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Abstract

While causal inference has become front and center in empirical political science,
we know little about how to analyze causality with latent outcomes, such as political
values, beliefs, and attitudes. In this article, we develop a framework for defining, iden-
tifying, and estimating the causal effect of an observed treatment on a latent outcome,
which we call the latent treatment effect (LTE). We describe a set of assumptions that
allow us to identify the LTE and propose a hierarchical item response model to estimate
it. We highlight an often overlooked exclusion restriction assumption, which states that
treatment status should not affect the observed indicators other than through the la-
tent outcome. A simulation study shows that the hierarchical approach offers unbiased
estimates of the LTE under the identification and modeling assumptions, whereas con-
ventional two-step approaches are biased. We illustrate our proposed methodology
using data from two published experimental studies.1
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1. Introduction

Causal inference is one of the most far-reaching developments in social science methodology

over the past two decades. As more scholars engage in causal inference, the range of social

and political outcomes that are being investigated expands. Increasingly, the outcomes of

interest include values, beliefs, and attitudes. Such outcomes are often construed as latent

variables because they cannot be directly observed (Bollen 2002); as such, they are typically

inferred from a set of manifest indicators through measurement models. Researchers who

are interested in studying causal effects on latent outcomes, therefore, face both causal

identification and measurement issues. The goal of this study is to develop a framework for

drawing causal inferences with latent outcomes that accounts for both of these issues.

To illustrate our framework, we revisit two recent studies that employ field and survey

experiments to draw causal inferences with latent outcomes. The first study uses a survey

experiment to investigate how women’s descriptive representation in decision-making bodies

affects citizens’ perceptions of democratic legitimacy (Clayton et al. 2019). The second

study uses field experiments to evaluate the argument that non-judgmental exchange of

narratives is persuasive and can reduce exclusionary attitudes (Kalla and Broockman 2020).

The outcomes of the two studies, perceptions and attitudes, respectively, are both latent

constructs that the researchers measure using a set of survey items. These studies are

merely two examples of a large body of political science research involving latent outcomes.

Of all quantitative empirical studies published in three leading journals of the discipline

(APSR, AJPS, and JOP) over the past five years, roughly one third have analyzed latent

outcomes. The share is particularly high for experimental studies, almost half of which

investigate latent outcomes (49%).3 In these studies, latent outcomes have been variously

referred to as ”attitudes,” ”preferences,” ”public opinion,” or ”support” (See SM A).

Despite their prevalence in political science research, we know surprisingly little about how

3These numbers are based on a hand-classification of 1,630 abstracts of articles published in
APSR, AJPS, and JOP between 2015 and mid 2021. For more details, see Supplementary
Material(SM) A.
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to analyze causality with latent outcomes. While there is an increasing interest in how to

use imperfect proxies in causal analysis (Knox et al. 2022; Fong and Grimmer 2021; Mayer

2019; Egami et al. 2022), ad hoc solutions still abound. From our perspective, research

interest often lies in evaluating general arguments about causal effects on latent outcomes,

independent of their measurement proxies. This suggests a reflective approach to studying

latent variables (Borsboom et al. 2003), in which the latent outcome is defined independent

of the measurement device and causally precedes its manifest indicators. In this approach,

different sets of indicators serve as manifestations of the latent outcome. Yet, researchers

still lack clear guidelines on how to define causal estimands involving latent outcomes, how to

estimate them consistently and efficiently using manifest indicators, what identification and

modeling assumptions are required, and how to assess the credibility of these assumptions.

In this article, we develop a framework for defining, identifying, and estimating the causal

effect of a treatment on a latent outcome. We first use the potential outcomes notation

to define the latent treatment effect (LTE), discuss how it differs from conventional causal

estimands, and describe the assumptions required for identifying LTEs in randomized exper-

iments. We highlight an exclusion restriction assumption in addition to standard identifica-

tion assumptions. To identify the LTE, the treatment should affect the observed indicators

only through the latent variable. Otherwise, we cannot distinguish the effect of the treat-

ment on the latent outcome from its effect on the manifest indicators. Potential violations

of this assumption may stem from demand effects (Mummolo and Peterson 2019) or social

desirability bias (Grimm 2010). We show that the exclusion restriction assumption is akin

to the concept of measurement equivalence, and that it is partially testable with standard

psychometric tools.

Second, we provide a statistical framework, in the form of hierarchical item response theory

(hIRT), that allows us to consistently estimate the LTE. The prevailing practice for estimat-

ing causal effects on latent outcomes is to use a two-step procedure—by first deriving a proxy

measure of the latent outcome from a set of observed indicators and then estimating the ef-
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fect of the treatment on the proxy measure. The proxy measure is often constructed using a

simple average or a principal component of the observed indicators. Sometimes, researchers

also turn to factor analysis or item response theory (IRT) models. These two strategies

are akin to the formative indicators approach (e.g. principal component analysis) and the

reflective indicators approach (e.g. factor analysis) to tackling latent variables, respectively

(Borsboom et al. 2003). In contrast to these two-step approaches, the hIRT approach inte-

grates measurement and causal analysis in a single step and unequivocally aligns with the

reflective perspective. This integration eliminates the biases induced by measurement error

associated with all two-step approaches. Moreover, by maximizing the marginal likelihood

via the EM algorithm, the hIRT approach is statistically efficient, computationally fast, and

offers valid asymptotic inference for the LTE. Importantly, we extend the hIRT approach

described in Zhou (2019) to develop tests for differential item functioning (DIF) and addi-

tional violations of the identification assumptions, producing a flexible toolkit for estimating

causal effects on latent outcomes. An R-package, hIRT, is available for implementing these

methods.

We present a simulation study highlighting the advantages of the hIRT approach. Com-

pared with two-step approaches, the hIRT estimates of the LTE are unbiased. Two-step

approaches, using either reflective or formative measurement models, yield biased estimates

of the LTE. The reason for this is that the standardization of the LTE in two-step ap-

proaches does not account for measurement uncertainty, while the hIRT approach does. By

taking measurement uncertainty into account, the hIRT approach reports larger standard

errors with accurate coverage of the true effect. Furthermore, we examine the consequences

of potential violations of the exclusion restriction assumption by inducing differential item

functioning (DIF) between treatment and control units. If treatment has direct effects on

the indicators not through the latent variable, they will be conflated with the LTE regardless

of the estimation method. This type of bias increases with the degree of DIF. Our simula-

tion study also demonstrates the validity of our proposed extension of the hIRT approach
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to detect DIF.

A replication of the aforementioned studies illustrates the proposed methodology. The

first study (Clayton et al. 2019) uses survey experiments to identify treatment effects of

women’s descriptive representation on perceptions of legitimacy. Our LTE estimates from

the hIRT approach are broadly similar to the two-step estimates from the original study; yet,

by accounting for measurement uncertainty, our estimates exhibit larger and more accurate

standard errors. The analysis further reveals a potential violation of the exclusion restriction,

casting doubt on the validity of the corresponding estimates. The application of our hIRT

approach to the second study (Kalla and Broockman 2020) yields similar conclusions to

those of the original article. For this study, however, we find no evidence of a violation of

the exclusion restriction, providing robustness to the original findings.

The contributions of this paper are twofold. Conceptually, it is one of the first studies

to integrate measurement and causal inference by defining the latent treatment effect and

discussing its key identification assumptions. Second, compared with existing discussions

(see Mayer 2019; VanderWeele and Vansteelandt 2022; Knox et al. 2022), it provides a more

comprehensive and user-friendly suite of methods for estimating causal effects on latent

outcomes and testing the exclusion restriction assumption. Taken together, this paper high-

lights that social science research often faces two research design challenges: identification

and measurement. These two challenges should not be considered in isolation, as they are

inherently intertwined.

On a more practical note, our work points to a set of considerations that applied researchers

should bear in mind when designing experiments. For example, to avoid potential violations

of the exclusion restriction, researchers should use reliable measures of the latent outcome

that are unlikely to be affected by treatment directly. We discuss our suggestions for applied

researchers in more detail in the concluding section.
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2. Causal Inference, Measurement Error, and Latent

Variables

2.1. Existing Work

Despite the central role of causal inference in empirical political science and the ubiquity

of latent variables in theoretical models of social and political processes, the intersection

between these two areas of inquiry remains underexplored. To make credible causal claims

with latent variables, one needs reliable measurements of the latter. Depending on the role

a latent variable plays in a particular application, the measurement problem may manifest

itself in treatment, confounding variables, or the outcome of interest (e.g., Millimet 2010).

So far, most scholarly attention has been devoted to the problem of measurement error in

the treatment variable (Banerjee and Basu 2021; Dafoe et al. 2018; Fong and Grimmer 2021;

Imai et al. 2010; Millimet 2010; VanderWeele 2022) or pretreatment confounders (Battistin

and Chesher 2014; Millimet 2010; Pearl 2010), rather than the outcome variable.

Discussions of the outcome variable focus mostly on reduced statistical power for detecting

effects due to measurement error (e.g., Aaby and Siddique 2021). There is little discussion

of bias, let alone inferences for treatment effects on latent outcomes. This is not altogether

surprising given the canonical result that in a linear model, classic measurement error in

the dependent variable does not induce bias in the regression coefficients. The conditions

underlying this canonical result, however, are often violated in practice. For example, it

is well known that when the outcome is binary, misclassified outcomes can result in biased

estimates of regression slopes (Carroll et al. 2006). In a recent review article, Knox et al.

(2022) discuss several other ways contaminated outcome measures can bias estimates of

causal effects, and how signed causal diagrams can be used to draw qualitative inferences

about the existence and direction of theorized effects (see also Masyn 2017; Vermunt and

Magidson 2021).

The measurement problem is especially salient when the outcome of interest is latent. A
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latent outcome is a theoretical construct that cannot be directly measured.4 This requires

researchers to consider different measurement strategies. To date, few studies have system-

atically discussed the definition, identification, and estimation of causal effects on latent

outcomes. One exception is VanderWeele and Vansteelandt (2022), who propose a test for

the structural interpretation of a latent factor model. According to the structural interpre-

tation, only the univariate factor representation, not the indicators themselves, are causally

efficacious. It means that in a randomized control trial, the treatment only affects the uni-

variate factor representation of the observed indicators but not the indicators themselves.

In a similar vein, Masyn (2017) and Vermunt and Magidson (2021) propose techniques for

estimating causal effects on latent classes. These ideas build on a long tradition in structural

equation modelling (SEM) and latent class analysis (LCA) that integrates inference about

effects with the measurement of latent variables (Bollen 1989). Many SEM and LCA spec-

ifications, however, implicitly assume that the causal structure is valid, without stating the

required identification assumptions or proposing a test for them (for exceptions, see Masyn

2017; Vermunt and Magidson 2021).5 Additional research has focused on text data as out-

comes. Egami et al. (2022) discuss how to make causal inferences with text data using a

structural topic model, in which topic proportions are of key interest. Their work on text

data underscores the importance of a no-interference assumption regarding the measurement

device (in this case, topic models) and causal inference.

Our point of departure is similar to VanderWeele and Vansteelandt (2022) in that we

highlight an exclusion restriction assumption stating that the treatment should affect the

measurement indicators only through the latent construct. According to VanderWeele and

Vansteelandt (2022), this causal interpretation holds under the structural interpretation of a

latent factor model. These authors propose a test for the structural interpretation under an

additional assumption that the latent factor model is linear, i.e., the relationships between

4For a discussion of different definitions of latent variables, see Bollen (2002).
5While some studies have applied the SEM approach to estimate causal parameters (see e.g.

Rabbitt 2018; Mayer 2019), they do not provide conditions under which latent causal effects
can be identified.
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the latent variable and all its manifest indicators are linear. The latter assumption, however,

is unrealistic when some or all of the measurement indicators are on a binary or ordinal

scale, as is the case with most survey items in political science research. In this study, we

do not presume a linear factor model; instead, we use an item response approach where the

indicators depend on the latent variable via an item characteristic function, which can be

linear, logit, or any user-specified form. Within this more general framework, we propose a

hierarchical model for estimation and inference as well as a test for the exclusion restriction.

2.2. Two Perspectives on Latent Outcomes

At this point, it is worth asking whether it is sensible to draw causal inferences at the level

of latent outcomes. Borsboom et al. (2003) discuss several perspectives on the status of

latent variables, two of which are particularly relevant here: the formative approach and the

reflective approach.

The formative approach views the nature of latent variables as dependent on specific in-

dicators. It presupposes that a change in indicators causally precedes a change in the latent

variable. The characteristics of indicators define the construct and can thereby affect its va-

lidity. This view applies to concepts such as socioeconomic status, which are conceptualized

as a summary of measurable characteristics such as education, income, and occupation.

By contrast, in a reflective approach, the latent construct is independent of its measures,

enabling general arguments about the latent outcome. A change in the construct is assumed

to causally precede a change in indicators, which also means the indicators chosen in a

particular study do not affect the validity of the construct. The measures are also deemed

imperfect; the explicit accommodation of measurement error in the indicators also sets the

reflective model apart from its formative counterpart.

Given these theoretical considerations, the reflective model is our preferred approach for

studying attitudes, beliefs, intentions, as it enables hypotheses about these latent outcomes

without referring to how they are measured. The reflective model assumes latent outcomes
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are real entities manifested through observed indicators. In this approach, different studies

may use different sets of indicators, but these differences do not alter the underlying concept

because the causal arrows flow from the latent variable to its observed indicators and not

vice versa. Therefore, one can gauge the same latent variable in different ways, seek to

improve statistical efficiency using different measures, and adjust measures to accommodate

cross-cultural sensitivities—all without challenging the premise that the observed indicators

are merely a window onto the underlying concept.

However, if one takes the reflective indicators approach, it is no longer justified to merely

estimate causal effects on observed indicators. Rather, the causal effect of interest is at the

level of the latent outcome. It can manifest itself in myriad ways including but not restricted

to those captured by the indicators used in a particular study. In many applications, scientific

interest lies in the latent outcome rather than in its myriad manifestations, and this principle

should be reflected in the definition, identification, and estimation of the causal estimands.

To illustrate the prevalence of this perspective in political science, we provide additional

examples of latent outcomes in SM A.2.

3. Causal Inference with Latent Outcomes

3.1. The Latent Treatment Effect (LTE)

We first define the causal estimand pertaining to latent outcomes such as values, beliefs, and

attitudes. Our discussion builds on the potential outcomes framework (Rubin 1974). For

expositional simplicity, we focus on a binary treatment, D, that takes 1 if a unit is treated and

0 otherwise.6 When the outcome of interest Y is observed, the treatment effect is defined as

the difference between two potential outcomes, i.e., Y (1)−Y (0).7 For each unit, we observe

either Y (1) (if the unit is treated) or Y (0) (if the unit is not treated), but not both, which is

6With proper modifications, our framework can be easily generalized to continuous or multidi-
mensional treatments.

7We omit the unit index i for notational conciseness, with the implicit assumption that the
potential outcomes refer to unit-level counterfactuals.
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known as the fundamental problem of causal inference. The impossibility of observing both

potential outcomes for the same unit means that we can never directly compute treatment

effects at the individual level (Holland 1986). With appropriate identification strategies,

however, the average treatment effect, i.e., ATE = E [Y (1)− Y (0)], can still be identified.

Our estimand deviates from the standard ATE because we focus on the causal effect of the

treatment D on a latent outcome, which we denote by Θ.8 Following the potential outcomes

notation, we use Θ(1) and Θ(0) to represent the potential values of the latent outcome under

treatment and control, respectively. Analogous to the ATE on a manifest outcome, we define

the (average) latent treatment effect (LTE) as:

LTE = E[Θ(1)−Θ(0)]. (1)

Defined in terms of a latent variable, the LTE is a theoretically motivated estimand. But

it is also practically significant. In our first motivating example, the LTE corresponds to

the average treatment effect of women’s representation in decision-making on democratic

legitimacy, a quantity that interests scholars from both a theoretical and a policy perspec-

tive. By contrast, the items used in the survey are merely a window onto the concept of

legitimacy. As such, there is no inherent interest in treatment-induced differences in the

observed indicators per se; a researcher could have used a different set of indicators to gauge

legitimacy.

This brings us to the second fundamental problem of causal inference with latent outcomes:

none of the counterfactual latent outcomes are directly observable. Unlike the standard case

where one of the potential outcomes is observed, latent outcomes require measurement.

With our interest in the LTE, we must use a set of observed indicators to measure the latent

outcome Θ. The measurement device, i.e., the mapping between the latent outcome and the

observed indicators, is almost always imperfect. Henceforth, we use Y = {Y1, Y2, . . . , YJ} to

8We use uppercase letters for random variables (e.g. Θ), uppercase letters with parentheses for
the corresponding potential outcomes (e.g. Θ(0),Θ(1)), and lowercase letters for fixed/realized
values (e.g. d, θ).
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denote a set of J observed indicators of the latent outcome Θ.

As noted previously, empirical studies have often used a two-step approach to tackle latent

outcomes, where the first step involves the construction of a proxy measure for the latent

variable of interest, using either a formative indicators model (e.g., principle component

analysis) or a reflective indicators model (e.g., factor analysis).

D Θ

Yj

Y1

YJ

(a) Hierarchical Approach with a Reflec-
tive Indicators Model.

Θ̂

Yj

Y1

YJ

D Θ̂

(b) Two-step Approach with a Formative Indicators
Model.

Θ̂

Yj

Y1

YJ

D Θ̂

(c) Two-step Approach with a Reflective Indica-
tors Model.

Figure 1: Different Approaches to Analyzing Latent Outcomes. D denotes treatment, Θ
denotes the latent outcome of interest, and Y1, . . . YJ denote J observed indicators
of Θ. Solid nodes are manifest and hollow nodes latent.
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In Figure 1, panels (b) and (c) represent the two-step approach with a formative indicators

model and with a reflective indicators model, whereas panel (a) represents the underlying

causal relationships between our treatment D, latent outcome Θ, and its observed indicators

Y. We can see that a formative indicators model implies a set of causal arrows flowing

from the observed indicators Y to the latent outcome Θ, which is at odds with their posited

relationships (panel a). By contrast, the two-step approach with a reflective indicators model

preserves the underlying causal structure. However, both approaches split measurement and

analysis into two steps, which, as noted earlier, can complicate the inference of treatment

effect estimates. In section 3.3, we introduce a hierarchical approach that directly models

the underlying causal structure in panel (a), circumventing the limitations of the two-step

approaches. Below, we outline a set of assumptions for identifying the causal effect of D on

Θ.

3.2. Identification Assumptions

Given the DAG D → Θ → Y presented in panel (a) of Figure 1, we now specify the

assumptions needed for identifying the LTE:

1. Stable Unit Treatment Value Assumption (SUTVA): Θi = Θi(Di) and Yi = Yi(Di,Θi),

where Di and Θi denote treatment status and the latent outcome for unit i.

2. Unconfounded Treatment:
(
Θ(d),Y(d, θ)

)
⊥⊥ D for any d and θ.

3. Unconfounded Measurement: Y(d, θ) ⊥⊥ Θ|D for any d and θ

4. Exclusion Restriction: Y(d, θ) = Y(d′, θ) for any d, d′ and θ.

Assumption 1 (SUTVA) is a standard assumption in the potential outcomes approach to

causal inference. It requires that there must not be any interference between individuals

or multiple versions of the treatment so that the realized outcomes Θ and Y for each unit

are equal to their potential outcomes under the realized values of their antecedent variables.
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In our case, since the observed indicators Y may depend on both treatment status and

the latent outcome, we use Y(d, θ) to denote their potential values when D is set to d

and Θ set to θ. Experimental designs address SUTVA by randomizing the same type of

treatment to respondents that are isolated from each other. In our running examples, the

same types of treatments (in the form of protocol or information treatments) are administered

to respondents in isolation from other participants.

Assumption 2 (Unconfounded Treatment) is met by design in experiments where treatment

is randomly assigned. Research often relies on balance checks to show that the random

assignment of treatment status created groups with similar observed characteristics. The

unconfounded treatment assumption, however, can be extended for observational studies

to conditional unconfoundedness, i.e.,
(
Θ(d),Y(d, θ)

)
⊥⊥ D|X, where X denotes a set of

pretreatment confounders of the treatment-outcome relationship. In section 6, we discuss this

point in more detail and outline potential applications of our approach beyond randomized

experiments.

Assumption 3 (Unconfounded Measurement) assumes that no unobserved confounders are

allowed to affect both the latent variable Θ and the outcomes Y. This assumption ensures

that the measurement model is unconfounded, and it is implicit in most item response and

factor-analytic models. The assumption accentuates the importance of reliable and valid

measurement models in the analysis of causal effects on latent outcomes.

There are different ways in which the unconfounded measurement assumption can be vi-

olated. One possible violation is when researchers assume a single underlying construct,

but several latent dimensions influence the responses and the latent constructs have com-

plex interactions with each other. This might occur, for example, if the two dimensions of

our first running example, substantial and procedural legitimacy, were not separated, but

procedural legitimacy affects substantial legitimacy. Another possibility is that certain con-

founders influence the measurement indicators above and beyond the latent variable, which

is sometimes referred to as method effects (Eid et al. 2016). In section 6, we discuss how our
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framework can be extended to accommodate such violations of unconfounded measurement.

Assumption 4 (Exclusion Restriction), in our context, means that the treatment D affects

the observed indicators Y only via the latent outcome Θ. This is a central assumption for

identifying the LTE that has not been fully acknowledged and formalized in the literature.

If receiving the treatment induces changes in the measurement indicators above and beyond

changes in the latent variable, it will be difficult to attribute the changes in the indicators

to a treatment effect on Θ. The assumption is closely related to the exclusion restriction

assumption in instrumental variable (IV) models, except that in our case, the intermediate

variable is latent and there can be multiple indicators as measured outcomes.

Potential violations of the exclusion restriction assumption can arise from induced demand

effects (Mummolo and Peterson 2019) or social desirability bias (Grimm 2010), in which re-

spondents feel compelled to answer in a certain way even if their latent attitude is unchanged.

When the treatment in an experiment highlights a social norm and makes the purpose of

the experiment clear to the participants, it may increase the likelihood of social desirability

bias. This, for example, can occur in our first study where the treatment involves presenting

respondents with a picture of a decision panel with men and asking about the procedural

legitimacy of an anti-feminist decision, as it reinforces a norm of gender equality. This effect

may be particularly strong if the treatment is administered just before the measurement of

the central outcomes. In the second example, a door-to-door canvasing treatment may also

lead to social desirability bias in the conversation. However, if the outcome measures are

collected in an independent survey weeks after the treatment, the effects of this bias may be

reduced.

Overall, our discussion reveals previously overlooked assumptions for the identification of

causal effects on latent outcomes. Compared to causal inference with manifest outcomes,

the exclusion restriction plays a central role in the identification and estimation of the LTE.

This assumption makes it possible to attribute treatment-induced variation in the indicators

to treatment effects on the latent outcome. Without this assumption, the observed data
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can be consistent with an observationally equivalent model where changes in the indicators

occur without any changes in the latent variable of interest (see Masyn 2017; VanderWeele

and Vansteelandt 2022; Vermunt and Magidson 2021). We propose a method for testing this

assumption in Section 3.4.

3.3. Estimation

The LTE is defined as the difference in expectation between the two potential outcomes Θ(1)

and Θ(0). Thus, the key to estimating the LTE is to evaluate the mean potential outcome

E[Θ(d)] for both d = 0 and d = 1. Given the exogeneity of the treatment (Assumption 2),

we can rewrite E[Θ(d)] as

E[Θ(d)] = E[Θ | D = d]. (2)

In general, researchers interested in estimating the LTE needs to evaluate this expression.

There are potentially several approaches that can be used for this purpose. Below, we

discuss an apparent two-step approach, which involves first measuring the latent variable

and then performing inference on it, and a hierarchical item response model, which combines

measurement and causal analysis into a single step.

3.3.1. Two-step approaches

Equation (2) suggests a two-step approach to estimating the LTE, which involves first ob-

taining proxy measures of the latent variable Θ and then taking a difference in means of

these measures between the treated and control units. As noted earlier, such a two-step

approach, whether the first step is a formative indicators model or a reflective indicators

model, has been widely used to evaluate treatment effects on latent constructs in political

science. Below, we show that the two-step approach can result in biased estimates of the

LTE.
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To see why the two-step approach is biased, let us first, using the law of total expectation,

rewrite the right-hand side of equation (2) as

E[Θ | D = d] = E
[
E[Θ|Y, D] | D = d

]
(3)

This equation suggests that we could, for example, use a factor-analytic model to first esti-

mate E[Θ|Y, D] and then evaluate how estimates of these conditional means differ between

treated and control units. The standard two-step approaches, however, do not condition

on treatment status D in obtaining the proxy measures of Θ. Instead, they approximate

E[Θ|Y, D] with estimates of E[Θ|Y]. In other words, researchers often first calculate factor

scores or principal component scores without considering treatment status, and then evalu-

ate how these scores differ by treatment status. However, from the DAG (Figure 1a), we can

see that the latent outcome is still affected by treatment status even after we condition on

Y, which means E[Θ|Y, D] 6= E[Θ|Y]. Therefore, the two-step procedure described above

will likely result in biased estimates of the LTE.

Given the above discussion, it might be supposed that we could avoid the bias by condi-

tioning on D in the two-step approach. For example, we could imagine constructing proxy

measures of the latent outcome separately for the treated and control units. Unfortunately,

this is not a workable solution because the latent outcome, by definition, has no intrinsic

scale. If we used two separate measurement models for the treated and control units, the

latent outcome would be standardized, for example, to have a mean of zero and a standard

deviation of one, for each group. Consequently, no meaningful comparisons can be made

between the treated and control units.

In fact, even if we could condition on treatment status while constructing a proxy measure

of the latent outcome that lies on the same scale for treated and control units, measurement

uncertainty would still lead to biased estimates of the LTE. To see this point, we first note

that because the latent outcome Θ has no intrinsic scale, the magnitude of the LTE must
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be evaluated on a relative basis. Suppose, for example, we evaluate the LTE in terms of the

standard deviation of Θ in the population, then our estimand can be written as

LTE =
E[Θ|D = 1]− E[Θ|D = 0]

sd[Θ]
(4)

Now, consider a plug-in estimate of equation (4) where Θ is replaced by an imperfect proxy,

say Θ̂. Without loss of generality, suppose Θ̂ = a+ bΘ + e where a and b are constants and

e is an error term independent of Θ. Then the plug-in estimate of equation (4) will equal

L̂TE =
b · sd(Θ)√
b2sd2(Θ) + σ2

e

LTE,

where σ2
e denotes the variance of e. This expression makes it clear that the plug-in estimate

will be biased unless σ2
e = 0, i.e., unless the proxy measure Θ̂ is perfect (equivalent to

the true latent outcome up to a linear transformation). In other words, even if the proxy

measure is “unbiased” in the sense that a = 0 and b = 1, the plug-in estimate of the LTE will

still be biased. This result contrasts sharply with the case of manifest outcomes, in which

classic measurement error does not induce bias in estimated regression coefficients. When

the outcome is latent and thus has no intrinsic scale, measurement error will translate into

a bias in the estimated treatment effects.

3.3.2. Hierarchical item response theory model

To circumvent the problems associated with the two-step approaches, we propose the use

of hierarchical item response theory (hIRT), a model-based approach, to directly estimate

the effect of D on Θ—without constructing intermediate estimates of E[Θ | Y, D]. The

model consists of two components, one on the dependence of Y on Θ and the other on the
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dependence of Θ on D:

P[Yj = h | Θ = θ] = Pjh(θ;αjh, βj) (5)

Θ = γ0 + γ1D + ε. (6)

(for h = 1, · · · , H). In the above equations, the parameter γ1 denotes the average treatment

effect of D on Θ, i.e., the LTE. The function Pjh(·) is the item characteristic function linking

the observed indicator Yj to the latent outcome Θ, and αjh and βj are the item difficulty and

item discrimination parameters for item j and answering category h, respectively. The item

characteristic function can be applied to binary indicators using the logit or probit link, or

to ordinal responses using the graded response model.9 The latent outcome Θ is modelled

hierarchically as a function of the treatment plus a random noise ε. In our applications, we

assume that ε is normally distributed with a constant variance σ2.

The hIRT model makes a set of parametric assumptions about how the latent variable

relates to the indicators. Our model assumes (a) a uni-dimensional latent variable, (b)

local independence of items conditional on the latent variable, and (c) a particular item

characteristic function. It bears noting that the aforementioned two-step approaches rely

on similar parametric assumptions to obtain a proxy measure of the latent outcome before

making inferences about the effects. For example, a factor-analytic approach rests on the

same assumptions of unidimensionality, local independence, a functional relationship between

the latent trait and the responses. Moreover, given that treatment is binary, no parametric

assumptions about the D − Θ relationship is needed, as the γ1 parameter in equation (6)

is equivalent to a difference in means between treated and control units. In sum, the hIRT

approach imposes no more additional parametric assumptions than conventional two-step

approaches, although it makes the assumptions required more transparent.

To identify the hIRT model, several identification constraints have to be imposed. Specif-

9For more details on the IRT specification, see SM C.

18



ically, a location constraint must be imposed on either γ0 or the item difficulty parameters

αjh, and a scale constraint must be imposed on either {γ1, σ2} or the item discrimination

parameters βj. For example, we can set γ0 = 0 so that the prior mean of the latent outcome

among control units equals zero, and set σ2 = 1 so that the prior conditional variance of

the latent outcome given D equals one. Alternatively, we could impose location and scale

constraints on the item parameters, such as
∑

j,h αjh = 0 and
∏

j βj = 1.

After the identification constraints are imposed, the hierarchical IRT model can be esti-

mated via an Expectation-Maximization (EM) algorithm described in Zhou (2019). Basi-

cally, the EM algorithm treats the latent outcome Θi as missing data and maximizes the

marginal likelihood for γ0, γ1, as well as the item parameters αjh and βj. We can see that

unlike conventional two-step approaches (using either a formative indicators model or a re-

flective indicators model), the latent outcomes are not explicitly estimated in this approach.

However, γ̂1 gives a consistent and asymptotically normal estimate of the LTE. Moreover,

consistent standard errors of all the parameters can be derived from either the Hessian ma-

trix or the outer product of the gradients of the log marginal likelihood. We describe the

estimation method in more detail in SM C.2.

3.4. Testing the exclusion restriction

One appealing feature of our framework is that the exclusion restriction assumption is par-

tially testable in our model. Unlike in instrumental variable settings, our unconfounded

measurement assumption (Assumption 3) allows us to test if D has a direct effect on Y

above and beyond the pathway D → Θ → Y. This relates closely to the concept of mea-

surement equivalence in psychometrics (see Meredith 1993). Because Y(d, θ) ⊥⊥ Θ|D and
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Y(d, θ) ⊥⊥ D implies Y(d, θ) ⊥⊥ D|Θ, we have

f(Y|Θ = θ,D = d) = f(Y(d, θ)|Θ = θ,D = d) (7)

= f(Y(d, θ)|Θ = θ) (8)

= f(Y|Θ = θ) (9)

which implies measurement equivalence between treatment and control units. In IRT models,

measurement equivalence is violated in the presence of differential item functioning (DIF)

by treatment status (Osterlind and Everson 2009). If the exclusion restriction holds, there

should be no systematic difference between treatment and control groups in their response

patterns conditional on the latent variable.

Two conceptually different types of DIF should be distinguished when discussing violations

of the exclusion restriction in our context: uniform DIF and non-uniform DIF. Uniform DIF

implies a shift in the difficulty parameter of an item. For example, comparing a person in the

control group with a person in the treatment group, uniform DIF can lead one of the respon-

dents to be more likely to answer that “they should allow many undocumented immigrants

to become U.S. citizens” even if both have the same latent immigration attitude. One reason

for this could be that treatments pressure respondents to answer in a particular way with-

out changing their actual immigration attitude. Non-uniform DIF affects the discrimination

parameter of an item. With higher item discrimination, latent attitudes more strongly influ-

ence answers to the indicator questions. In this case, treatment could strengthen or weaken

the discriminatory power of certain indicators. For example, an intervention to reduce ex-

clusionary attitudes that focuses heavily on undocumented immigrants could strengthen the

relationship between latent immigration attitudes and the aforementioned indicator. Both

types of DIF constitutes a violation of the exclusion restriction.

Based on these insights, we extend the hIRT model to develop DIF tests for violations of

equation (9). Specifically, to test for uniform DIF for a particular item or a set of items, we
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fit an ”augmented” hIRT model where treatment D is allowed to affect the item responses

directly (not only through its effect on Θ) and then conduct a likelihood-ratio test comparing

the generalized hIRT model with the baseline model. To test for non-uniform DIF, we fit

another augmented hIRT model where the treatment variable enters the Pjh(·) model not

only through its main effect on Yj but also through its interaction effect with the latent

variable Θ. Then, a likelihood-ratio test comparing the two augmented models can be used

to detect non-uniform DIF.10

4. Simulation Results

In this section, we use a simulation study to evaluate the properties of different estimators

of the LTE and their biases in the presence of exclusion restriction violations. We also

demonstrate the ability of our DIF test to reveal exclusion restriction violations.

We consider a simple data-generating model with a constant treatment effect on the la-

tent variable: θi ∼ N(γ0 + γ1di, 1), where units are randomized into treatment and con-

trol conditions. We draw the answering patterns on J manifest items from a graded re-

sponse model. We sample the item discrimination parameter from a log-uniform distribution

over the interval (-1, 1) (log βj ∼ Unif(−1, 1)). The item difficulty parameters for item j

(αj1, αj2, . . . , αjH−1) are taken from independent draws from a uniform distribution over the

interval (−H + 1, H − 1), where H is the number of response categories. We then simulate

item response yij from a graded response model. Apart from this baseline setup, we also

impose both uniform and non-uniform DIF as violations of the exclusion restriction on Q

items. For treated units, uniform DIF shifts the latent response propensity for item q by

λq, whereas non-uniform DIF increases the item discrimination parameter of item q by a

positive constant φq.
11

10In SM D we, furthermore, describe a common alternative DIF test based on logistic regression
models.

11The latent response propensity for the item q becomes y∗iq = λqdi + (βq + φqdi)θi.
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In all simulations, we fix the sample size to 1,000 and the number of items to J = 5 with

an equal number of categories (H = 5).12 We vary the latent treatment effect from small

γ1 = 0.1, medium γ1 = 0.25, large γ1 = 0.5, to very large γ1 = 0.75 (with γ0 = 0). DIF

is then imposed for zero, one, and two items (Q ∈ {0, 1, 2}). We vary the strength of the

uniform DIF from 0 to 0.75 (λq ∈ {0, 0.25, 0.5, 0.75}). In addition, we consider two versions

with and without non-uniform DIF: φq ∈ {0, 0.5}.

We generate 1,000 random samples in each setting. For each sample, we estimate the LTE

using our proposed hierarchical graded response Model (hgrm) and four two-step approaches

with different measurement methods: a) taking the average of all scores (two-stepe AVE),

b) using the first principal component scores as the outcome as a formative measurement

model (two-step PCA), c) using factor scores as a reflective measurement model (two-step

FA), and d) using the graded response model in a two-step procedure (two-step hgrm). As

in most applications, the two-step approaches do not condition on the treatment in the

measurement stage.13 The theoretical discussion of this approach predicts biased estimates

of the LTE. The simulation allows us to investigate the extent and direction of this bias.

To make the estimates comparable, we re-scale the outcome variables, such that the effects

can be interpreted in terms of the total standard deviation in the latent outcome. After

estimation, we run the DIF tests to detect potential violations of the exclusion restriction.

Figure 2 shows that when the identification assumptions hold, only the hIRT approach

provides unbiased estimates of the LTE. All two-step procedures exhibit a bias (around 22%

on average) towards zero. We can see that the size of the bias increases as the LTE increases.

We can also see a large variability of L̂TE− LTE across simulations. Hence, in a particular

application the two approaches might not show a marked difference in their estimates, but

on average the two-step approaches suffer a clear bias. Overall, the bias does not depend

much on whether the first step estimates come from an index, principal component analysis,

12SM E.5 presents additional results with different numbers of items and categories.
13An alternative two-step approach is fitting the measurement model using only the control unit

and then using the fitted model to obtain latent scores for both treated and control units.
Results from this approach are similar and detailed in Appendix E.6.
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Figure 2: Simulation results for the bias of different estimation methods without differential
item functioning. The figure shows the estimated bias as well as the variability of
L̂TE− LTE measured in terms of standard deviations of Θ.

factor scores, or an IRT model. This means that the bias is not a result of misspecification

of the measurement model, as even the correctly specified two-step IRT model exhibits a

bias. Instead, the bias stems from measurement error in the first-step estimates. Hence, to

obtain unbiased estimates, the hierarchical IRT approach should always be preferred.

In addition, the hierarchical approach leads to larger sampling variation. Its correct stan-

dard error estimates guarantee nominal coverage of the confidence intervals (See SM E.2).

By contrast, the coverage of the two-step procedures for large and very large effects is often

below 80%. The larger standard errors make the RMSEs of the hIRT estimates comparable

to those from the two-step procedures when the effect size is small (See SM E.1). When the

effect size is large, the hierarchical approach is superior in terms of both bias and the RMSE.

What happens if the exclusion restriction is violated? Figure 3 shows that the bias for the

hierarchical IRT estimator increases linearly with the degree of uniform DIF.14 This comes

as no surprise, as part of the induced effect on the outcome indicators is mistaken as changes

in the latent variable. The biases are of modest magnitude: with uniform DIF half the size

14SM E.3 shows additional results for other values of γ1.
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Figure 3: Simulation results for the bias of the hierarchical IRT estimator under exclusion
restriction violation, where γ1 = 0.5.

of the treatment effect (.25 standard deviations), the LTEs are overestimated by 0.04 (for

one item) and 0.08 (for two items). In the case where the uniform DIF is comparable to the

LTE, the bias is 0.08 for one item and 0.16 for two items. Non-uniform DIF also induces

bias. All simulations that have non-uniform DIF reveal higher bias. SM E.3 shows that the

increased bias due to non-uniform DIF is higher when the LTE is stronger.

Our simulation results also reveal that our proposed DIF test works to detect violations

of the exclusion restriction. SM E.4 shows that our test has a high sensitivity for strong

violations of the exclusion restriction. With a uniform DIF of 0.75, the sensitivity is above

90%. For minor violations that only induce small bias, the test has a lower sensitivity. For a

uniform DIF of 0.25, the sensitivity is around 28% for one item and 36% for two items. The

sensitivity increases in the presence of non-uniform DIF. Our test is also well-calibrated: in

the case of no DIF, the test indicates the expected 5% frequency of violations.15

For practitioners, our simulation results lead to two key takeaways. First, use the hierar-

15A test based on nested logistic regressions (se SM D) performs similarly to our routine, but has
slightly lower sensitivity rates.
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chical IRT model instead of two-step procedures to reduce bias. Second, use our DIF tests

to detect potential violations of the exclusion restriction that would lead to biased estimates.

5. Empirical Illustrations

5.1. Descriptive Representation and Democratic Legitimacy

In this section, we illustrate our procedure by reanalyzing data from a survey experiment

that investigates if representatives from underrepresented groups legitimize outcomes and

decision-making procedures in the eyes of the public. Clayton et al. (2019, p.114) ”pro-

vide the first causal test examining how women’s descriptive representation affects citizens’

perceptions of democratic legitimacy.” They employ a survey experimental design in which

respondents are exposed to a newspaper article describing a committee’s decision about

penalties for sexual harassment in the workplace. The experiment varies the gender com-

position of the eight-member committee using a picture and a headline reference either to

an all-male panel or a gender-balanced panel. The experiment further varies the decision

reached by the committee to either increase (”feminist decision”) or decrease (”anti-feminist

decision”) penalties for sexual harassment in the workplace.

The survey experiment uses multiple indicators to measure the perceived legitimacy of the

decisions. In particular, they argue that descriptive representation can impact immediate

reactions to a decision’s content (substantive legitimacy). Women’s presence can also affect

perceptions of fairness in decision-making, including assessments of the process, acquies-

cence to decisions, and trust in representative institutions (procedural legitimacy). For both

dimensions of legitimacy, they use a set of four-point Likert scale indicators, three ques-

tions for substantive legitimacy, and four questions for procedural legitimacy (See SM B.1).

After establishing that the items map onto two separate latent constructs, they form two

factor scores, which are used as the main outcome of the experiment. As discussed above,

this represents a two-step approach to estimate the causal effects on the latent legitimacy
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Figure 4: Estimates of latent treatment effects of an all-male versus a gender-balanced panel
for feminist and anti-feminist decisions based on the hierarchical item response
model (hIRT).

perceptions.

We reanalyze the authors’ data using the hierarchical item response model (hIRT) to

estimate the LTE.16 Figure 4 shows the LTE estimates based on the hIRT model, comparing

a gender-balanced panel to an all-male panel. We report the standardized effect sizes and

find substantial effects for both substantive and procedural legitimacy. The effect size is

larger for the anti-feminist decision. If a gender-balanced panel reaches an anti-feminist

decision, respondents see the decision to have 0.39 standard deviations more substantive

legitimacy and 1.03 standard deviations more procedural legitimacy compared to when the

decision is reached by an all-male panel. This constitutes a sizable effect and clearly confirms

that representation matters, especially for procedural legitimacy. Procedural legitimacy also

increases by 0.59 standard deviations for feminist decisions, which implies that the process

16We analyze the data from the authors’ Amazon Mechanical Turk sample. SM B provides the
underlying DAG for the latent outcome of substantive legitimacy within our framework.
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Label Uniform Non-uniform Overall
Item 1 FairProcess 86.21∗∗∗ 4.58 90.79∗∗∗

Item 2 TrustCommittee 21.68∗∗∗ 5.23 26.9∗∗∗

Item 3 OverturnR 33.82∗∗∗ 11.51∗∗ 45.33∗∗∗

Item 4 TrustLegislature 67.78∗∗∗ 3.08 70.85∗∗∗

(a) Procedural Legitimacy

Label Uniform Non-uniform Overall
Item 1 RightDecision 60.31∗∗∗ 0.93 61.24∗∗∗

Item 2 RightDecisionGroup 2.49 0.96 3.45
Item 3 FairDecision 20.79∗∗∗ 1.99 22.77∗∗∗

(b) Substantive Legitimacy

Table 1: Testing exclusion restriction using the differential item functioning test. Table re-
ports the χ2-values of nested Likelihood-ratio tests. Stars indicate statistical signif-
icance (∗ ∗ ∗ p-val < 0.001; ∗ ∗ p-val < 0.01; ∗ p-val < 0.05)

reached with a gender-balanced panel is generally perceived to be more legitimate. Similar to

the original article, we find a small and statistically insignificant effect of gender composition

on substantive legitimacy with a feminist decision.17

The effects based on the hIRT model are comparable to the effects of the original article

(see SM F.1.1). We observe a small difference in the effect estimates for procedural legitimacy.

Compared with the two-step estimate, the hIRT estimate is larger for the feminist decision

(0.59 versus 0.51), but slightly smaller for the anti-feminist decision (1.03 versus 1.09). In

light of the simulation results, it is difficult to tell where the deviations come from, as the bias

of the two-step approaches can be offset by an bias that results from potential violations of

the exclusion restriction. The standard errors are slightly larger for the hIRT, as the model

takes estimation uncertainty into account when estimating the LTE.

The large effect estimates should be interpreted with caution. The DIF test reveals that for

both scales, the exclusion restriction is likely violated. Table 1 reports results from the DIF

tests, which show that for the procedural legitimacy scale, all four items exhibit uniform DIF,

which implies that descriptive representation has a direct effect on the observed indicators

17We also estimated the conditional latent treatment effects for men and women (See SM F.1.2).
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that does not operate through a change in the latent variable. This result calls into question

the estimates we report and those reported in the original article. Our simulation study

suggests that this violation can substantially bias the estimated latent treatment effects. It

is likely that the reported estimates overstate the true LTE. One reason for the violation

could be a social desirability bias induced by priming people with an all-male versus gender-

balanced panel when asking about the procedural legitimacy of decisions about gender-

related policies. This could work in a way similar to gender interviewer effects in questions

about women’s movement, women’s issues, and gender equality (Huddy et al. 1997). The

authors discussed this point (Clayton et al. 2019, p.126), although they did not formalize

the underlying assumptions and put it to a test.

5.2. Reducing exclusionary attitudes

While latent outcomes are prevalent in the recent surge of survey experiments, other ex-

perimental work also studies latent treatment effects. We now apply our model to revisit

a field experiment that evaluated different conversation strategies to reduce exclusionary

attitudes. Kalla and Broockman (2020) present results from three field experiments testing

the theoretical argument that non-judgmental exchange of narratives is persuasive and can

reduce exclusionary attitudes. In these experiments, they randomly “varied the presence

of the non-judgmental exchange of narratives strategy”(Kalla and Broockman 2020, p.2) to

study if this strategy is more successful than standard protocols. The latent outcomes in

these field experiments are different aspects of exclusionary attitudes towards unauthorized

immigrants and transgender people.

We reanalyze data from the first field experiment about reducing exclusionary attitudes

towards unauthorized immigrants. In this study, the authors conclude that “door-to-door

canvassing conversations that employed [non-judgmental exchange of narratives] strategy

reduced exclusionary attitudes towards unauthorized immigrants for at least four months,

whereas otherwise identical conversations that omitted this strategy had no detectable ef-
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Figure 5: Estimates of latent treatment effects of full intervention and abbreviated interven-
tion on policy index, prejudice index, and the combined index using the hierarchical
IRT approach.

fects.” The authors use six items to measure support for policies related to immigrants and

seven items to measure anti-immigrant prejudice. Using factor scores they combine the

items into an ”anti-immigration policy index,” an ”anti-immigration prejudice index,” and

a ”combined index.” They report intent-to-treat effects calculated from a linear regression

model with pre-treatment variables as controls.

Our reanalyses using the hIRT Model confirm the conclusions from the original study. Fig-

ure 5 reports our LTE estimates. The results show the lasting effects of the full intervention

on immigration policy attitudes, as well as the decaying effects on prejudice attitudes. The

results are comparable to those from the two-step approach of the original study, and differ

mostly in the uncertainty they convey (See SM F.2.2). With a small effect size (below 0.1

standard deviations), our simulation results suggest that we should not expect a large differ-
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ence between the two approaches. But the hIRT standard errors are slightly larger as they

account for measurement uncertainty. The estimated LTEs also show that the abbreviated

canvassing protocol had no statistically significant effects on any of the three outcomes.

In contrast to the first application, we find DIF only for some of the outcomes. The tests

indicate no uniform DIF for any of the items, but some indication of non-uniform DIF for

prejudice and policy items (see SM F.2.1). Our simulations indicate that non-uniform DIF

alone does not necessarily result in biased estimates. Thus, these small deviations might

not have impaired the results. However, to be cautious, researchers can always exclude the

affected items from the scale and reanalyze the data. In this application, excluding the

items does not substantially affect the estimated LTE of the protocols. This strengthens

the conclusion that the new protocol significantly altered exclusionary attitudes towards

immigrants and not just their manifest indicators.

6. Extensions To Accommodate Confounding

The identification assumptions outlined in Section 3.2 stipulate that both the treatment-

outcome relationship and the measurement device are unconfounded. Both of these assump-

tions can be relaxed in our framework to incorporate observed confounders.

First, in observational studies where treatment is not randomly assigned or experimental

studies where the probability of receiving treatment is a function of observed covariates (e.g.,

in stratified randomization designs), we can modify our Assumption 2 to
(
Θ(d),Y(d, θ)

)
⊥⊥

D|X, which allows for observed confounding of treatment assignment by a set of covariates

X (see the DAG in Figure 6a). In such cases, we can include the covariates in equation (6)

when fitting the hIRT model. When the functional form for E[Θ|D,X] is correctly specified,

the hIRT model will still provide unbiased estiamtes of the LTE. To mitigate potential biases

due to model misspecification, we can also augment the hIRT model with matching or inverse

probability weighting. For example, we can restrict our analysis to a matched sample where
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Figure 6: Extensions of the Unconfounded Treatment and Unconfounded Measurement As-
sumptions. D denotes treatment, Θ denotes the latent outcome of interest, and
Y1, . . . YJ denote J observed indicators of Θ. Solid nodes are manifest and hollow
nodes latent.

the treated and control units are sufficiently balanced in their values of observed covariates

(Ho et al. 2007).

Second, our framework can be extended to account for observed confounders of the mea-

surement device, i.e., the Θ−Y relationship. Consider our first running example, where male

and female respondents might answer the questions about procedural legitimacy differently.
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Then measurement equivalence for male and female respondents would be violated. At the

same time, it is likely that male and female respondents hold different latent procedural

legitimacy beliefs about the process. This possibility is visualized in the DAG in Figure 6b,

where we observe these pretreatment confounders of the measurement device. In this case,

we can modify our Assumption 3 to Y(θ) ⊥⊥ Θ|D,X, which allows for DIF with respect to

X. Then, the item characteristic function in our hIRT model can be adapted to include X as

predictors. We illustrate this extension in SM F.1.3 using data from the first study. In this

particular case, we found no signs of violation of the unconfounded measurement assumption

with respect to gender.

Finally, our framework can also be adapted to accommodate settings where observed

covariates X may confound both the treatment-outcome relationship and the measurement

device, as shown by the DAG in Figure 6c. This might occur, for example, in observational

studies where item response patterns vary systematically by gender and race, which might

also confound treatment assignment. In such cases, we can modify both Assumption 2 and

Assumption 3 by conditioning on these covariates. Accordingly, these covariates need to be

included as predictors in both equations (5) and (6) when fitting the hIRT model.

7. Concluding Remarks

Latent outcomes abound in the social sciences. Experimental social scientists often put con-

siderable effort into designing treatments, and make sure that the experiment is implemented

under optimal conditions. Less attention is devoted to the identification and estimation of

causal effects on latent outcomes. In this article, we have developed a new framework for con-

ducting causal inference on latent outcomes. We clarify the identification assumptions and

propose a model-based estimator of the latent treatment effect. Two applications highlight

the usefulness of our approach in political science. While we have focused on experimental

settings, the proposed methodology can also find applications in observational studies, where

32



we can adjust for confounders either within the hIRT model or using matching/weighting

methods.

To be sure, our proposed framework is not without limitations. First, the hIRT model

presumes that the indicators are reflective of the latent variable. While we have discussed

the benefits of this perspective for studying attitudes, beliefs, and other latent outcomes such

as political knowledge, a formative approach to measurement may be more appropriate for

studying outcomes that defy a consensual conceptualization. For example, when studying

political participation, different researchers may use different sets of activities to form an

index of participation of their own choosing. In such cases, a two-step approach with a

formative indicator model may still be preferred.

Second, our proposed estimation strategy rests on a set of parametric assumptions. For

example, for ordinal items, the default choice of the item characteristic function (equation

5) will be a graded response model, which imposes a proportional odds assumption for

cumulative logits. Moreover, the hIRT model assumes that the latent outcome follows a

normal distribution conditional on its predictors. When these assumptions are violated, our

estimates of the LTE can be biased. In future work, we plan to relax these assumptions

by integrating our framework with recent advances in nonparametric IRT estimation (Duck-

Mayr et al. 2020). In future research, it would be valuable to also explore the development of

measurement models that enable separate estimation of latent outcomes on the same scale for

treatment and control groups. This approach could allow for a certain level of measurement

inequivalence and potentially provide unbiased estimates of the LTE even in cases where the

outlined measurement assumptions are violated.

To conclude, we provide a few suggestions for practitioners. First, to realize the full

potential of the reflective approach, it is best to use multiple indicators of the latent construct.

With a single indicator, it is still possible to envision a DAG with an arrow from the treatment

to the latent outcome, and an arrow from the latent outcome to the indicator. However, in

this case, it is hard to distinguish between the latent outcome and the observed indicator, and
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impossible to test potential violations of the exclusion restriction. Moreover, the estimated

coefficients of hIRT models will be more precise with a larger number of items (see SM E.5).

Second, the unconfounded measurement assumption highlights the importance of valid

measurement device. Well-tested items make sure that the responses are governed only by

the latent variable of interest and do not reflect multiple latent dimensions or influences of

confounding variables. Increasing the number of reliable indicators can also increase the

efficiency of the LTE estimation (see SM E.5). In this regard, scholars should invest more

resources in the development of subject-specific item pools. Finally, it is crucial to prevent

treatment from intervening in the measurement device. Considering this should be part of

the research design. Whenever possible, pre-tests should be used to check for potential DIF

by treatment status under different treatment protocols so that only those protocols that do

not induce DIF are to be used in the main study.
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A. Latent Outcomes in Political Science

A.1. Hand-coding of Latent Outcomes

We hand-coded 1,630 abstracts of articles published in APSR, AJPS, and JOP from 2015 to
mid 2021 to obtain an overview of articles that focus on latent outcomes in political science.
The articles are classified into different categories based on the abstracts: Does the article
contain a quantitative analysis? An experiment? Observational data? Does it contain at
least one latent outcome? We also saved the description of latent outcome from abstract.

We trained a Master’s student in coding abstracts by first explaining our definition of
latent outcomes. Our informal definition considers latent variables as theoretical constructs
that cannot be directly observed and are therefore often inferred from a set of observable
indicators. To help the student apply this definition, we asked the student to read our
working paper and a review article (Bollen 2002) and then we discussed the relevance of
our definition to political science research. During the training, we used a set of abstracts
from published works to illustrate the definition of latent variables and their relationships
to various concepts such as attitudes, opinions, preferences, and values, political behavior,
policy outcomes, voting decisions, and institutions. The training also helped the student to
recognize the primary outcome and the research method of a study from its abstract. After
a training period of 50 abstracts, we discussed cases that the student considered uncertain.

Figure SM1 shows the proportion of quantitative articles that analyze latent outcomes
for experimental and non-experimental research designs. Around one third of quantitative
research uses latent variables. The share of latent outcomes is higher among experimental
research designs.

0%

20%

40%

60%

Latent No Latent
Outcome

Experiment
No experiment

Figure SM1: Proportion of articles that analyze latent outcomes in APSR, AJPS and JOP
from 2015 to mid 2021

When we compare the terminology used to describe the outcome variable using a word-
cloud, we observe references to ”attitudes”, ”preferences”, ”support”, and so on in those that
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analyze latent outcomes. This follows our definition, as these constructs are not directly ob-
servable and require observable indicators. Outcomes that are classified as not latent tend
to be behavioral, like ”voting”, ”turnout”, and ”participation”, or outputs of policymaking
(e.g. ”policy”). This again aligns with our definition, as these concepts can in principle be
observed. See Figure SM2.
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Figure SM2: Words used in abstracts to describe the outcome/dependent variable in quanti-
tative research articles in APSR, AJPS, and JOP that we hand-coded as having
latent and not having latent outcomes.

A.2. Some Examples of Latent Outcomes

Table SM1 provides some examples that illustrate the prevalence of our perspective on latent
outcomes in political science research. Apart from our two running examples, it includes
six additional examples that focus on immigration attitudes, support for redistribution, and
political knowledge, all of which are common latent outcomes studied in the political science.

All of these studies are concerned with a theoretical outcome that is not directly observable.
For instance, the two studies on support for redistribution examine the idea that rich people
in more unequal regions in Western Europe are more supportive of redistribution due to
their concern with crime (Rueda and Stegmueller 2016), and the idea that low trust in
government depresses support for redistribution (Peyton 2020). These are general arguments
about the concept of ”support for redistribution” that exists irrespective of the measurement
indicators. However, to test the arguments we need manifest indicators of this concept, which
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Article Latent Outcome Indicators Research De-
sign

Examples Main Text
Clayton et al. (2019) Perceived democratic legit-

imacy
Multiple items Survey exp.

Kalla and Broockman
(2020)

Exclusionary attitude Multiple items Field exp.

Additional Examples
Cavaille and Marshall
(2019)

Immigration attitude Multiple item Natural exp.

Williamson et al.
(2021)

Immigration attitude Single item Survey exp.

Peyton (2020) Support for redistribution Multiple items Survey exp.
Rueda and Stegmueller
(2016)

Support for redistribution Single item Survey anal.

Pereira (2019) Political knowledge Multiple items Survey anal.
& exp.

Campbell and Niemi
(2016)

Political knowledge Multiple items Survey anal.

Table SM1: Examples of studies of latent outcomes

are obtained via survey items.18 Yet, the arguments do not depend on the specific survey
items, making them good examples of the reflective approach (Borsboom et al. 2003).

Furthermore, different studies can use different indicators without changing the knowledge
accumulation about the determinants of the latent outcome. For example, Williamson et al.
(2021) use a single indicator to show that immigrant histories can lead to more favorable
views of immigration,19 while Cavaille and Marshall (2019) use a different set of survey
items as indicators to show that education decreases anti-immigration attitudes later in
life.20 Both studies choose indicators that they consider reflective of the underlying attitude
toward immigration. In principle, the reflective approach allows the effects of different studies
to be compared in terms of the same latent outcome.

The same holds for the two studies that test hypothesis about the effects on political
knowledge. Both articles use two set of indicators to measure political knowledge. Campbell

18Rueda and Stegmueller (2016) use the respondent’s response to the statement “the government
should take measures to reduce differences in income levels” measured on a 5 point scale to
gauge support for redistribution. Peyton (2020) employs four survey items about support for
spending on redistributive policies, e.g. food stamps, welfare, programs that assist minorities,
and assistance to the homeless.

19The indicator is ”Do you agree or disagree that the United States should limit the number of
immigrants entering the country?” Scale ranges from 1 to 7, with 7 indicating support for more
open immigration.

20They include classic survey items such as ”To what extent do you think [country] should allow
people of the same race or ethnic group as most [country] people to come and live here?”
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and Niemi (2016) test two hypotheses about the effect of civic education requirements on
political knowledge, using the National Assessment of Educational Progress (NAEP) test
and a set of additional indicators in survey data to measure the latent outcome. Pereira
(2019) assesses the argument that female political representation affects the levels of political
knowledge. This paper draws on two studies, a study that employs cross-section public
opinion surveys with varying knowledge items and a survey experiment that relies on six
open-ended political knowledge questions. The reflective perspective makes it possible that
the authors can use different set of indicators to evaluate their arguments about the same
latent outcome (political knowledge).

It is further noteworthy that our conceptualization of latent outcomes applies to different
common research designs for the identification of causal effects. For instance, Cavaille and
Marshall (2019) use a natural experiment in the form of a regression discontinuity design
to study the effects of compulsory schooling reforms, while Rueda and Stegmueller (2016)
analyze data from the European Social Survey. While the bulk of our discussion focuses on
experimental interventions, we highlight extensions of our framework to alternative research
designs toward the end of the article.

Finally, it is important to note that not all studies fit perfectly in our conceptualization of
latent outcomes. For example, behavioral outcomes such as voting decisions, participation
in protests, and donations to charity are directly observable and do not exist independently
of the behavior itself. The same holds for support for a specific policy, which, although not
directly observable, is often operationalized as a decision in a referendum or as the answer
to one particular survey item. For these types of outcomes, it is unnecessary to consider
different indicators that are reflective of the behavior or the latent support, making the
single measure equivalent to the outcome of interest. Standard tools for causal inference are
more suitable for these types of behavioral outcomes.

Additionally, some latent outcomes are better captured with a formative perspective. For
example, studies of political participation often define the degree of a citizen’s participation
as the sum of different activities (Van Deth 2016). Depending on the definition, varying
survey items about activities constitute a political participation index, making it a good
example of a formative measurement model. Alternative frameworks should be used to
study the determinants of formative latent outcomes.

B. Directed Acyclic Graphs for Empirical Illustrations

B.1. Descriptive Representation and Democratic legitimacy

The measurement indicators for substantive legitimacy are:

• The committee made the right decision for all the state’s citizens.

• The committee made the right decision for women.

• How fair was this decision to women?
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Gender Balanced
Panel

Perception of
Substantive
Legitimacy

The committee
made the right decision
for all the state’s citizens.

The committee
made the right decision
for women.

How fair was this
decision to women?

Figure SM3: Illustrative DAG for the Empirical Example from Clayton et al. (2019)

Which leads to the DAG in Figure SM3 for substantive legitimacy.
The measurement indicators for procedural legitimacy are:

• Thinking for a moment about the gender composition of the committee, how fair was
the decision-making process?

• Thinking about the gender composition of the committee, the committee’s decision
should be overturned

• Thinking about the gender composition of the committee, the committee can be trusted
to make decisions that are right for the state’s citizens

• The State Legislature can be trusted to make decisions that are right for the state.

The DAG for procedural legitimacy is comparable to Figure SM3, exchanging the indica-
tors.

B.2. Reducing exclusionary attitudes
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Canvasing
Intervention

Protocol

Anti-Immigrant
Prejudice

I would have no problem
living in areas where
undocumented
immigrants live.

Too many undocumented
immigrants just don’t
want to fit
into American society.

Undocumented immigrants
are too much
of a burden
on our communities.

Undocumented immigrants
have already broken the
law coming here illegally
, so they are more likely
to commit other crimes.

Undocumented immigrants
hold the same
values as me
and my family.

Figure SM4: Illustrative DAG for the Empirical Example from Kalla and Broockman (2020)

C. The Hierarchical IRT Model

This section provides more details on the hierarchical IRT model and some illustrative code
for the R implementation of the model.

C.1. Item characteristic function

The main text gives a generic form of the item characteristic function Pjh(θ, αjh, βj) for item
j and category h. This generic form encompasses item characteristic functions for binary
indicators (Lord and Novick 1968) and ordinal indicators (Samejima 1969). Hj indicates the
number of response categories for question j. In the case of binary indicators, the formulation
reduces to a 2pl item characteristic function:

Pr(yj ≥ 1) =
exp(αj + βjθ)

1 + exp(αj + βjθ)
,
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With ordinal responses, this formulation leads to the graded response model (Samejima
1969):

Pjh(θ) = Pr(yj ≥ h)− Pr(yj ≥ h+ 1)

=
exp(αjh + βjθ)

1 + exp(αjh + βjθ)
− exp(αjh+1 + βjθ)

1 + exp(αjh+1 + βjθ)
, h = 0, 1, 2, ..., Hj − 1,

where ∞ = αj0 > αj1... > αjHj−1 > αjHj
= −∞.

C.2. Estimation

The hierarchical model can be estimated using marginal maximum Likelihood. Zhou (2019)
describes the procedure using the EM algorithm in detail and the R-package hIRT imple-
ments it. The following is a restatement of the EM estimation algorithm for the model.

• Define the following shorthand:

α = {αjh; 1 ≤ j ≤ J, 0 ≤ h ≤ Hj − 1} , αj = {αjh; 0 ≤ h ≤ Hj − 1} ,
β = {βj; 1 ≤ j ≤ J}
γ = {γ0, γ1} ,
θ = {θi; 1 ≤ i ≤ N} , x = {xi; 1 ≤ i ≤ N} ,
y = {yij; 1 ≤ i ≤ N, 1 ≤ j ≤ J} .

• The complete data likelihood for the model is:

p(y,θ | α,β,γ) = p(y | θ,α,β)p(θ | γ)

=
N∏
i=1

{
J∏
j=1

p (yij | θi,αj, βj)

}
p (θi | γ) .

• The EM-algorithm treats θ as missing data and α∗,β∗,γ∗ as a set of existing parameter
estimates.

• The Q-function of the EM algorithm, i.e., the conditional expectation of the log com-
plete data likelihood, is

Q(α,β,γ) = E [log p(y,θ | α,β,γ) | α∗,β∗,γ∗,y]

=

∫
θ

{
N∑
i=1

[
J∑
j=1

log p (yij | θi,αj, βj) + log p (θi | γ)

]}
p (θ | α∗,β∗,γ∗,y) dθ

=
N∑
i=1

∫
θi

[
J∑
j=1

log p (yij | θi,αj,βj) + log p (θi | γ)

]
p (θi | α∗,β∗,γ∗,yi) dθi

8



The integral can then be evaluated using quadrature methods, which gives an approx-
imation of:

Q(α,β,γ) ≈
N∑
i=1

K∑
k=1

wik

[
J∑
j=1

log p
(
yij | θk,αj,βj

)
+ log p

(
θk | γ,xi

)]

=
N∑
i=1

K∑
k=1

J∑
j=1

Hj−1∑
h=0

wik1 (yij = h) logPjh
(
θk
)

+
N∑
i=1

K∑
k=1

wik log p
(
θk | γ,xi

)
=

J∑
j=1

 K∑
k=1

Hj−1∑
h=0

f jhk logPjh
(
θk
)+

N∑
i=1

K∑
k=1

wik log p
(
θk | γ,xi

)
where f jhk =

∑N
i=1wik1 (yij = h). and the weights:

wik =
wk

[∏J
j=1 p

(
yij | α∗j ,β∗j , θk

)]
p
(
θk | γ∗,xi

)
∑K

k=1wk

[∏J
j=1 p

(
yij | α∗j ,β∗j , θk

)]
p (θk | γ∗,xi)

• The M-step of the EM algorithm are the following optimization problems:

argmaxαj ,
βj

K∑
k=1

Hj−1∑
h=0

f jhk logPjh
(
θk
)

for all j, and argmaxγ

N∑
i=1

K∑
k=1

wik log p
(
θk | γ,xi

)
The first optimization problem is equivalent to fitting J separate generalized linear
models (either logit/probit or proportional odds models) — one for each item to the
”pseudo data” f jhk . The second optimization problem is a linear regression model with
the weights wik.

• Upon convergence, the EM algorithm gives final estimates α̂, β̂ and γ̂.

• The latent outcomes θi can be estimated using empirical Bayes inference. For example,
we can directly use the final posterior means, giving the expected a posterior (EAP)
estimates

θ̂i = E
(
θi | α̂, β̂, γ̂,y

)
=

K∑
k=1

wikθ
k

• Inference for the key parametersα,β,γ can be conducted using the asymptotic variance-
covariance matrix Î(α,β,γ), which can be estimated using either the Hessian matrix
or the outer product of the gradients of the log marginal likelihood.

C.3. Implementation in R

This section provides some example code on how the model can be estimated in R. The
hIRT model can be estimated using the function hgrm of the R-package hIRT (Zhou 2019).
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The code also contains a description how the estimates from the hgrm function can be
standardized. For standardization, the total standard deviation of the latent traits should
account for estimation uncertainty (see code line 22).

1 # load l i b r a r i e s
2 l i b r a r y (hIRT)
3 l i b r a r y ( t i d y v e r s e )
4

5 # Read in data
6 data <− readRDS( f i l e=” data . Rdata” )
7

8 # S e l e c t items from data
9 i tems <− data %>% dplyr : : s e l e c t ( s t a r t s with ( ” item ” ) )

10

11 # Prepare Model Matrix : y = gamma 0 + gamma 1 ∗ treatment
12 mdl <− model . matrix ( ˜ treatment , data = data )
13

14

15 # Estimation HGRM
16 r e s <− hgrm( y = items , x=mdl )
17

18 # Summary
19 summary( r e s )
20

21 # Standardized LTE
22 t o t a l sd <− s q r t ( var ( r e s $ s c o r e s $ p r i o r mean) + mean( r e s $ s c o r e s $ p r i o r

sd ˆ2) )
23

24 c o e f hIRT <− c o e f mean( r e s ) %>%
25 mutate ( e s t = ‘ Estimate ‘ / t o t a l sd ,
26 se = ‘ Std Error ‘ / t o t a l sd ) %>%
27 s e l e c t ( est , se )

The package also includes the function hgrmDIF to allow for DIF. Comparing model fit
using likelihood-ratio tests permits us to test for violations of the exclusion restriction with
respect to individual items.

1 # Test f o r DIF ( f o r a l l i tems s e p a r a t e l y )
2

3 # Estimation Uniform models
4 resDIFu <− map( 1 : nco l ( i tems ) , ˜ hgrmDIF( items , x , x0=x , form d i f = ”

uniform ” , items d i f = . x )
5

6 # Estimation Non uniform models
7 resDIFn <− map( 1 : nco l ( i tems ) , ˜ hgrmDIF( items , x , x0=x , form d i f = ”non−

uniform ” , items d i f = . x )
8

9 # Uniform DIF t e s t
10 DIFu t e s t <− map( resDIFu , ˜ l r t e s t 2 ( res , . x ) )
11

12 # Nonuniform DIF t e s t

10



13 DIFn t e s t <− map2( resDIFu , resDIFn , ˜ l r t e s t 2 ( . x , . y ) )
14

15 # Overa l l DIF t e s t
16 DIFo t e s t <− map( resDIFn , ˜ l r t e s t 2 ( res , . x ) )

The above code requires lrtest2 function to conduct a log-likelihood ratio test. For com-
pleteness, here is our implementation of it:

1 # Function log−l i k e l i h o o d r a t i o t e s t
2 l r t e s t 2 <− f unc t i on (m0, m1) {
3

4 df <− nrow (m1$ c o e f f i c i e n t s ) − nrow (m0$ c o e f f i c i e n t s )
5 l l r <− m1$ log Lik − m0$ log log Lik
6

7 r v a l <− matrix ( rep (NA, 10) , nco l = 5)
8 colnames ( r v a l ) <− c ( ”#Df” , ”LogLik” , ”Df” ,
9 ”Chisq” , ”Pr(>Chisq ) ” )

10 rownames ( r v a l ) <− 1 :2
11

12 r v a l [ , 1 ] <− c ( nrow (m0$ c o e f f i c i e n t s ) , nrow (m1$ c o e f f i c i e n t s ) )
13 r v a l [ , 2 ] <− c (m0$ log Lik , m1$ log Lik )
14 r v a l [ 2 , 3 ] <− r v a l [ 2 , 1 ] − r v a l [ 1 , 1 ]
15 r v a l [ 2 , 4 ] <− 2 ∗ abs ( r v a l [ 2 , 2 ] − r v a l [ 1 , 2 ] )
16 r v a l [ , 5 ] <− pch i sq ( r v a l [ , 4 ] , round ( abs ( r v a l [ , 3 ] ) ) , lower . t a i l =

FALSE)
17

18 t i t l e <− ” L ike l i hood r a t i o t e s t \n”
19 topnote <− paste ( ”Model ” , format ( 1 : 2 ) , ” : ” ,
20 c (m0$ c a l l , m1$ c a l l ) , sep = ”” , c o l l a p s e = ”\n” )
21 s t r u c t u r e ( as . data . frame ( r v a l ) , heading = c ( t i t l e , topnote ) ,
22 c l a s s = c ( ”anova” , ” data . frame” ) )
23 }

D. Alternative DIF Tests using Nested Logistic Regressions

An alternative approach to testing DIF is to use nested (binary/ordered) logistic regressions,
where we fit a logistic model for each of the manifest indicators as a function of our estimated
latent outcomes and see if adding treatment status D as an additional predictor improves the
fit (Swaminathan and Rogers 1990; French and Miller 1996; Miller and Spray 1993). Specifi-
cally, following Choi et al. (2011), we can evaluate different forms of DIF by estimating three
(binary/ordered) logistic regression models for each item: Model 1) includes the estimated
Θ as the only predictor, Model 2) includes treatment status D in addition to the estimated
Θ, and Model 3) includes an additional interaction effect between D and the estimated Θ.
Likelihood ratio tests can then be used to evaluate different types of violations. Specifically,
a uniform DIF is likely to exist if model 2 fits better than model 1, and a non-uniform DIF
is likely to exist if model 3 fits better than model 2. We can also conduct an omnibus test
by comparing model 3 with model 1 directly.
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E. Additional Results for Simulations

E.1. Root Mean Square Error for Different Methods
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Figure SM5: Simulation results for the RMSE of different estimation methods, without dif-
ferential item functioning.

E.2. Coverage and Standard Errors for Different Estimation Methods
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Figure SM6: Simulation results for the average standard errors for different estimation meth-
ods.
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Hierarchical IRT Two−Step
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Figure SM7: Simulation results for the coverage of the confidence intervals for different esti-
mation methods.

E.3. Consequences of Exclusion Restriction Violations
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Figure SM8: Simulation results on the consequences of exclusion restriction violations.
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E.4. Evaluation of DIF
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Figure SM9: Evaluation of overall differential item functioning (DIF) for simulated data. The
figures show the share of overall DIF positive tests (y-axis) for varying levels of
uniform DIF (x-axis), the cases of no non-uniform DIF and non-uniform DIF
(columns), and the cases of one and two affected items (rows).

E.5. Bias and RMSE for different numbers of items and item categories
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Hierarchical IRT Two−Stage
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Figure SM10: Simulation results for the bias of different estimation methods for different
numbers of items and item categories, without differential item functioning.
The figure shows the estimated bias and variability of L̂TE − LTE across
simulations using one standard deviation around the mean.
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Hierarchical IRT Two−Stage
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Figure SM11: Simulation results for the RMSE of different estimation methods for different
numbers of items and answering categories, without differential item function-
ing.
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E.6. Two-step approaches where the measurement model is fit using
only control units

Two−Step (Measurement model estimated in control group)
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Figure SM12: Simulation results for the bias of different two-step estimation methods when
the parameters of the measurement models are estimated only based on control
group respondents, without differential item functioning.

F. Additional Results for Applications

F.1. Descriptive Representation and Democratic Legitimacy

F.1.1. Comparison with two-step estimates
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Decision hIRT 2-step

Substantive Legitimacy

Anti-Feminist 0.39 (0.07) 0.37 (0.06)
Feminist 0.1 (0.07) 0.09 (0.06)

Procedural Legitimacy

Anti-Feminist 1.03 (0.09) 1.06 (0.07)
Feminist 0.59 (0.09) 0.51 (0.07)

Table SM2: Estimates of Latent Treatment Effects of All-Male panel versus a Gender-
balanced panel for feminist and anti-feminist decisions from the hierarchical
item response model (hIRT) and a two-step procedure based on factor scores
(2-Step).

F.1.2. Conditional effects

We further replicate the conditional latent treatment effects for men and women on substan-
tial legitimacy that are also reported in the main article. Clayton et al. (2019) argue that
respondent gender should moderate the effect, as men depend more on cues about the sub-
stantial legitimacy of the decision. Figure SM13 shows the estimates and highlights subtle
differences between results from different approaches. While the two-step approach finds a
small difference in how men and women increase their perception of substantial legitimacy
in the case of an anti-feminist decision (0.41 versus 0.32), the hIRT approach is more con-
servative about this difference. The effect estimates are closer (0.39 versus 0.36) and the
uncertainty is larger. Tentative conclusions that point toward heterogeneous effects, hence,
do not find support when the hIRT model is applied.
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Feminist Decision

−0.2 0.0 0.2 0.4 0.6

Men

Women

Men

Women

Latent Treatment Effect (LTE)

hgrm

Two−step FA

Figure SM13: Estimates of conditional latent treatment effects on substantial legitimacy of
all-male versus a gender-balanced panel for men and women from the hierar-
chical item response model (hIRT) and a two-step procedure based on factor
scores.

F.1.3. Measurement equivalence with respect to gender

In this section, we describe a test of the unconfounded measurement assumption concerning
gender. As described in the main text, it could be the case the male and female respondents
answer the items differently, while at the same time gender influences the latent outcomes.
Our framework allows us to control for DIF concerning gender. We estimate the models
again, once when controlling for DIF concerning gender and once without controlling.

Table SM3 shows that the estimates are almost identical when controlling for gender as
part of the measurement. When comparing model fit using the likelihood-ratio test, we
further find little support that the measurement is confounded by gender.
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Subs Proc
Null DIF Female Null DIF Female

(Intercept) 1.099 1.072 0.458 0.484
(0.110) (0.123) (0.388) (0.409)

AntiFem -2.485 -2.485 -1.927 -1.925
(0.186) (0.218) (0.155) (0.155)

GBP 0.156 0.154 0.838 0.830
(0.109) (0.110) (0.127) (0.127)

GBP:AntiFem 0.434 0.437 0.622 0.624
(0.155) (0.156) (0.163) (0.163)

Female -0.060 -0.005 -0.080 -0.129
(0.076) (0.405) (0.077) (0.103)

LR Test for overall DIF
Chi-sq 11.042 10.704
p-val 0.09 0.1

Table SM3: Results when controlling for female as part of the measurement

F.2. Reducing exclusionary attitudes

F.2.1. Differential Item Functioning Tests for Latent Outcomes

Table SM5: Differential Item Functioning Tests for Latent Outcomes

item Non-uniform Overall Uniform

Policy Index, 1 Week
Item 1 4.69 7.74 3.05
Item 2 5.46 1.3 6.76
Item 3 0.37 1.12 0.75
Item 4 7.42 7.49 0.07
Item 5 2.53 1.02 1.51
Item 6 0.76 1.94 2.7

Policy Index, 1 Month
Item 1 0.93 4.52 3.59
Item 2 11.35 * 15.31 * 3.96
Item 3 0.07 1.22 1.29
Item 4 11.38 * 11.48 0.1
Item 5 0.26 2.1 2.36
Item 6 16.34 ** 15.66 * 0.68

Policy Index, 3-6 Month
Item 1 0.88 0.57 1.45
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Item 2 0.46 5.89 5.43
Item 3 1.29 2.55 1.26
Item 4 2.99 4.99 2
Item 5 0.26 1.89 1.63
Item 6 0.09 1.19 1.1

Prejudice Index, 1 Week
Item 1 0.04 0.34 0.38
Item 2 10.59 * 11.3 0.71
Item 3 1.01 10.22 9.2
Item 4 3.8 6.13 2.33
Item 5 2.47 4.6 2.13

Prejudice Index, 1 Month
Item 1 3.68 4.81 1.13
Item 2 3.38 7.44 4.06
Item 3 3.12 7.46 4.34
Item 4 7.43 9.47 2.03
Item 5 3.81 7.04 3.24

Prejudice Index, 3-6 Month
Item 1 6.45 7.75 1.3
Item 2 5.45 5.34 0.11
Item 3 0.59 4.13 4.72
Item 4 1.92 3.88 1.96
Item 5 9.43 * 12.3 2.86

Combined Index, 1 Week
Item 1 6.48 12.36 5.88
Item 10 7.75 8.3 0.55
Item 11 0.57 1.53 0.96
Item 2 3.06 6.91 3.85
Item 3 0.98 0.77 0.21
Item 4 6.25 6.42 0.17
Item 5 1.91 3.42 1.52
Item 6 0.76 4.33 5.09
Item 7 1.72 1.91 0.19
Item 8 4.38 4.26 0.11
Item 9 5.45 12.62 7.17

Combined Index, 1 Month
Item 1 0.44 4.58 4.14
Item 10 1.86 3.46 1.6
Item 11 4.61 7.33 2.72
Item 2 13.14 * 15.41 * 2.27
Item 3 0.88 1.85 0.98
Item 4 4.04 4.31 0.27
Item 5 1.16 2.53 1.37
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Item 6 14.9 ** 14.89 0.01
Item 7 0.4 1.09 0.69
Item 8 0.45 2.46 2.01
Item 9 2.46 6.73 4.27

Combined Index, 3-6 Month
Item 1 0.03 3.25 3.22
Item 10 0.06 0.81 0.75
Item 11 10.66 14.24 3.58
Item 2 1.76 4.83 3.07
Item 3 3.8 4.68 0.88
Item 4 3.31 4.4 1.08
Item 5 1.42 2.43 1.01
Item 6 0.32 1.28 0.96
Item 7 4.23 6.86 2.63
Item 8 2.17 3.03 0.86
Item 9 0.21 4.71 4.51
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Time Outcome Uniform Non-uniform Overall

1 Week Policy Index None None None
1 Week Prejudice Index None 4 out of 5 None
1 Week Combined Index None None None
1 Month Policy Index None 3 out of 6 4 out of 6
1 Month Prejudice Index None None None
1 Month Combined Index None 9 out of 11 10 out of 11
3-6 Months Policy Index None None None
3-6 Months Prejudice Index None 4 out of 5 None
3-6 Months Combined Index None None None

Table SM4: Testing exclusion restriction using the differential item functioning test. The
table reports the number of significant tests based on the χ2-values of nested
Likelihood-ratio tests.

F.2.2. Comparison with two-step estimates

Time hIRT 2-step

Anti-Immigrant Policy Index

1 Week 0.09 (0.03) 0.10 (0.02)
1 Month 0.07 (0.03) 0.06 (0.03)
3-6 Months 0.07 (0.03) 0.08 (0.03)

Anti-Immigrant Prejudice Index

1 Week 0.08 (0.04) 0.08 (0.03)
1 Month 0.07 (0.04) 0.05 (0.03)
3-6 Months 0.03 (0.04) 0.04 (0.03)

Combined Index

1 Week 0.09 (0.03) 0.10 (0.02)
1 Month 0.07 (0.03) 0.06 (0.02)
3-6 Months 0.07 (0.03) 0.06 (0.03)

Table SM6: Estimates of latent treatment effects of the full protocol intervention for different
outcome constructs from the hierarchical item response model (hIRT) and a two-
step procedure based on factor scores (2-Step). Standard errors are reported in
parentheses.
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