, we can derive the

score function for each of the level I models presented in the paper. For instance, for the graded
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response model (3), we can show that

∂ log Li

∂αjh
=

∑K
k=1 wk pikL−j

ik
Li



exp(αjh+β jθ
k)

[1+exp(αjh+β jθk)]2
, if h = yij ≥ 1

− exp(αjh+β jθ
k)

[1+exp(αjh+β jθk)]2
, if h = yij + 1 ≤ Hj − 1

0, otherwise

where L−j
ik = ∏J

l 6=j p(yij|θk, αj, β j). Similarly, by taking the partial derivatives with respect to β j,

γp, λq, we obtain

∂ log Li

∂β j
=

1
Li

K

∑
k=1

wk pikL−j
ik θk{ exp(αjyij + β jθ

k)

[1 + exp(αjyij + β jθk)]2
−

exp(αj yij+1 + β jθ
k)

[1 + exp(αj yij+1 + β jθk)]2
}

∂ log Li

∂γp
=

1
Li

K

∑
k=1

wk pikLik exp(−λTzi)(θk − γTxi)xip

∂ log Li

∂λq
=

1
2Li

K

∑
k=1

wk pikLik[exp(−λTzi)(θk − γTxi)
2 − 1]ziq.

We then concatenate all these terms to form the score vector∇ log Li and construct the asymptotic

variance-covariance matrix of parameter estimates as

V̂(α̂, β̂, γ̂, λ̂) = Î(α̂, β̂, γ̂, λ̂)−1

= [
N

∑
i=1
∇ log Li(∇ log Li)

T]−1.

Note that in constructing the score vector, we must discard one component of γ and one compo-

nent of λ to avoid a singular information matrix (due to the identification constraints). In practice,

we can discard ∂ log Li
∂γ0

and ∂ log Li
∂λ0

as the intercepts are usually the least substantively interesting

parameters.

D: EM Algorithm versus MCMC Simulation in Computation Time

This appendix provides a brief yet systematic comparison in computation time between the EM

algorithm and a full Bayesian approach for fitting hierarchical IRT models. The latter has been

implemented in the R function MCMCpack::MCMCirtHier1d for the simplest case—binary response

data with homoscedastic preferences (Martin, Quinn and Park 2011). I use the same data gen-

erating process as in my Monte Carlo study. When applying MCMCpack::MCMCirtHier1d, I di-
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Figure A1: EM Algorithm versus MCMC Simulation in Computation Time.

Note: MCMC = Markov Chain Monte Carlo; MMLE = Marginal Maximum Likelihood Estimation;
EM = Expectation-Maximization.

chotomize the response data using their sample means as cutoff points. To facilitate comparison, I

run the EM algorithm both for the dichotomized data and for the ordinal data, using hIRT::hltm

and hIRT::hgrm respectively. To illustrate the scalability of different methods, I vary the number

of respondents N from 500 to 10,000 and the number of items from 5 to 40. The results are shown

in Figure A1, where the horizontal axis denotes sample size N, the vertical axis denotes compu-

tation time (in minutes), and different algorithms are represented by different point shapes and

line types. It is easy to see that the EM algorithm is extremely fast for all combinations of N and J,

whereas the full Bayesian implementation is not only much slower but also much less scalable as

the number of respondents grows.
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E: Estimates of Item Discrimination Parameters

Figure A2 shows the estimates of the item discrimination parameters, along with their 95% asymp-

totic confidence intervals, for the party polarization example. We can see that the discrimination

parameter estimates vary greatly across items, although all of them are statistically significantly

different from zero.
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Figure A2: Estimates of Item Discrimination Parameters for the Party Polarization Example.

Note: Error bars represent 95% asymptotic confidence intervals.
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