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Abstract

To understand the patterns and trends of various forms of inequality, quantitative social science

research has typically relied on statistical models linking the conditional mean of an outcome

of interest to a range of explanatory factors. A prime example of this approach is the widely

used Kitagawa-Oaxaca-Blinder (KOB) method. By fitting two linear models separately for an

advantaged group and a disadvantaged group, the KOB method decomposes the between-group

outcome disparity into two parts, a part explained by group differences in a set of background

characteristics and an unexplained part often dubbed “residual inequality.” In this paper, we

explicate and contrast two distinct approaches to studying group disparities, which we term the

descriptive approach, as epitomized by the KOB method and its variants, and the prescriptive

approach, which focuses on how a disparity of interest would change under a hypothetical in-

tervention to one or more manipulable treatments. For the descriptive approach, we propose a

generalized KOB decomposition that considers multiple (sets of) explanatory variables sequen-

tially. For the prescriptive approach, we introduce a variety of stylized interventions, such as

lottery-type and affirmative-action-type interventions that close between-group gaps in treat-

ment. We illustrate the two approaches to disparity analysis by assessing the Black-White gap

in college completion, how it is statistically explained by racial differences in demographic and

socioeconomic background, family structure, ability and behavior, and college selectivity, and

the extent to which it would be reduced under hypothetical reallocations of college-goers from

different racial/economic backgrounds into different tiers of college --- reallocations that could

be targeted by race- or class-conscious admissions policies.
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1 Introduction

Social and economic inequalities are a striking indictment of American society and a perennial

topic of economic, demographic, and sociological research. To understand the patterns and trends

of various forms of inequality, quantitative social science research has typically relied on statistical

models that link the conditional mean (and, sometimes, the conditional variance) of an outcome

of interest, such as logged hourly wage, to a range of explanatory variables, such as education

(Katz and Murphy 1992; Juhn et al. 1993), occupation (e.g., Mouw and Kalleberg 2010), and

union membership (e.g., DiNardo et al. 1996; Western and Rosenfeld 2011). A prime example

of this approach is the Kitagawa-Oaxaca-Blinder (KOB) decomposition method (Kitagawa 1955;

Blinder 1973; Oaxaca 1973; see also Duncan 1968; Winsborough and Dickinson 1971; Althauser

and Wigler 1972).1 By fitting two linear regression models, one for an advantaged group (e.g.,

Whites) and one for a disadvantaged group (e.g., African Americans), it decomposes the between-

group outcome disparity into two parts, a part accounted for by group differences in a set of

explanatory variables and an unexplained part often dubbed “residual inequality.” While the

canonical KOB method decomposes the gap in mean outcomes based on linear models, various

extensions of the KOB method have also been proposed, including decomposition based on nonlinear

outcome models (Fairlie 2005; Bauer and Sinning 2008), decomposition based on models for group

membership (Barsky et al. 2002), and decomposition of differences in distributional statistics such

as quantiles (Firpo et al. 2018) and the variance (Lemieux 2006; Western and Bloome 2009). The

KOB decomposition and its extensions have been widely used to study “categorical inequalities”

(Tilly 1998) such as disparities across gender (e.g., Petersen and Morgan 1995; Smith-Doerr et al.

2019), race (e.g., Mandel and Semyonov 2016; Storer et al. 2020), class (Laurison and Friedman

2016), and sexual orientation (Mize 2016).

While the KOB method and its extensions are useful for quantifying the contributions of various

factors to a disparity of interest, they do so in an accounting or descriptive sense. Specifically,

1For a long time, the KOB method was (and is still by many) called the Oaxaca-Blinder or
Blinder-Oaxaca decomposition (Blinder 1973; Oaxaca 1973). In recent years, it has been increas-
ingly referred to as the Kitagawa-Oaxaca-Blinder or Kitagawa-Blinder-Oaxaca decomposition, in
recognition of Kitagawa (1955), who proposed the same method in a nonparametric framework.
We follow this emerging convention and use the KOB acronym.
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because the KOB method does not explicitly address potential confounding of the relationship

between the explanatory variables and the outcome, it does not speak to the causal effects of the

explanatory variables on the disparity of interest. As such, they are ill-equipped to inform policy.

As an illustration, consider a KOB-based analysis that assesses the extent to which the Black-White

gap in college completion rates can be statistically explained by racial differences in socioeconomic

background, academic preparation, and college selectivity (Ciocca Eller and DiPrete 2018; Voss

et al. 2022). While such an analysis may provide useful indications of possible causal processes

leading to the completion gap, it does not target a causal estimand concerning the effect of any of

the explanatory variables in question. Consequently, it cannot be used to address policy-relevant

questions. From a policy standpoint, we may wish to assess the extent to which the Black-White gap

in college completion rates would be reduced if college selectivity were equalized by race, by class,

or by both — for example, through race- and/or class-conscious admissions policies. Unfortunately,

such questions are not targeted by the KOB method or its current extensions.

To address these and other policy-relevant questions concerning inequality, an emerging line

of research has begun to incorporate the language and logic of causal inference into the study of

group disparities (VanderWeele and Robinson 2014; Jackson and VanderWeele 2018; Zhou 2019;

An and Glynn 2021; Jackson 2021; Lundberg 2022; Yu and Elwert 2022; Zhou and Pan 2023).

In this line of research, analysts specify one or more explanatory variables as manipulable treat-

ments and then ask how a disparity of interest would change under a hypothetical intervention to

these treatments. For example, using data from the National Longitudinal Surveys, Jackson and

VanderWeele (2018) investigate how racial disparities in wages and other outcomes would change

under several hypothetical interventions that equalize childhood SES, test score, or both by race.

Similarly, to assess the equalizing potential of a college degree, Zhou (2019) considers how the level

of intergenerational income mobility would change under a hypothetical intervention that sets ev-

eryone’s educational level to “bachelor’s degree.” Generalizing the quantities of interest examined

in Jackson and VanderWeele (2018) and Zhou (2019), Lundberg (2022) proposes the concept of

“gap-closing estimand,” which “quantifies how much a gap (e.g., incomes by race) would close if

we intervened to equalize a treatment (e.g., access to college)” (p. 1). More recently, extending

the gap-closing estimand to a setting with sequential treatments, Zhou and Pan (2023) estimate

how much the Black-White earnings gap would be reduced under a series of stylized interventions
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to college attendance and college completion.

In this paper, we explicate and contrast the aforementioned two approaches for studying group

disparities, which we term the descriptive approach, as epitomized by the KOB decomposition

and its variants, and the prescriptive approach, which focuses on counterfactual disparities under

hypothetical interventions to one or more manipulable treatments. Beyond a systematic review

of the two approaches, we also suggest extensions that allow us to address a broader range of re-

search questions. For the descriptive approach, we highlight a generalized KOB decomposition that

considers multiple (sets of) explanatory variables sequentially. For the prescriptive approach, we

introduce new interventional estimands that are more akin to real-world policies than those pro-

posed in previous work, and introduce a novel sensitivity analysis technique for gauging potential

bias induced by unobserved confounding. For all estimands in both the descriptive and prescrip-

tive approaches, we present model-free definitions and nonparametric identification results. The

nonparametric definition and identification of estimands improves the clarity and transparency of

research goals and assumptions (Lundberg et al. 2021), and as we will see, opens the door to a

range of parametric and nonparametric estimation strategies, including those leveraging modern

nonparametric theory and machine learning methods. Finally, we illustrate the two approaches to

disparity analysis by considering the Black-White gap in college completion rates in the US, how it

is statistically explained by racial differences in demographic and socioeconomic background, family

structure, ability and behavior, and college selectivity, and the extent to which it would be reduced

under hypothetical reallocations of college-goers from different racial/economic backgrounds into

different tiers of college --- reallocations that could be targeted by race- or class-conscious admissions

policies.

2 A Motivating Example

In the United States, Black students are much less likely to complete a bachelor’s degree relative

to their White peers. Among those who started at a four-year college in 2010, for example, 64%

of White students graduated with a bachelor’s degree within six years, compared with only 40%

of Black students (Jeffrey 2020; see also Snyder et al. 2019). The Black-White disparity in col-

lege graduation rates has barely changed over the past several decades (Voss et al. 2022), and,
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as documented by previous research, it is shaped by a range of factors, including Black students’

disadvantages in socioeconomic background (e.g., Bailey and Dynarski 2011), academic preparation

(e.g., Bowen et al. 2009), college selectivity (e.g., Reardon et al. 2012), as well as academic perfor-

mance and social engagement during college (Tinto 1994; Braxton et al. 1997). In a recent study,

Ciocca Eller and DiPrete (2018) examine the relative importance of these factors using data from

the Educational Longitudinal Study of 2002. These authors apply a nonlinear variant of the KOB

decomposition (Fairlie 2005) as well as counterfactual simulations based on several different models

of college dropout to quantify the importance of pre-college resources, institutional characteristics,

and college experience. These analyses suggest that racial disparities in academic resources prior

to and within college constitute the most significant driver of the BA completion gap, and that

racial differences in college quality (due to either over- or under-match of Black students) play a

much smaller role.

In this article, we revisit the above example using data from the National Longitudinal Survey

of Youth, 1997 cohort (NLSY97). Specifically, we illustrate a generalized KOB decomposition

that, in this context, considers four sets of explanatory variables successively: (a) demographic

and socioeconomic background; (b) family structure; (c) pre-college ability and behavior; and (d)

college selectivity. Unlike the model-based decompositions employed by Ciocca Eller and DiPrete

(2018), the generalized KOB decomposition is defined nonparametrically, i.e., without reference to

a particular linear or logistic regression model. Thus, the estimands and their interpretations are

more generic and transparent. Moreover, we highlight that the “contributions” of different variables

quantified by the generalized KOB decomposition have no causal interpretations. As such, they

do not inform the effectiveness of different institutional interventions on reducing the Black-White

completion gap. For example, they cannot tell us the extent to which an equalization in college

selectivity by race or by class (either marginally or conditional on some pre-college characteristics)

can help reduce the gap. Such questions motivate what we call the prescriptive approach to disparity

analysis, which we discuss in Section 4.
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3 Disparity Analysis for Description

In this section, we discuss the descriptive approach to disparity analysis as characterized by the

KOB decomposition and its variants. We first review the canonical KOB method based on linear

models and then introduce a nonparametric version of the KOB method. Next, we consider the case

of multiple explanatory variables and contrast two alternative ways of quantifying their respective

contributions to the disparity of interest: a simultaneous approach and a sequential approach. We

highlight a fully nonparametric formulation of the sequential approach, which we call a generalized

KOB/Duncan decomposition. Finally, we illustrate the generalized KOB/Duncan decomposition

by reanalyzing the Black-White gap in college completion.

3.1 The Canonical KOB Method

Let Y denote an outcome of interest, R a binary indicator for group membership, and X an

explanatory variable for the group disparity in the mean outcome. To motivate our discussion,

let us consider how parental income helps explain the Black-White gap in college completion rates

among four-year college goers. In this context, Y denotes college completion, R denotes race, and

X denotes parental income. The Black-White gap in college completion rates can be written as

∆ = E[Y |R = White] − E[Y |R = Black]. The goal of the KOB method is to decompose this

quantity into two components: a component explained by racial differences in parental income and

an unexplained or “residual” component.

Assuming we have a representative sample of the population (with or without the aid of sampling

weights), the canonical KOB method can be implemented as follows:

1. Compute completion rates separately for Black and White students in the sample, which we

denote by ȲB and ȲW ;

2. Fit a linear probability model of college completion (Y ) on parental income (X) among Black

students;

3. Compute the average predicted value of the outcome when we substitute White students’

parental incomes for Black students’ in the above model, which we denote by Ȳ pred
B .
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Then, the sample analog of the Black-White completion gap can be decomposed as

∆̂ = (Ȳ pred
B − ȲB)︸ ︷︷ ︸
∆̂Explained

+ (ȲW − Ȳ pred
B )︸ ︷︷ ︸

∆̂Unexplained

. (1)

The first component, ∆̂Explained, gauges how the predicted completion rate (according to the linear

probability model in step 2) would change if the parental income distribution of Black students

shifted to that of White students. The second component, ∆̂Unexplained, gauges the remaining dif-

ference between the observed completion rate among White students and the predicted completion

rate among Black students under this hypothetical shift of their parental income distribution.

In the above algorithm, we fit a model of college completion among Black students and use

it to obtain their predicted completion rate under White students’ parental income distribution.

Alternatively, we can fit a model of college completion among White students and use this model

to obtain White students’ predicted completion rate under Black students’ parental income distri-

bution. Denoting the latter quantity by Ȳ pred
W , we have a different partition of ∆̂:

∆̂ = (ȲW − Ȳ pred
W )︸ ︷︷ ︸

∆̂Explained

+ (Ȳ pred
W − ȲB)︸ ︷︷ ︸

∆̂Unexplained

. (2)

Equations (1) and (2) can also be expressed in terms of regression coefficients. If we use (α̂B, β̂B)

and (α̂W , β̂W ) to denote the estimated intercept-slope pairs of the regression models for Black and

White students, equations (1) and (2) can be written as

∆̂ = β̂′B(X̄W − X̄B)︸ ︷︷ ︸
∆̂Explained

+ (α̂W − α̂B) + (β̂W − β̂B)′X̄W︸ ︷︷ ︸
∆̂Unexplained

(3)

= β̂′W (X̄W − X̄B)︸ ︷︷ ︸
∆̂Explained

+ (α̂W − α̂B) + (β̂W − β̂B)′X̄B︸ ︷︷ ︸
∆̂Unexplained

, (4)

where X̄B and X̄W denote the sample means of parental income among Black and White students,

respectively.2 From these equations, we can see that the two alternative decompositions differ only

2We use β̂′B and β̂′W to denote the transposes of the slope coefficients β̂B and β̂W . When there

is only one explanatory variable (e.g., parental income), β̂B and β̂W are scalars, so their tranposes
are themselves. When there are multiple explanatory variables, β̂B and β̂W are column vectors,
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in the “reference groups” used to gauge ∆Explained: while the first decomposition uses βB, the

second uses βW . This difference has motivated many researchers to interpret equations (1) and (2)

in terms of distinct “counterfactuals.” Specifically, they would regard ∆Explained in equation (1) as

addressing the question: “How much would the Black completion rate rise if their parental incomes

rose to those of White students?” Similarly, ∆Explained in equation (2) would be seen as capturing

how much the White completion rate would drop if their parental incomes fell to those of Black

students (Barsky et al. 2002).

However, intuitive as they may seem, these “counterfactual” interpretations of the KOB de-

composition entail an implicit and potentially implausible assumption that the slope coefficients

βB and βW capture the causal effects of the explanatory variable on the outcome. In our example,

this assumption means that the slope coefficient in a simple linear regression of college completion

on parental income among Black/White students captures the causal effect of parental income

on college completion in this group. Since the relationship between parental income and college

completion can be confounded by a range of other factors, such as parental education and family

structure, this assumption seems unrealistic. In sum, because the KOB decomposition is typically

implemented via an ad hoc regression model that includes multiple predictors and does not explic-

itly address potential confounding of any of the predictor-outcome relationships, the counterfactual

interpretations outlined above cannot be justified in most applications.

For this reason, we consider the KOB method a purely descriptive approach to analyzing group

disparities. In other words, we regard ∆Explained in equation (1) or (2) as addressing largely the same

question: “How much of the Black-White gap in completion rates can be statistically explained by

racial differences in parental income?” In fact, if we detach counterfactual interpretations from the

KOB decomposition, we may consider equations (3) and (4) as merely two special cases of a more

general decomposition:

∆̂ = β̂′R(X̄W − X̄B)︸ ︷︷ ︸
∆̂Explained

+ (α̂W − α̂B) + (β̂W − β̂R)′X̄W + (β̂R − β̂B)′X̄B︸ ︷︷ ︸
∆̂Unexplained

, (5)

where β̂R are called the reference coefficients (Jann 2008). It is easy to see that equations (3)

and the transpose operation turns them into row vectors.
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and (4) correspond to the cases of β̂R = β̂B and β̂R = β̂W , respectively. To make the reference

coefficients more “neutral,” several other choices have been proposed, such as β̂R = 0.5β̂B + 0.5β̂W

(Reimers 1983) and β̂R = pBβ̂B + pW β̂W , where pB and pW represent the proportions of the Black

and White observations in the sample (Cotton 1988).

3.2 A Nonparametric Formulation of the KOB Method

We now provide a nonparametric formulation of the KOB method, highlighting the distinction

between population-level estimands and their estimators. Without loss of generality, we focus

on a nonparametric version of equation (1) and discuss similar generalizations of (2) and (5) in

Appendix A. First, note that equation (1) involves only three quantities: ȲB, ȲW , and Ȳ pred
B .

The population counterparts of ȲB and ȲW are simply the conditional means of the outcome for

Black and White students, i.e., E[Y |R = Black] and E[Y |R = White]. Since Ȳ pred
B represents the

average predicted outcome among Black students under the White parental income distribution,

its population counterpart can be written as

µpred
B =

∫
E[Y |R = Black, x]dP (x|R = White), (6)

where P (x|R = White) denotes the parental income distribution among White students. In words,

µpred
B represents the conditional mean of college completion given parental income among Black stu-

dents marginalized over the parental income distribution of White students. Hence, the explained

and unexplained components of the KOB decomposition become

∆Explained = µpred
B − µB, (7)

∆Unexplained = µW − µpred
B . (8)

Note that to identify equation (6) nonparametrically, we need to be able to compute E[Y |R =

Black, x] at all possible values of X among White students. Similarly, to identify a nonparametric

version of equation (2) (see Appendix A), we need to be able to compute E[Y |R = White, x] at all

possible values of X among Black students. These conditions require that the support of X (i.e.,

the values of X with a nonzero density) be the same for each racial group, or, equivalently, the
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conditional probability Pr[R = Black|X = x] lie strictly between zero and one. This requirement

is similar to the positivity assumption that is often invoked to identify the average causal effect

of a binary treatment from observational data (see Section 4). Yet, it has received little attention

in the KOB literature, where a linear model is typically imposed to extrapolate the values of

E[Y |R = Black, x] (or E[Y |R = White, x]) outside the support of X.

In the canonical KOB algorithm, if the linear model for E[Y |R = Black, x] is correctly specified,

then ∆̂Explained and ∆̂Unexplained shown in equation (3) will be consistent estimates of ∆Explained and

∆Unexplained. However, if E[Y |R = Black, x] is a nonlinear function of x, the canonical KOB decom-

position will target a different set of population-level quantities. Compared with a model-based

definition of ∆Explained and ∆Unexplained, our definition (equations 7 and 8) is fully nonparametric,

i.e., not depending on any statistical model. In other words, they are still meaningful estimands

even if the linear model specified in the canonical algorithm is wrong. Thus, the nonparametric

formulation decouples the KOB decomposition from parametric models on which it is routinely

based, eliminating the model dependency of our estimands.

In the nonparametric decomposition, µB and µW can be estimated directly by their sample

analogs (ȲB and ȲW ). To estimate µpred
B , several strategies can be used. First, note that equation

(6) can be written as an iterated expectation:

µpred
B = E

[
E[Y |R = Black, X]|R = White

]
,

which suggests a regression-imputation (RI) estimator:

µ̂pred, RI
B = Ê

[
Ê[Y |R = Black, X]|R = White

]
. (9)

To implement the RI estimator, we first fit a regression model for E[Y |R,X] and then, for all units,

obtain their imputed values of the inner expectation (i.e., Ê[Y |R = Black, X]) by setting race to be

Black. Finally, we estimate the outer expectation by averaging these imputed values only among

White students. Here, if the inner expectation E[Y |R = Black, X] is estimated through a linear

model within the subsample of Black students, µ̂pred, RI
B will coincide with Ȳ pred

B in the canonical

KOB decomposition. However, the generic form of equation (9) suggests that E[Y |R = Black, X]
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need not be estimated via a linear model; we can use a logit or probit model for binary outcomes, a

Poisson or negative binomial model for count outcomes, or even a complex machine learning model

if the explanatory variable X is high-dimensional.

Second, equation (6) can also be written as the marginal mean of a reweighted outcome:

µpred
B = E

[ I(R = Black)

Pr[R = White]

Pr[R = White|X]

Pr[R = Black|X]
Y
]
,

where I(·) is an indicator function. The above equation suggests a weighting estimator for µpred
B :

µ̂pred, W
B =

1

n

∑
i

WiYi, where Wi =
I[Ri = Black]

P̂r[Ri = White]

P̂r[Ri = White|Xi]

P̂r[Ri = Black|Xi]
. (10)

Here n is the sample size and P̂r[Ri = White] is the sample proportion of White students. We can

see that the weighting estimator does not involve fitting an outcome model; instead, it involves

fitting a model for group membership (in this case, race) given X, which will be used to obtain

P̂r[Ri = Black|Xi] and P̂r[Ri = White|Xi]. The weighting estimator was first proposed by Barsky

et al. (2002) for analyzing the Black-White wealth gap. These authors argue that the RI estimator

of µpred
B can be highly sensitive to misspecification of the outcome model, and that the weighting

estimator may be more robust because it avoids making functional-form assumptions about the

X-Y relationship. However, as we can see from equation (10), the weighting estimator relies on a

correct specification of the group membership model. When this model is misspecified, it can also

lead to biased estimates of µpred
B .

Finally, to mitigate potential bias due to model misspecification, we can combine RI and weight-

ing to form a “doubly robust” (DR) estimator of µpred
B :

µ̂pred, DR
B =

1

n

n∑
i=1

(
Wi(Yi−Ê[Yi|Black, Xi])+

I(Ri = White)

P̂r[Ri = White]
(Ê[Yi|Black, Xi]−µ̂pred, RI

B )+µ̂pred, RI
B

)
,

(11)

where Wi denotes the same weights used in the weighting estimator (10). We can see from equation

(11) that the DR estimator involves fitting both an outcome model (to obtain Ê[Yi|Black, Xi] and

µ̂pred, RI
B ) and a group membership model (to obtain Wi). This estimator is doubly robust in the

sense that it is consistent if either the outcome model or the group membership model, but not
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necessarily both, is correctly specified. The DR estimator (11) is closely related to DR estimators

developed for the natural direct effect (NDE) and the average treatment effect on the treated (ATT)

in causal inference settings (Tchetgen Tchetgen and Shpitser 2012; Chernozhukov et al. 2018). Yet,

to the best of our knowledge, it has not been proposed in the context of KOB decomposition.3

3.3 The Case of Multiple Explanatory Variables: A Simultaneous Approach

So far, we have dealt with the case of one explanatory variable X. Note that X can be vector-valued,

in which case the decomposition given by equations (7-8) does not distinguish the contributions of

its individual components. For example, if different components of X are indicators of the same

theoretical construct (e.g., socioeconomic status captured by both parental education and parental

income), we may want to treat them as a whole. However, the researcher often has multiple

explanatory variables capturing distinct concepts. For instance, to account for the Black-White

completion gap, we may want to isolate the respective contributions of parental income, family

structure, academic preparation, and college selectivity. In this and the next subsection, we discuss

two alternative strategies for teasing out covariate-specific contributions: a simultaneous approach

and a sequential approach.

To ease exposition, let us now write X as a column vector X = (X1, X2, . . . XJ)′, where Xj is the

jth (possibly vector-valued) explanatory variable and J denotes the total number of explanatory

variables. In the canonical KOB decomposition, the conditional expectation function E[Y |R = r,X]

is estimated via a race-specific linear model with no interaction terms among the Xj ’s. In this

case, both the explained and unexplained components can be subdivided into covariate-specific

contributions. This can be seen by rewriting equation (3) as

∆̂ =

J∑
j=1

β̂B,j(X̄W,j − X̄B,j)︸ ︷︷ ︸
∆̂Explained

+ (α̂W − α̂B) +

J∑
j=1

(β̂W,j − β̂B,j)X̄W,j︸ ︷︷ ︸
∆̂Unexplained

. (12)

where β̂B,j and β̂W,j denote the slope coefficients for Black and White students, respectively, and

3Kline (2011) shows that the canonical KOB estimator based on a linear model for E[Y |R =

Black, X] is also doubly robust in the sense that it is consistent for µpred
B if either the linear model

for E[Y |R = Black, X] is correctly specified or if Pr[R=White|X]
Pr[R=Black|X] is a linear function of X. This

condition for double robustness is much more stringent than that for the DR estimator (11).
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X̄B,j and X̄W,j denote the corresponding sample means of the jth covariate. In this decompo-

sition, ∆̂Explained consists of J components, each representing the contribution of one covariate.

∆̂Unexplained, on the other hand, consists of J + 1 components, one capturing the baseline gap when

all the explanatory variables equal zero and the other J components capturing racial differences

in the slope coefficients, i.e., the partial effects of Xj on Y . In the KOB literature, equation (12)

is called a detailed decomposition, and the detailed components of ∆̂Explained and ∆̂Unexplained are

known as the endowment effects and the coefficient effects, respectively (e.g., Jann 2008). Be-

cause the detailed decomposition quantifies the endowment and coefficient effects of each covariate

concurrently, it constitutes a simultaneous approach to tackling multiple explanatory variables.

While computationally straightforward, the detailed decomposition has several limitations.

First, it is not model-free, as its estimands (the endowment and coefficient effects) hinge on the

linear and additive specification of the outcome model. In fact, when the outcome model is ei-

ther nonlinear (e.g., a logit model) or non-additive (e.g., including interaction terms among the

covariates), the overall explained and unexplained components (which can still be estimated via

the RI method) cannot be neatly partitioned into covariate-specific contributions in the manner of

equation (12). Second, it suffers from the so-called “omitted group” problem (Oaxaca and Ransom

1999). Specifically, the coefficient effects that compose ∆̂Unexplained in equation (12) depend on the

omitted group, i.e., the group for which all the explanatory variables equal zero. As Fortin et al.

(2011, p. 9) note, “[s]ince the choice of the omitted group is arbitrary, the elements of the detailed

decomposition can be viewed as arbitrary as well.” In other words, the coefficient effects of the

detailed decomposition are not only model-dependent but also indeterminate (i.e., unidentified)

even under the same model.

Finally, in the detailed decomposition, even the covariate-specific endowment effects — which,

unlike the coefficient effects, do not suffer from the omitted group problem — can be hard to

interpret, and they may deviate from the researcher’s theoretical estimands (Lundberg et al. 2021).

This is especially the case if the covariates are temporally or causally ordered. For example, to

explain the Black-White completion gap, we can reasonably expect parental income to be causally

prior to academic preparation, and academic preparation causally prior to college selectivity. In

this case, the coefficient of parental income in the outcome model reflects its partial effect on

college completion net of academic preparation and college selectivity. Given that differences in
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academic preparation and college selectivity are likely induced by parental income, the contribution

of parental income in the detailed decomposition cannot fully capture its cumulative influence on

the Black-White completion gap. At most, it can be interpreted as a “direct contribution” of

parental income, net of its indirect pathways via academic preparation and college selectivity.

Similarly, the contribution of academic preparation in the detailed decomposition can at most be

interpreted as its “direct contribution” net of its indirect pathway via college selectivity. However,

in such cases, the researcher may not be as interested in such “direct contributions” as in the

cumulative contributions of the upstream variables. For example, we may want to assess the

overall contribution of Black-White differences in parental income to the Black-White completion

gap, whether it stems from the direct influence of parental income during college or its indirect

influence via academic preparation or college quality. Unfortunately, this quantity is not targeted

by the detailed KOB decomposition. To capture estimands of this type, we need to quantify the

contributions of parental income, academic preparation, and college quality sequentially rather than

simultaneously — a strategy to which we now turn.

3.4 A Generalized KOB/Duncan Decomposition

In an article titled “Inheritance of Poverty or Inheritance of Race?”, Duncan (1968) attempted

to assess whether the persistence of racial economic inequality across generations is driven by

“class” versus “race” effects. Using linear regression models, Duncan conducted a sequence of

KOB decompositions for the Black-White income gap, adding one factor at a time: (a) class

origin as measured by parental education and occupation; (b) number of siblings; (c) respondent’s

education; and (d) respondent’s occupation. Then, he quantified the net contribution of each

factor by comparing the explained components of every two consecutive models. For example, the

difference in ∆Explained between the first and second models reflects the net contribution of racial

differences in the average number of siblings. Although proposed prior to Blinder (1973) and Oaxaca

(1973), Duncan’s decomposition can be viewed as a generalization of the KOB decomposition. In

what follows, we provide a fully nonparametric formulation of Duncan’s sequential approach to

decomposing group disparities, which we call a generalized KOB/Duncan decomposition.

Following our earlier notation, let X1, X2, . . . XJ denote J ordered sets of covariates that may

help explain a disparity of interest. In our running example, we may consider five ordered sets
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of covariates: X1 for demographic and socioeconomic background, X2 for family structure, X3 for

pre-college measures of ability and behavior, X4 for contextual factors such as peer and school

characteristics, X5 for college selectivity. It might be reasoned that these sets of covariates are

causally ordered, although this is not required for purely descriptive interpretations of the sequential

decomposition, which we detail below.

Let the calligraphic font denote a “cumulative” set of covariates such that X0 = ∅ and Xj =

{X1, X2, . . . Xj}. Define the following “counterfactual” expectations:

µpred
B,j = E[E[Y |R = Black,Xj ]|R = White], 0 ≤ j ≤ J. (13)

In words, µpred
B,j represents the conditional mean of college completion given the covariate set Xj =

{X1, X2, . . . Xj} among Black students marginalized over the distribution of these covariates among

White students. Then, the Black-White gap in college completion rates can be decomposed as

∆ = µW − µB =

J∑
j=1

(µpred
B,j − µ

pred
B,j−1)︸ ︷︷ ︸

∆Explained,Xj

+µW − µpred
B,J︸ ︷︷ ︸

∆Unexplained

. (14)

Note that since X0 = ∅, µpred
B,0 = E[E[Y |R = Black]|R = White] = E[Y |R = Black] = µB. Here,

∆Explained,Xj reflects the net contribution of Xj to the completion gap, i.e., the amount of the

Black-White completion gap that can be statistically explained by racial differences in Xj after

racial differences in X1, X2, . . . Xj−1 are accounted for.

To implement the generalized KOB/Duncan decomposition, we need only estimates of µW ,

µB, and µpred
B,j for each j, which can then be plugged into equation (14) to obtain estimates of

∆Explained,Xj and ∆Unexplained. As in the canonical KOB method, µW and µB can be directly

estimated by their sample analogs. Thus, the key is to estimate µpred
B,j . Similar to µpred

B discussed in

Section 3.2, µpred
B,j can be estimated via RI, weighting, or a doubly robust estimator that combines

RI and weighting. First, an RI estimator of µpred
B,j can be written as

µ̂pred, RI
B,j = Ê

[
Ê[Y |R = Black,Xj ]|R = White

]
. (15)

Specifically, we first fit a regression model for E[Y |R,Xj ], and, for all units, obtain their imputed
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values of the inner expectation (i.e., Ê[Y |R = Black,Xj ]) by setting race to be Black. Then, we

estimate the outer expectation by averaging these imputed values only among White students. By

iterating the above steps for all j (1 ≤ j ≤ J), we obtain all RI estimates of µpred
B,j , which can then

be substituted into equation (14). Note that when all of the inner expectations E[Y |R = Black,Xj ]

(1 ≤ j ≤ J) are estimated through a linear model within the subsample of Black students, this

procedure coincides with Duncan’s decomposition.

Second, a weighting estimator of µpred
B,j can be written as

µ̂pred, W
B,j =

1

n

∑
i

WjiYi, where Wji =
I[Ri = Black]

P̂r[Ri = White]

P̂r[Ri = White|Xji]
P̂r[Ri = Black|Xji]

. (16)

Here, n is the sample size and Xji denotes the observed covariate values of Xj = {X1, X2, . . . Xj}

for individual i. We can see that this weighting estimator is very similar to the weighting estimator

for µpred
B described in Section 3.2, except that the group membership model is now fit as a function

of the covariate set Xj and that this procedure is repeated for each j.

Both the RI and weighting estimators involve fitting J different models — an outcome model

for each E[Y |R,Xj ] or a group membership model for each Pr[R = Black|Xj ]. When any of the J

models is misspecified, the corresponding estimator of the explained and unexplained components

can be biased. From this perspective, both the RI and weighting estimators are prone to model

misspecification bias. To mitigate potential bias, we can combine RI and weighting to form a

doubly robust estimator of µpred
B,j :

µ̂pred, DR
B,j =

1

n

n∑
i=1

{
Wji(Yi−Ê[Yi|R = Black,Xji])+

I(Ri = White)

P̂r[Ri = White]
(Ê[Yi|R = Black,Xji]−µ̂pred, RI

B,j )+µ̂pred, RI
B,j

}
,

(17)

where Wji denotes the same weights used in the weighting estimator (16). We can see that the DR

estimator involves fitting both an outcome model for E[Y |R,Xj ] or a group membership model for

Pr[R = Black|Xj ]. It is doubly robust in the sense that it is consistent if either the outcome model

or the group membership model, but not necessarily both, is correctly specified. Moreover, this

double robustness of µ̂pred, DR
B,j holds for each j ∈ {1, 2, . . . J}. Thus, if we use the DR estimator

for all of the µpred
B,j ’s, the resulting estimators of ∆Explained,Xj and ∆Unexplained will be consistent

if for each j, either the outcome model or the group membership model is correctly specified.
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In this sense, the doubly robust method for the generalized KOB/Duncan decomposition is 2J -

robust, as the number of conditions for the resulting estimates of the explained and unexplained

components to be consistent is 2J (Zhou 2022). Thus, it offers much greater protection from model

misspecification bias than the RI and weighting estimators.

More importantly, the doubly robust estimator µ̂pred, DR
B,j is particularly amenable to the use

of machine learning estimates of the outcome and group membership models, in which case our

estimates of ∆Explained,Xj and ∆Unexplained will be not only robust to model misspecification but

also relatively efficient, especially compared with the weighting estimator. When machine learning

methods are used to estimate the outcome and group membership models, it is advisable to use

sample splitting to avoid potential bias due to over-fitting. In particular, Chernozhukov et al. (2018)

introduce a procedure called “cross-fitting,” which involves alternate use of different subsamples

to estimate nuisance functions4 and target parameters. In our context, cross-fitting involves the

following steps: (a) randomly partition the sample S into K folds: S1, S2 . . . SK ; (b) for each k,

obtain a fold-specific estimate of µ̂pred, DR
B,j using only data from Sk (“main sample”), but with

the outcome and group membership models learned from the remainder of the sample (i.e., S\Sk;

“auxiliary sample”); (c) average these fold-specific estimates to form final estimates of µpred
B,j . This

combination of µ̂pred, DR
B,j , machine learning, and cross-fitting is an instance of what Chernozhukov

et al. (2018) call “double/debiased machine learning” (DML). Apart from improved robustness and

efficiency, another advantage of DML is that it leads to theoretically justified analytical standard

errors, obviating the need for computationally intensive inferential methods such as the nonpara-

metric bootstrap.

3.5 Illustration

We now illustrate the generalized KOB/Duncan decomposition via a reanalysis of the Black-White

gap in college completion rates in the US. We use data from a sample of Black and White re-

spondents who had attended a four-year college by age 25 in the NLSY97. Our outcome (Y ) is

whether the respondent had completed a BA degree by age 29. We consider five sets of explanatory

4A nuisance function is a function that is not of our primary interest but needed to estimate our
target parameters. For the doubly robust estimator (17), the nuisance functions are the outcome
and group membership models, i.e., E[Y |R,Xj ] and Pr[R = Black|Xj ].
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variables: X1 for demographic and socioeconomic background (gender, race, ethnicity, age in 1997,

parental education, parental income, parental assets, rural residence, southern residence), X2 for

family structure (co-residence with both biological parents, presence of a paternal figure), X3 for

pre-college measures of ability and behavior (percentile score on the ASVAB test, high school GPA,

an index of substance use, an index of delinquency, whether the respondent had any children by

age 18), X4 for peer and school-level characteristics (college expectation among peers and three

dummy variables denoting whether the respondent ever had property stolen at school, was ever

threatened at school, and was ever in a fight at school), and X5 for college selectivity (whether

the student attended one of the “most competitive,” “highly competitive,” and “very competitive”

colleges according to Barron’s Profile of American Colleges 2000).

In what follows, we focus on DML estimates of µpred
B,j , ∆Explained,Xj , and ∆Unexplained based on

equation (17), cross-fitting, and machine learning estimates of the outcome and group membership

models.5 Specifically, we estimate each of the outcome and group membership models using a

super learner (van der Laan et al. 2007) composed of Lasso and random forests. Because random

forests allow for nonlinear and interaction effects, potential bias due to model misspecification is

minimized. In keeping with Chernozhukov et al. (2018), we use five-fold cross-fitting, meaning that

K = 5. Moreover, following Cole and Hernán (2008), we stabilize our estimates by censoring all

inverse-probability-weights (Wji in equation 17) at their 1st and 99th percentiles. Standard errors

are constructed using the sample variances of the estimated influence functions and adjusted for

multiple imputation via Rubin’s (1987) method.

In Figure 1, the first and last rows show the observed completion rates for Black and White

students in our sample, which are 0.51 and 0.69, respectively. The intermediate rows report our

DML estimates of the “adjusted” completion rates for Black students, i.e. µpred
B,j for j = 1, 2, . . . 5.

We find that the first three sets of the explanatory variables, i.e., demographic and socioeconomic

background, family structure, and pre-college ability and behavior, account for over 90% of the

Black-White gap in college completion. Of them, the first (demographic and socioeconomic back-

ground) and the third (ability and behavior) sets appear to have the largest explanatory power.

5We also obtained estimates of µpred
B,j , ∆Explained,Xj , and ∆Unexplained from the RI, weighting, and

doubly robust estimators (equations 15-17) where the outcome and group membership models were
both fit via a logistic regression with linear and additive effects of the explanatory variables. The
results are qualitatively similar and detailed in Appendix D.
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[Figure 1 here]

How would our findings differ if we were to implement the simultaneous KOB decomposition,

as discussed in Section 3.3, rather than our proposed sequential approach? To address this ques-

tion, Figure 2 contrasts estimates obtained under these two approaches. Here, for the generalized

KOB/Duncan decomposition, the specific contributions of the five sets of explanatory variables

are disaggregated from the incremental results reported in Figure 1. For the simultaneous KOB

decomposition, to improve efficiency, we use the slope coefficients from a pooled regression model

that includes the group indicator as a predictor. We can see that compared with the simultaneous

approach, the generalized KOB/Duncan decomposition yields a larger estimate of the contribution

of demographic and socioeconomic background, and smaller estimates of the contributions of family

structure, ability and behavior, contextual factors, and college selectivity. This discrepancy occurs

because, for upstream variables, the generalized KOB/Duncan decomposition captures their full

influence, while the simultaneous decomposition captures only their direct influence net of the down-

stream variables. These results demonstrate that the widely used simultaneous KOB decomposition

can produce misleading results if the researcher is concerned with the temporal/causal ordering of

the explanatory variables in question. In fact, while the simultaneous decomposition suggests that

college selectivity can explain a non-trivial portion of racial inequality, results from the generalized

KOB/Duncan decomposition imply that college selectivity has no additional explanatory power

when the upstream variables are accounted for.

[Figure 2 here]

4 Disparity Analysis for Prescription

As noted earlier, unless the effects of the explanatory variables on the outcome are unconfounded,

estimates from the KOB method and its variants have no causal interpretations. Therefore, any

policy implications drawn from such analyses can be misguided. For example, in our empirical

illustration, we found that after accounting for other background characteristics, college selectivity

does not (statistically) contribute to the Black-White gap in college completion. Given this finding,

it might be supposed that the Black-White completion gap cannot be reduced by interventions on

college selectivity. However, this is not necessarily the case, because if college selectivity has a
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causal effect on degree completion, an intervention that induces more Black students to attend

selective colleges should work toward reducing the gap. To quantify the impacts of different types

of hypothetical interventions, we introduce a more policy-relevant approach to disparity analysis,

which we call the prescriptive approach. In what follows, we first outline the key elements of this

approach, including the concept of interventional disparity, its identification assumptions, several

estimation strategies, and a method for sensitivity analysis. We then introduce some stylized inter-

ventions in the context of the Black-White completion gap and illustrate them with the NLSY97

data.

4.1 Interventional Disparity

In the prescriptive approach, we specify one or more variables as manipulable treatments and ask

how the disparity of interest would change under a hypothetical intervention to these treatments.

Without loss of generality, let us consider a binary point-in-time treatment, which we denote by A.

In our running example, A denotes whether a student attends a selective college. Let A∗ and Y ∗

denote the treatment and outcome variables, respectively, under an intervention of interest. Then,

we can define interventional disparity (∆∗) as the difference in means between Black and White

students in their interventional outcome Y ∗:

∆∗ = E[Y ∗|R = White]− E[Y ∗|R = Black].

Since Y ∗ denotes the outcome under a hypothetical intervention, it is unobserved. In fact, because

the hypothetical intervention would change the treatment status for some units, Y ∗ involves po-

tential outcomes under treatment conditions that are not realized under the status quo. Below, we

outline a set of assumptions under which ∆∗ can be identified from observational data.

4.2 Identification and Estimation

Let X denote a set of pretreatment covariates that may confound the treatment-outcome rela-

tionship. In our example, X may include the first four sets of explanatory variables described in

Section 3.5 (demographic and socioeconomic background, family structure, pre-college ability and

behavior, and peer and school-level characteristics). In addition, let Y (a) denote the potential
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outcome associated with treatment status a. To identify the interventional disparity, we invoke the

following four assumptions:

Assumption 1. Consistency: Y = Y (A).

Assumption 2. System invariance: Y ∗ = Y (A∗).

Assumption 3. Unconfoundedness: For any a ∈ {0, 1}, Y (a) ⊥⊥ A|X,R and Y (a) ⊥⊥ A∗|X,R.

Assumption 4. Positivity: 0 < Pr[A = 1|X = x,R = r] < 1 for all x and r.

Assumption 1 (consistency) states that a unit’s observed outcome under the status quo equals

its potential outcome under the observed treatment status. This assumption implies that for any

unit and any a ∈ {0, 1), Y (a) is fixed, thus ruling out the possibility that a treatment has multiple

versions, each corresponding to a different potential outcome. Similarly, it implies that the poten-

tial outcomes for any unit do not depend on the treatment assigned to other units. Thus, there

should be no interference between units. The consistency assumption is also known as the stable

unit treatment value assumption (SUTVA; Rubin 1986) in the causal inference literature. Assump-

tion 2 (system invariance) requires that the potential outcomes Y (0) and Y (1) be unaffected by

the intervention. In other words, the intervention is not allowed to change a unit’s outcome other

than through changing its treatment status. This assumption is violated if the intervention affects

a unit’s potential outcome either “directly” (i.e., via pathways other than changing A) or via other

units’ treatment status (i.e., interference). For example, when analyzing the interventional effect

associated with an expansion in selective college attendance, Assumption 2 might be violated if

an increasing prevalence of selective college attendance leads to a dilution of resources that each

student receives, which may lower the effect of selective college attendance on degree completion.

Figure 3 illustrates the conceptual relationship between Assumptions 1 and 2: Assumption 1 bridges

potential outcomes and the observed outcome (Y ), whereas Assumption 2 bridges potential out-

comes and the interventional outcome (Y ∗). Assumption 3 (unconfoundedness) means that among

units with the same race and covariate values, treatment assignment is as-if random, i.e., indepen-

dent of potential outcomes, under both the status quo and the intervention. Finally, Assumption 4

(positivity) requires that treatment assignment under the status quo is probabilistic at all possible

values of race and the covariates.
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[Figure 3 here]

Under Assumptions 1-4, the group-specific mean of the interventional outcome can be identified

as:

E[Y ∗|R = r] = EX|R=rEA∗|R=r,XE[Y |R = r,X,A = A∗] (18)

= E[
p∗(A|R,X)

p(A|R,X)
Y |R = r], (19)

where p∗(·|r, x) denotes the probability mass function (PMF) of the interventional treatment A∗

given race and the covariates. Since this PMF is a defining characteristic of an intervention, we

assume that it is known (i.e., not an unknown quantity that needs to be estimated from data). A

proof of equations (18-19) is given in Appendix B.

Equation (18) suggests that we can estimate E[Y ∗|R = r] using a regression-imputation (RI)

estimator:

ÊRI[Y
∗|R = r] =

1

nr

∑
i:Ri=r

∑
a=0,1

p∗(a|Ri, Xi)Ê[Y |Ri, Xi, A = a]︸ ︷︷ ︸
predicted outcome for unit i under the intervention

, (20)

where nr denotes the number of individuals in racial group r in the sample. To implement the RI

estimator, we first fit a model for the conditional mean of the outcome given race, the covariates,

and the treatment. Then, for each unit, we obtain two predicted outcomes, one under treatment and

one under control, and compute a weighted average of them where the weights are the conditional

probabilities of treatment and control given race and the covariates under the intervention. This

weighted average serves as a predicted outcome for this unit under the intervention. Finally, we

average these predicted outcomes for each racial group r. In our example, the difference between

ÊRI[Y
∗|R = White] and ÊRI[Y

∗|R = Black] constitutes our RI estimator of the interventional

disparity ∆∗.

By contrast, equation (19) suggests a weighting estimator of E[Y ∗|R = r]:

ÊW[Y ∗|R = r] =
1

nr

∑
i:Ri=r

WiYi, where Wi =
p∗(Ai|Ri, Xi)

p̂(Ai|Ri, Xi)
. (21)

Here, the weight Wi is the ratio of the probability of receiving the observed treatment under the
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intervention (p∗(Ai|Ri, Xi)) to the estimated probability of receiving the observed treatment under

the status quo (p̂(Ai|Ri, Xi)). The weighting estimator can be viewed as a generalization of the

inverse-probability-weighted (IPW) estimator for the mean of a potential outcome, say E[Y (a)],

where the numerator is an indicator function for whether the observed treatment A equals a (see

Hernan and Robins 2023 for an introduction to IPW estimators). To understand this connection,

note that under Assumptions 1-4, E[Y (a)] is simply the mean outcome under a deterministic

intervention that sets everyone’s treatment status to a. Also, note that the weighting estimator

(21) is very different from the weighting estimator (10) for the KOB decomposition, where we need

a group membership model rather than a treatment model.

We can also combine RI and weighting to form a doubly robust estimator of E[Y ∗|R = r]

(Lundberg 2022):

ÊDR[Y ∗|R = r] =
1

nr

∑
i:Ri=r

{
Ŷ ∗i +Wi(Yi − Ê[Y |Ri, Xi, Ai])

}
, (22)

where Wi denotes the same weights used in the weighting estimator (21) and Ŷ ∗i =
∑

a=0,1 p
∗(a|R =

r,Xi)Ê[Y |Ri, Xi, A = a] denotes the individual-level predicted outcome under the intervention as

used in the RI estimator (20). Assuming that the interventional distribution p∗(·|r, x) is known,

this estimator is doubly robust — it is consistent if either the outcome model or the treatment

model is correctly specified. This assumption requires some qualification. On the one hand, we

rarely have a fully specified intervention a priori, and often consider a stylized intervention where

A∗|R,X is a function of the observed distribution of (R,X,A). For example, we may want to

consider an intervention that sets the treatment probability for Black students to be the same as

that for Whites. Yet, the latter is still a population quantity that needs to be estimated from

data. In this sense, the interventional distribution p∗(·|r, x) is also unknown, albeit estimable. On

the other hand, real-world policies are rarely calibrated using population data, meaning that their

interventional distributions are also approximations of their “population counterparts.” Thus, we

consider it reasonable to use our sample data to formulate an intervention, and, then, by treating

it as fixed, evaluate its impact on our disparity of interest. As with the doubly robust estimator

for the generalized KOB decomposition, ÊDR[Y ∗|R = r] is also amenable to the use of DML.

When cross-fitting is used, and when the outcome and treatment models are both estimated with
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flexible machine learning methods, ÊDR[Y ∗|R = r] will be
√
n-consistent, asymptotically normal,

and semiparametric efficient under relatively mild technical conditions.

4.3 Sensitivity Analysis

In practice, due to either data limitations or measurement error, it is unlikely that a researcher

is able to capture all confounders of the treatment-outcome relationship to make Assumption 3

(unconfoundedness) hold. If there exists an unobserved confounder that affects both the treatment

and the outcome, then the estimated interventional disparity may be biased. Sensitivity analysis

is a popular approach to assess potential bias induced by unobserved confounding. We propose an

original technique for sensitivity analysis that links the bias in the estimated interventional disparity

(∆∗) to the associations between the unobserved confounder, the treatment, and the outcome. Let

us consider an unobserved binary confounder U , such as extracurricular excellence, that affects

both selective college attendance and BA completion. Under some simplifying assumptions about

the nature of the U -A and U -Y associations, the bias for the estimated post-intervention mean

(E[Y ∗|R = r]) can be written as (see Appendix C)

αrβr(Pr[A∗ = 1|R = r]− Pr[A = 1|R = r]),

where αr denotes the difference in the prevalence of U between selective- and non-selective college

goers given race and the covariates (a measure of U -A association), and βr denotes the difference

in BA completion probability between students with and without U given race, the covariates, and

treatment status (a measure of U -Y association).

If we further assume that αWhite = αBlack = α and that βWhite = βBlack = β, the bias of the

estimated interventional disparity can be written as

bias(∆∗) = αβC,

where C = (Pr[A∗ = 1|White]−Pr[A = 1|White])− (Pr[A∗ = 1|Black]−Pr[A = 1|Black]), i.e., the

Black-White difference in how the intervention affects treatment prevalence. Similarly, the bias of

the estimated “gap reduced” (∆−∆∗) can be written as
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bias(∆−∆∗) = −αβC. (23)

Since C is directly estimable from the observed data given a user-specified intervention, it is possible

to draw a contour plot showing bias-adjusted estimates of ∆−∆∗ (or ∆∗) at different possible values

of (α, β). In such a plot, we can identify how strong the unobserved confounder would need to be,

in terms of its association with the treatment (α) and the outcome (β), to reduce our estimated

∆−∆∗ to zero. In addition, we can use observed covariates to suggest plausible values for α and β.

For example, if we have an observed binary confounder Z ∈ X, we can fit a linear model of Y on

X, R, and A, whose coefficient on Z will provide a plausible value of β. In the meantime, we can

fit a linear model of Z on R, A, and other components of X, whose coefficient on A will provide

a plausible value of α. By combining these plausible values of α and β, we can assess the amount

of bias that would result if an unobserved variable “worked exactly like” Z in confounding the

treatment-outcome relationship. We illustrate these techniques in our empirical illustration below.

4.4 Some Stylized Interventions

We now introduce some stylized interventions that could be used to guide real-world policies for

reducing disparities. In keeping with our running example, we consider a family of interventions that

would equalize college selectivity across race or class background, either marginally or conditionally

on some metric of merit or demonstrated ability. Given the limited availability of seats in selective

colleges, we focus on interventions that maintain the overall share of students attending selective

colleges. Interventions of this type are also less likely to induce violations of system invariance

(Lundberg 2022).

First, we could consider a stochastic intervention under which treatment assignment becomes

a random draw from the marginal distribution of treatment. For example, if 20% of all Black

and White students currently attend a selective college, then whether a student (Black or White)

attends a selective college under this intervention will be determined by a random draw from a

Bernoulli distribution with probability 0.2. Such an intervention was first introduced by Jackson

and VanderWeele (2018) and considered also in Lundberg (2022). Its associated PMF of treatment
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can be written as

Pr[A∗ = 1|R,X] = Pr[A = 1].

Under this intervention, the prevalence of treatment will be equalized between Black and White stu-

dents. However, at the individual level, treatment becomes a lottery, and pre-college characteristics

such as academic performance is no longer predictive of whether a student attends a selective col-

lege or not. Thus, this intervention might be called “lottery-type equalization.” Previous research

suggests that such lottery-type interventions would be unpopular with both admissions officers and

the general public because they completely dismiss the role of merit (Carnevale and Rose 2013).

Alternatively, we may want to equalize treatment across race without breaking the association

between treatment and other pretreatment characteristics. Thus, individuals more likely to attend

a selective college under the status quo will still be more likely to attend a selective college under

the intervention. This can be achieved, for example, through an intervention that multiplies a

person’s odds of treatment by a race-specific constant such that the prevalence of treatment will

be the same between Black and White students and also the same as its overall prevalence under

the status quo. Under this intervention, the PMF of treatment can be written as

Pr[A∗ = 1|Black, x] =
eδB Pr[A = 1|Black, x]

1− Pr[A = 1|Black, x] + eδB Pr[A = 1|Black, x]
, (24)

Pr[A∗ = 1|White, x] =
eδW Pr[A = 1|White, x]

1− Pr[A = 1|White, x] + eδW Pr[A = 1|White, x]
, (25)

where δB and δW are race-specific constants chosen such that Pr∗[A = 1|Black] = Pr∗[A =

1|White]=Pr[A = 1]. To see why this intervention does not break the association between X and

A (conditional on R), we can rewrite the above equations in terms of log-odds:

log
Pr[A∗ = 1|r, x]

Pr[A∗ = 0|r, x]
= δr + log

Pr[A = 1|r, x]

Pr[A = 0|r, x]
.

Thus, in each racial group, this intervention changes everyone’s log-odds of treatment by the same

amount (δr) — without changing the way it depends on X; the association between pre-college

characteristics and selective college attendance within each racial group is unchanged by the in-
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tervention. The functional form characterizing equations (24) and (25) was referred to as an

incremental propensity score intervention (IPSI) by Kennedy (2019), who considered the impact of

a uniform change in everyone’s log-odds of treatment on the mean outcome (i.e., E[Y ∗]). Here, the

IPSI is applied differentially to Black and White students to achieve racial parity in treatment (see

Zhou and Pan 2023 for a recent application). Since this intervention is race-conscious but does not

alter the roles of other pretreatment characteristics, it is more akin to real-world affirmation action

policies than lottery-type equalization. For this reason, we might call it “affirmation-action-type

(AA-type) equalization.”

Due to the contested state of race-conscious admissions policies, some scholars have considered

the extent to which racial disparities in college attendance, completion, and later-life outcomes can

be reduced by class-based affirmative action — as either a substitute for or supplement to race-

based affirmative action (e.g., Carnevale and Rose 2013, Alon 2015). In our framework, “AA-type

equalization by class” can be operationalized through the following intervention:

Pr[A∗ = 1|r, x] =
eδ0+δ1s Pr[A = 1|r, x]

1− Pr[A = 1|r, x] + eδ0+δ1s Pr[A = 1|r, x]
,

where S is an indicator of class background, such as parental income rank. Here, δ0 and δ1 are

chosen such that (a) the prevalence of treatment under the intervention is the same as that under

the status quo, i.e., Pr∗[A = 1] = Pr[A = 1], and (b) treatment is no longer correlated with class

background, i.e., Cor[A∗, S] = 0. The first of these conditions ensures that the overall share of

students attending selective colleges will stay the same, while the second ensures equalization of

treatment across students from different class backgrounds. However, to the extent that Black

and White students with the same class background may still differ in other predictors of selective

college attendance, such as high school GPA, this intervention does not ensure racial parity in

treatment.

To achieve both economic and racial parity in treatment while again maintaining the association

betweenX and A, we could consider “AA-type equalization by class and race.” This can be achieved

through the use of race-specific δ0 and δ1 parameters:

Pr[A∗ = 1|Black, x] =
eδ0B+δ1Bs Pr[A = 1|Black, x]

1− Pr[A = 1|Black, x] + eδ0B+δ1Bs Pr[A = 1|Black, x]
,
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Pr[A∗ = 1|White, x] =
eδ0W+δ1W s Pr[A = 1|White, x]

1− Pr[A = 1|White, x] + eδ0W+δ1W s Pr[A = 1|White, x]
,

where δ0B, δ1B, δ0W , and δ1W are chosen such that (a) the prevalence of treatment will be the same

between Black and White students and also the same as its overall prevalence under the status

quo, i.e., Pr[A∗ = 1|Black] = Pr[A∗ = 1|White] = Pr[A = 1], and (b) treatment is uncorrelated

with class background within each racial group, i.e., Cor[A∗, S|Black] = Cor[A∗, S|White] = 0.

Since conditions (a) and (b) involve four equality constraints (each of them involves two), the four

parameters δ0B, δ1B, δ0W , and δ1W are uniquely identified, and can be solved for numerically.

So far, we have considered only interventions that equalize treatment marginally, either by

race, by class, or by both. Since marginal equalization often involves a substantial redistribution

of opportunity, it could be difficult to achieve due to political resistance from advantaged groups.

In such cases, we could also consider less ambitious interventions that equalize treatment not

necessarily marginally, but conditional on one or more prespecified covariates. In the context

of selective college attendance, we might consider a “conditional equalization” intervention that

targets racial parity among students with the same high school GPA. This can be operationalized,

for example, through the following post-intervention PMF:

Pr[A∗ = 1|R,X] = wPr[A = 1|R = Black, Z] + (1− w) Pr[A = 1|R = White, Z],

where Z denotes high school GPA. We can see that under this intervention, the probability of

treatment given R and X is now solely a function of high school GPA, which is defined by a weighted

average of the conditional probabilities of treatment given high school GPA for Black students and

for White students. Here, to maintain the prevalence of treatment at its pre-intervention level, we

can choose w such that Pr[A∗ = 1] = Pr[A = 1]. By doing so, we achieve racial parity in selective

college attendance conditional on high school GPA while keeping the overall share of students

attending selective colleges unchanged.

4.5 Illustration

We now illustrate the prescriptive approach to disparity analysis by assessing how much of the

Black-White gap in college completion rates would be reduced under the different stylized inter-
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ventions outlined above. We use the same sample of the NLSY97 data as described in Section 3.5.

However, we now treat college selectivity as a treatment and all the other explanatory variables

(demographic and socioeconomic background, family structure, ability and behavior, and peer and

school-level characteristics) as pretreatment covariates. In what follows, we focus on DML esti-

mates of the gap reduced, i.e., ∆−∆∗, based on equation (22), cross-fitting, and machine learning

estimates of the outcome and treatment models.6 As in Section 3.5, we use five-fold cross-fitting,

estimate each of the outcome and treatment models using a super learner composed of Lasso

and random forests, and stabilize our estimates by censoring all inverse-probability-weights (Wi in

equation 22) at their 1st and 99th percentiles. Standard errors are constructed using the sample

variances of the estimated influence functions and adjusted for multiple imputation via Rubin’s

(1987) method.

Figure 4 shows the estimated reductions in the Black-White completion gap under the five

stylized interventions described in Section 4.4: lottery-type equalization, AA-type equalization, AA-

type equalization by class, AA-type equalization by class and race, and conditional equalization

(given high school GPA). In AA-type equalization by class and AA-type equalization by class

and race, class background is measured by the percentile rank of parental income. We can see

that different interventions can reduce the gap to varying degrees. The largest reductions are

associated with AA-type equalization by race and AA-type equalization by class and race, in which

case the gap would be reduced by about 2.6 percentage points (from a baseline of 18 percentage

points to 15.4). Lottery-type equalization might reduce the gap by a similar amount, although

its estimated effect is not statistically significant due to a larger standard error. By contrast,

AA-type equalization by class only would have a much smaller and statistically insignificant effect

on the Black-White completion gap. This finding is consistent with previous research showing

that economic affirmation action would not improve racial parity in selective college attendance in

the first place (Carnevale and Rose 2013; Alon 2015). Finally, the estimated reduction associated

with conditional equalization (given high school GPA) is also relatively small and statistically

insignificant. Overall, our analyses suggest that interventions that target racial parity in selective

6We also obtained estimates of the gap reduced from the RI, weighting, and doubly robust
estimators based on equations (20-22) where the outcome and treatment models were both fit via
a logistic regression with linear and additive effects of the explanatory variables. The results are
qualitatively similar and reported in Appendix E.
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college attendance can still lead to appreciable reductions in the Black-White completion gap,

despite the fact that little of the observed gap can be statistically explained by racial differences in

selective college attendance after other characteristics are accounted for (see Section 3.5).

[Figure 4 here]

In order to assess the robustness of the above findings to potential violations of Assumption 3

(Unconfoundedness), we implement our sensitivity analysis as discussed in Section 4.3. For illustra-

tive purposes, we focus on our estimate of the gap reduced (∆−∆∗) under AA-type equalization,

which is about 0.026. In this case, because Pr[A∗ = 1|White] = Pr[A∗ = 1|Black], the parame-

ter C in the bias formula (23) reduces to Pr[A = 1|Black] − Pr[A = 1|White], which, according

to our data, is about −0.18. Hence, the amount of bias associated with given values of (α, β)

can be approximated as 0.18αβ, and the corresponding bias-adjusted estimate can be written as

0.026 − 0.18αβ, where α and β represent the strengths of the U -A and U -Y relationships condi-

tional on race and other covariates, as defined earlier. Figure 5 shows contours of the bias-adjusted

estimates associated with a range of potential values of α and β. To benchmark these contours, we

also show the values of (α, β) that would arise if the unobserved binary confounder U behaved like

one of two observed binary confounders of the A-Y relationship: urban residence and peers’ college

expectation.7 We can see that the original estimate (0.026) can be explained away by unobserved

confounding only when both α and β are much larger than the sizes implied by these observed

confounders. For example, the bias-adjusted estimate would reduce to zero only when both α and

β of the unobserved confounder are about 10 times that of peers’ college expectation.

[Figure 5 here]

5 Concluding Remarks

In this article, we have explicated, contrasted, and extended two distinct approaches to disparity

analysis. In the descriptive approach, all estimands are a function of observed data (i.e., not

7Among all observed binary confounders of the A-Y relationship in our data, urban residence
and peers’ college expectation are the two strongest according to their implied values of αβ. Peers’
college expectation is a dummy variable denoting whether at least 75% of the respondent’s peers
expected college in 1997.
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involving counterfactuals). As with a scatter plot, a variance-covariance analysis (ANOVA), or

a linear regression model, a descriptive analysis of disparity is a useful tool for summarizing our

data. In some cases, it may also provide useful indications of possible causal processes that can be

explored in more detail. Yet, in general, results from a descriptive analysis, no matter what kinds of

statistical models have been used to decompose the disparity, have no causal interpretations. Thus,

they are not well-suited for answering policy-relevant questions. By contrast, the prescriptive

approach directly interrogates the extent to which a disparity of interest would change under a

given intervention. Such an approach fosters more rigorous, and less ad hoc, discussions of the

potential impacts of different policies.

For both approaches, we demonstrate that one can define and identify all relevant estimands

nonparametrically, i.e., without reference to any statistical model. For example, while the canonical

KOB decomposition is routinely implemented via linear regression models, the underlying estimands

can be defined in an entirely model-free manner. The model-free definition and identification of

estimands greatly improves the clarity of research goals and the transparency of the associated

assumptions. Moreover, as we have shown, it opens the door to a range of flexible estimation

strategies, including regression-imputation, weighting, and doubly robust methods. The doubly

robust estimator, in particular, can be combined with flexible machine learning models to produce

estimators with desirable statistical properties. To be sure, the separation of the definition of

estimands from their identification and estimation should be a goal not only for disparity analysis

but for all quantitative social science research (Lundberg et al. 2021).

For both the descriptive and prescriptive approaches, we have suggested several extensions that

allow us to examine a broader range of research questions than those enabled by extant methods.

For example, in decomposing a disparity with a set of temporally ordered explanatory variables,

researchers may wish to assess the overall contribution of some factor, regardless of whether that

contribution is “direct” or “flows through” subsequent explanatory variables. Yet, extant methods,

such as the simultaneous KOB decomposition, are not geared toward this goal. Our proposed

generalized KOB/Duncan decomposition, by contrast, enables researchers to assess the cumulative

contributions of different covariates successively. Moreover, our identification and estimation results

for the prescriptive approach are general enough for us to evaluate the impacts of a wide range

of potential interventions, among which we have discussed a few stylized examples. Finally, for
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interventional disparities, we have also proposed and illustrated an original method for assessing

the robustness of our estimates to potential unobserved confounding.

The prescriptive approach we discussed can be extended in several ways. First, while the point-

in-time interventions we consider align closely with the way most real-world policies are formulated,

researchers may be interested in assessing the impact of a bundle of hypothetical interventions

implemented at multiple points of an individual’s life course. For example, a policy designed to

equalize admission rates in postsecondary education may concur with an intervention designed to

equalize rates of college completion. Researchers may then want to assess the impact of this dual

set of policies on later-life outcomes, such as labor market earnings (Zhou and Pan 2023). Second,

while we have focused on “categorical inequalities” across disparate groups, many axes of inequality

may be best characterized as lying on a continuum. A prime example is intergenerational income

(im)mobility, where the “group” indicator is parental income or a monotone transformation of it.

Extending our proposed framework to assess interventional disparities by a continuous characteristic

is an important avenue for future research.
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Figure 1: DML estimates of observed and adjusted completion rates.
Note: Data are from NLSY97. X1 denotes demographic and socioeconomic background (gender,
race, ethnicity, age in 1997, parental education, parental income, parental assets, rural residence,
southern residence), X2 denotes family structure (co-residence with both biological parents, pres-
ence of a paternal figure), X3 denotes pre-college measures of ability and behavior (percentile score
on the ASVAB test, high school GPA, an index of substance use, an index of delinquency, whether
the respondent had any children by age 18), X4 denotes peer and school-level characteristics (col-
lege expectation among peers and three dummy variables denoting whether the respondent ever
had property stolen at school, was ever threatened at school, and was ever in a fight at school),
and X5 denotes college selectivity (whether the student attended one of the “most competitive,”
“highly competitive,” and “very competitive” colleges according to Barron’s Profile of American
Colleges 2000). In the DML estimation, both the outcome and group membership models are fitted
via a super learner composed of Lasso and random forests.
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Figure 2: Estimates of the explained and unexplained components of the Black-White gap in
college completion under the generalized KOB/Duncan decomposition and the simultaneous KOB
decomposition.
Note: Data are from NLSY97. Family background denotes a broad set of variables concerning
demographic and socioeconomic background, including gender, race, ethnicity, age in 1997, parental
education, parental income, parental assets, rural residence, southern residence; family structure
includes co-residence with both biological parents, presence of a paternal figure; ability and behavior
includes percentile score on the ASVAB test, high school GPA, an index of substance use, an index of
delinquency, whether the respondent had any children by age 18; contextual factors include college
expectation among peers and three dummy variables denoting whether the respondent ever had
property stolen at school, was ever threatened at school, and was ever in a fight at school; college
selectivity is a dummy variable for whether the student attended one of the “most competitive,”
“highly competitive,” and “very competitive” colleges according to Barron’s Profile of American
Colleges 2000. In the DML estimation of the generalized KOB/Duncan decomposition, both the
outcome and group membership models are fitted via a super learner composed of Lasso and random
forests.
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Figure 3: Relationship between Assumption 1 (Consistency) and Assumption 2 (System Invari-
ance).
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Figure 4: DML estimates of the gap reduced (∆ − ∆∗) under different stylized interventions to
selective college attendance.
Note: Data are from NLSY97. Pretreatment covariates include demographic and socioeco-
nomic background, family structure, ability and behavior, and peer- and school-level charac-
teristics, as detailed in the descriptive analysis. In the DML estimation, both the outcome
and treatment models are fitted via a super learner composed of Lasso and random forests.
Lottery-type equalization applies the formula Pr[A∗ = 1|R,X] = Pr[A = 1]. AA-type equaliza-

tion applies the formula Pr[A∗ = 1|Black, x] = eδB Pr[A=1|Black,x]

1−Pr[A=1|Black,x]+eδB Pr[A=1|Black,x]
and Pr[A∗ =

1|White, x] = eδW Pr[A=1|White,x]

1−Pr[A=1|White,x]+eδW Pr[A=1|White,x]
, where δB and δW are chosen such that Pr[A∗ =

1|Black] = Pr[A∗ = 1|White] = Pr[A = 1]. AA-type equalization by class applies the for-

mula Pr[A∗ = 1|r, x] = eδ0+δ1s Pr[A=1|r,x]

1−Pr[A=1|r,x]+eδ0+δ1s Pr[A=1|r,x]
, where δ0 and δ1 are chosen such that

Pr[A∗ = 1] = Pr[A = 1] and Cov[A∗, S] = 0. AA-type equalization by class and race applies the

formula Pr[A∗ = 1|Black, x] = eδ0B+δ1Bs Pr[A=1|Black,x]

1−Pr[A=1|Black,x]+eδ0B+δ1Bs Pr[A=1|Black,x]
and Pr[A∗ = 1|White, x] =

eδ0W+δ1Ws Pr[A=1|White,x]

1−Pr[A=1|White,x]+eδ0W+δ1Ws Pr[A=1|White,x]
, where δ0B, δ1B, δ0W , and δ1W are chosen such that

Pr∗[A = 1|Black] = Pr∗[A = 1|White] = Pr[A = 1] and Cor[A∗, S|Black] = Cor[A∗, S|White] = 0.
Conditional equalization applies the formula Pr[A∗ = 1|R,X] = wPr[A = 1|R = Black, Z] + (1 −
w) Pr[A = 1|R = White, Z], where w is chosen such that Pr[A∗ = 1] = Pr[A = 1].
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Figure 5: Contour plot showing bias-adjusted estimates of the gap reduced (∆ − ∆∗) under AA-
type equalization as a function of (α, β). The two annotated points show values of (α, β) if the
unobserved confounder U behaved like one of two observed binary confounders in the NLSY97.
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A Nonparametric Formulations of Equations (2) and (5)

The decomposition in the form of equation (2) involves fitting an outcome model among White

students, which is then used to obtain the average predicted outcome among White students under

the Black covariate distribution, Ȳ pred
W . The population counterpart of Ȳ pred

W can be written as

µpred
W =

∫
E[Y |R = White, x]dP (x|R = Black), (26)

where P (x|R = Black) denotes the covariate distribution among Black students. Consequently, the

explained and unexplained components of the KOB decomposition become

∆Explained = µW − µpred
W , (27)

∆Unexplained = µpred
W − µB. (28)

The explained component is the difference between the average observed outcome of White students

and the average predicted outcome of White students when their covariate distribution is adjusted

to that of Black students. The unexplained component is the difference between the average

predicted outcome of White students after the adjustment and the average observed outcome of

Black students.

The more general form of the canonical KOB decomposition shown in equation (5) can also

be defined nonparametrically. Consider a weighted average of the conditional expectations of the

outcome given the covariates for Black students and for White students, µR(X) = qBE[Y |R =

Black, X] + qWE[Y |R = White, X], where qB + qW = 1. The function µR(X) can be seen as a

composite conditional expectation function (CEF). The X-Y relationship encoded in this composite

CEF is analogous to the reference coefficients βR in equation (5). Accordingly, a nonparametric

counterpart of equation (5) can be written as

∆Explained =

∫
µR(x)

(
dP (x|R = White)− dP (x|R = Black)

)
, (29)

∆Unexplained =

∫
(µW (x)− µR(x))dP (x|R = White) +

∫
(µR(x)− µW (x))dP (x|R = Black). (30)

Clearly, this decomposition reduces to equations (7-8) when qB = 1 and equations (27-28) when

qW = 1.
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B Identification of E[Y ∗|R = r] under Assumptions 1-4

E[Y ∗|R = r] =

∫ ∫
E[Y ∗|R = r,X = x,A∗ = a]p∗(a|R = r, x)p(x|R = r)dadx

=︸︷︷︸
A.2

∫ ∫
E[Y (a)|R = r,X = x,A∗ = a]p∗(a|R = r, x)p(x|R = r)dadx

=︸︷︷︸
A.3

∫ ∫
E[Y (a)|R = r,X = x]p∗(a|R = r, x)p(x|R = r)dadx

=︸︷︷︸
A.3

∫ ∫
E[Y (a)|R = r,X = x,A = a]p∗(a|R = r, x)p(x|R = r)dadx

=︸︷︷︸
A.1

∫ ∫
E[Y |R = r,X = x,A = a]p∗(a|R = r, x)p(x|R = r)dadx

= EX|R=rEA∗|R=r,XE[Y |R = r,X,A = A∗]

=

∫ ∫
p∗(a|R = r, x)

p(a|R = r, x)
E[Y |R = r,X = x,A = a]p(a|R = r, x)p(x|R = r)dadx

= E[
p∗(A|R,X)

p(A|R,X)
Y |R = r]

(31)
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C Derivation of Bias Formulas for Sensitivity Analysis

Assume we have a binary unobserved confounder, U , for the treatment-outcome relationship. We

further assume that (i) αr
∆
= Pr[U = 1|x, r,A = 1] − Pr[U = 1|x, r, A = 0] does not depend on x

and that (ii) βr
∆
= E[Y |r, x, a, U = 1]− E[Y |r, x, a, U = 0] does not depend on x or a.

Consider first the post-intervention mean, E[Y ∗|R = r], which is identified as

E[Y ∗|R = r] =

∫ [ ∑
a=0,1

p∗(a|r, x)
(
E[Y |x, r, a, U = 1]Pr[U = 1|x, r]+E[Y |x, r, a, U = 0]Pr[U = 0|x, r]

)]
dP (x|r).

By contrast, our estimator of E[Y ∗|R = r] converges to

Ẽ[Y ∗|R = r] =

∫ [ ∑
a=0,1

p∗(a|r, x)
(
E[Y |x, r, a, U = 1]Pr[U = 1|x, r, a]

+ E[Y |x, r, a, U = 0]Pr[U = 0|x, r, a]
)]
dP (x|r).

Taking the difference of the above two quantities, we have

bias(E[Y ∗|R = r])

=

∫ [ ∑
a=0,1

p∗(a|r, x)
(
E[Y |r, x, a, U = 1]− E[Y |r, x, a, U = 0]

)(
Pr[U = 1|x, r, a]− Pr[U = 1|x, r]

)]
dP (x|r)

=

∫ [ ∑
a=0,1

p∗(a|r, x)
(
E[Y |r, x, a, U = 1]− E[Y |r, x, a, U = 0]

)
(
Pr[U = 1|x, r, a]− Pr[U = 1|x, r, 1− a]

)
p(1− a|x, r)

]
dP (x|r)

Then, applying assumptions (i) and (ii), we have

bias(E[Y ∗|R = r])

=

∫ [ ∑
a=0,1

p∗(a|r, x)(−1)1−aαrβrp(1− a|x, r)
]
dP (x|r)

=αrβr

∫ (
Pr[A = 0|x, r]Pr[A∗ = 1|x, r]− Pr[A = 1|x, r]Pr[A∗ = 0|x, r]

)
dP (x|r)

=αrβr

∫ (
Pr[A∗ = 1|x, r]− Pr[A = 1|x, r]

)
dP (x|r)

=αrβr
(
Pr[A∗ = 1|r]− Pr[A = 1|r]

)
.

Since the interventional disparity (∆∗) is defined as E[Y ∗|R = White] − E[Y ∗|R = Black],

bias(∆∗) can be written as:
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bias(∆∗) =αWhiteβWhite

(
Pr[A∗ = 1|White]− Pr[A = 1|White]

)
− αBlackβBlack

(
Pr[A∗ = 1|Black]− Pr[A = 1|Black]

)
.

Similarly, the bias of the estimated gap reduced (∆−∆∗) can be written as:

bias(∆−∆∗) =− αWhiteβWhite

(
Pr[A∗ = 1|White]− Pr[A = 1|White]

)
+ αBlackβBlack

(
Pr[A∗ = 1|Black]− Pr[A = 1|Black]

)
.

If we further assume that αWhite = αBlack = α and βWhite = βBlack = β, these bias formulas will

reduce to

bias(∆∗) = αβC,

and

bias(∆−∆∗) = −αβC,

where C =
(
Pr[A∗ = 1|White]− Pr[A = 1|White]

)
−
(
Pr[A∗ = 1|Black]− Pr[A = 1|Black]

)
.
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D Parametric Estimates of the Generalized KOB Decomposition

In the main text, we estimated the generalized KOB decomposition using the doubly robust (DR)

estimator for µpred
B,j combined with cross-fitting and machine learning estimates of the outcome and

group membership models. The use of machine learning estimators in tandem with cross-fitting and

the DR estimator is desirable because it leads to an instance of what Chernozhukov et al. (2018)

call “double/debiased machine learning” (DML) — a procedure that is robust, efficient, and has

theoretically justified analytical standard errors. As mentioned in the main text, it is also possible

to obtain estimates of the generalized KOB decomposition with parametric models applied to the

regression-imputation (RI), weighting, or DR estimator. In this case, the DR estimator enjoys the

“double-robustness” property as described in the main text.

We have implemented these alternative estimators for our running example. The results are

reported in Figures 6 and 7. In general, the results obtained under different estimation procedures

are similar, although we see that the weighting estimator is generally less efficient than the para-

metric RI and DR estimators. As a combination of RI and weighting, the DR estimates tend to lie

between estimates from the other two methods.

Figure 6: Parametric estimates of observed and adjusted completion rates. The outcome and group
membership models are both fitted with logistic regression. Standard errors are obtained using the
nonparametric bootstrap (with 250 replications).
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Figure 7: Parametric estimates of the explained and unexplained components of the Black-White
gap in college completion. The outcome and group membership models are both fitted with logistic
regression. Standard errors are obtained using the nonparametric bootstrap (with 250 replications).
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E Parametric Estimates of the Gap Reduced (∆−∆∗)

Figure 8: Parametric estimates of the gap reduced under different stylized interventions to selective
college attendance.
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