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In this paper, we have studied the bang–bang (BB) decoupling scheme to suppress the phase decoher-
ence, the amplitude decoherence and the general decoherence in a four-level N-type atom system. The
corresponding dynamical decoupling groups are given for designing the decoupling pulse sequences to
suppress these three kinds of decoherence, respectively. Results show that in a proper time scale, the
decoupling operations suppress the decoherence effectively. Especially in the ideal limits, it can suppress
the decoherence completely. We also give the time scale in which the BB control works well. Numerical
simulations show that, the larger cycle times N, the better effect of the BB decoupling operations under a
fixed time scale.
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1. Introduction

Decoherence is one of the major difficulties to quantum compu-
tation and quantum information [1,2]. Decoherence destroys the
coherence of the quantum superposition states of systems in the
process of unitary evolution and noise is detrimental to quantum
algorithms [3–6]. As is well known, coherence and entanglement
are the prerequisite conditions for quantum computation, and they
are sources of power that enable quantum computer to surpass
classical computer.

Controllability of quantum system has been studied for quite a
long time [7], and methods were invented to suppress decoherence
in quantum systems. Three categories of schemes to suppress the
decoherence have been developed, namely error-avoiding codes
[8–11], error-correcting codes [12] and quantum bang–bang con-
trol [13–15]. Error-avoiding codes encode information into the
degenerate subspace of the error operators so that the information
will not be affected by the error operators, while error-correcting
codes restore the loss of information due to decoherence or quan-
tum dissipation by monitoring the system and conditionally carry-
ing on suitable feedback control. The quantum bang–bang (BB)
control technique is based on the pioneering of coherent averaging
effects by Haeberlen and Waugh using tailored pulse sequences to
manipulate the effective Hamiltonian [16], and it has been devel-
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oped into a solid traditional decoupling and refocusing techniques
in nuclear magnetic resonance (NMR) [17].

Four-level system and higher dimensional system, especially
the four-level atom system [18–21], have attracted much interest
for their application in quantum control and quantum computa-
tion. Recently, the suppression of decoherence in quantum infor-
mation processing have become a hot topic [22–29], and many
works have been done to study the decoherence and construct
the decoupling sequences in the spin-based qubits systems [30–
35]. The dynamical decoupling methods to suppress the decoher-
ence of the three-level systems have been discussed in [36,37]. In
recent years, there have been much interest in N-type four-level
atom system [38]. Therefore we are motivated to generalize the
BB control scheme in the four-level atom systems, generalizing
the work for three level atoms in Refs. [36,37]. Here in this work,
three types of decoherence models in the four-level atomic sys-
tems, the phase decoherence, the amplitude decoherence, and
the general decoherence in which the phase and amplitude damp-
ing present simultaneously, have been studied. And we give the
corresponding decoupling BB control group, and used them to de-
sign the decoupling pulse sequences to suppress these three kinds
of decoherence. Our numerical simulations show that the decou-
pling scheme can suppress the decoherence effectively. We find
that the smaller the interval between the adjacent BB operations,
the better the suppression effect.

This paper is organized as follows: in Section 2 we give a brief
account of the dynamical decoupling mechanism. In Section 3 we
study the BB decoupling scheme in the ideal limits and give the
concrete BB decoupling operation sequence to suppress the
adiabatic decoherence, thermal decoherence and the general
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Fig. 1. Four-level atom in the N-configuration shone with three fields of frequen-
cies x10, x21 and x32.
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decoherence. Then in Section 4 we numerically simulate the effect
of the suppression of the decoherence in the non-ideal limits. At
the end of this paper, we give a brief summary in Section 5.

2. Dynamical decoupling mechanism

Dynamical decoupling control uses the tailored unitary pulses,
the impulsive full-power operations, which are termed as bang–
bang controls and can be turned on/off in negligible amount of
time sp (sp� Dt where Dt is the inter-operation period) with ide-
ally arbitrarily large strength, to filter out the unwanted interac-
tions present in the full Hamiltonian. Consequently the control
over the dynamical behavior of a quantum system can be realized
and the suppression of decoherence is achieved. The active dynam-
ical control in the bang–bang limit proves to be a good tool for
engineering the evolution of coupled quantum system.

A decoupler on the whole system Sab composed of the atom and
the bath is realized by the repeated cycle of sequences of BB con-
trol operations G ¼ fgkg; ðk ¼ 0; . . . ; jGj � 1Þ with free evolutions
sandwiched between and the Hamiltonian for the free evolution
is H

0
= H + HI where H is the Hamiltonian for the system Sa of the

atom and the laser fields, and HI is the interaction Hamiltonian be-
tween the baths and the system Sa.

We now consider a single cycle and let dU = exp(�iD tH
0
) denote

the free evolution in the cycle which lasts for a time Dt ¼ tðNjGjÞ�1.
Here, N is the number of cycles. The decoupling operations {gk} are
selected so as to satisfy the condition

XjGj�1

k¼0

gykHIgk ¼ 0: ð1Þ

The evolution of the composite system Sab in a single cycle time Tc

under the decoupler can be described as UðTcÞ ¼
QjGj�1

k¼0 gykdUgk ¼QjGj�1
k¼0 gyke�iH0Dtgk ¼ expð�iDt

PjGj�1
k¼0 gykH0gkÞ ¼ e�iTcHeff , where

Heff ¼
1
jGj

XjGj�1

k¼0

gykH0gk: ð2Þ

So in the ideal limits Tc ? 0 and N ?1, after the application of the
decoupling operators {gk}, the evolution of the system can be de-
scribed as UðtÞ ¼ limN!1½UNðtÞ�N ¼ e�itHeff which means that we
have successfully eliminated the unwanted Hamiltonian HI from
the total Hamiltonian H0 and decoupled the interaction between
the system Sa and its environmental bath. Therefore the quantum
qubits can be immune from the environment completely by using
BB control operators. In order to fulfill the goal of decoupling, the
main task is to design the finite bang–bang control operators {gk}
which satisfy the decoupling condition Eq. (1).

3. BB decoupling scheme in the ideal limits

We consider the atom in the N-type as is shown in Fig. 1, where
three upper levels namely j3i, j2i and j1i are coupled to the
corresponding adjacent lower levels j2i, j1i and j0i via fields with
resonance frequencies x32, x21 and x10, respectively. The corre-
sponding eigenvalues are labeled as E3, E2, E1 and E0, and we have
x32 ¼ E3�E2

�h , x21 ¼ E2�E1
�h , and x10 ¼ E1�E0

�h . Similarly we define x20,
x30 and x31 to be the resonant frequency for the atom and the laser
field though they do not correspond to an available transition here.
An example of such N-type four-level scheme can be found in
the energy levels of the Rubidium system, which consists of 5s1/2,
5p3/2, 5d3/2 and 5d5/2 levels where the transitions of the ladder
system are 5s1/2 ? 5p3/2(12817 cm�1), 5p3/2 ? 5d3/2(12885 cm�1),
5d3/2 ? 5d5/2(2.96 cm�1), respectively [38].
We define the following notations

rðn;n�1Þ
z ¼ jnihnj � jn� 1ihn� 1j;

rðn;n�1Þ
x ¼ jnihn� 1j þ jn� 1ihnj;

rðn;n�1Þ
y ¼ iðjnihn� 1j � jn� 1ihnjÞ;

rðn;n�1Þ
� ¼ jn� 1ihnj;

rðn;n�1Þ
þ ¼ jnihn� 1j; ð3Þ

where i is the the square root of minus one and n runs from 1 to 3.
The total Hamiltonian for such system can be expressed as

H = H0 + HD.F.. Here H0 is the four-level atom Hamiltonian and can
be expressed as

H0 ¼
X3

n>m¼0

�hxnm

4
rðn;mÞz : ð4Þ

were we have ignored the constant energy term
P3

n¼0En=4. If we as-
sume that the transition dipole moment for the linearly polarized
electric fields are real, namely gnm ¼ g�mn for simplicity, and let En

be the amplitude for the electric moment, the three decoupling
fields can be written as

HD:F: ¼ �
X3

n¼1

gn;n�1rðn;n�1Þ
x En cosðxnn�1tÞ: ð5Þ

When the atom is exposed to reservoirs, we can describe reser-
voirs by a large number of uncoupled bosonic modes, i.e. a reser-
voir of simple harmonic oscillators, and write its Hamiltonian as

HE ¼
X3

i¼1

X
ki

�hxkia
y
kiaki; ð6Þ

where aki and ayki are the bosonic annihilation and creation opera-
tors of the baths. This model has had a long history of use for
researching the problem of decoherence in quantum computers
[10,13,31–34].

The coupling interaction Hamiltonian between the four-level
system and the baths which leads to the quantum decoherence is
HI and

HI ¼ �h
X3

i¼1

X
ki

ðakirðn;n�1Þ
z þ bkirðn;n�1Þ

x Þ � ðrkia
y
ki þ r�kiakiÞ ð7Þ

where aki and bki are the coefficients of the relative magnitude of
the phase decoherence and the amplitude decoherence, respec-



Fig. 2. A sequence of twinborn pulses operating on the four-level atom in a cycle to
suppress the phase damping. The ‘‘t” axis denotes the passage of time. Among the
bars above the ‘‘t” axis, the one with the top black represents the p

2-pulse at frequency
x32, while the one with the middle black denotes the p

2-pulse at frequency x21 and
the one with the bottom black represents the p

2-pulse at frequency x10. Their adjoint
pulses are drawn upsidedown under the ‘‘t”-axis. All these pulses are rotation
operations about ‘‘x”-axis.

Fig. 3. A sequence of twinborn pulses operating on the four-level atom in a cycle to
suppress the amplitude damping. The ‘‘t”-axis denotes the passage of time. Among
the bars above the ‘‘t”-axis, the one with the middle black stands for the p-pulse at
frequency x21, and the one with the bottom black denotes the p-pulse at frequency
x10. Their adjoint pulses are drawn upsidedown under the ‘‘t”-axis. All these pulses
are the rotations about ‘‘z”-axis.

Fig. 4. A sequence of twinborn pulses operating on the four-level atom in a cycle to
suppress the phase and amplitude damping simultaneously. The ‘‘t”-axis denotes
the passage of time. Among the bars above the ‘‘t”-axis, hollow one represents the
combined pulse set v1 while the one with five levels embedded denotes the
combined pulse set g1. Their adjoint pulses are drawn upsidedown under the ‘‘t”-
axis.
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tively, and {rki} are the coupling constants for virtual exchanges of
excitations with the thermal reservoirs. We see that when aki 6¼ 0
and bki = 0, the reservoir is an adiabatic reservoir which results in
the phase damping; when aki = 0 and bki 6¼ 0, the reservoir is a ther-
mal reservoir which results in the amplitude damping; and when
aki 6¼ 0 and bki 6¼ 0, the reservoir is a general reservoir which results
in the amplitude and phase damping simultaneously.

Then the Hamiltonian for the whole system Sab takes the form

H0 ¼ H0 þ HD:F: þ HE þ HI: ð8Þ

According to the discussion in Section 2, in order to fulfill the
goal of decoupling, the main task is to design the finite bang–bang
control operators {gk} which satisfy the condition

PjGj�1
k¼0 gykHIgk ¼ 0.

We find {gk} has the form G ¼ fg0 ¼ I; g1 ¼ af1; g2 ¼ af2; g3 ¼
af3; g4 ¼ bv1; g5 ¼ abf1v1; g6 ¼ abf2v1; g7 ¼ abf3v1g, where a = 1
when aki 6¼ 0, otherwise a = 0; b = 1 when bki 6¼ 0, otherwise b = 0.
More explicitly, for the general decoherence, the decoupling oper-
ation set is G ¼ fgkk ¼ 0;1;2;3;4;5;6;7g; for the phase damping,
the decoupling operation set has another simpler form
G ¼ fgkk ¼ 0;1;2;3g; for the amplitude damping, the correspond
simpler form is G ¼ fgkk ¼ 0;4g. Here I is the identity operator and

f1 ¼

0 0 0 �i

i 0 0 0

0 i 0 0

0 0 i 0

0BBBB@
1CCCCA; f2 ¼

0 �i 0 0

0 0 �i 0

0 0 0 �i

i 0 0 0

0BBBB@
1CCCCA;

f3 ¼

0 0 1 0

0 0 0 1

�1 0 0 0

0 �1 0 0

0BBBB@
1CCCCA; v1 ¼

�1 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 1

0BBBB@
1CCCCA: ð9Þ

They satisfy the decoupling condition

a
XjGj�1

k¼0

gykr
ðn;n�1Þ
z gk ¼ 0;

b
XjGj�1

k¼0

gykr
ðn;n�1Þ
x gk ¼ 0; ð10Þ

where i runs from 1 to 3. Combining Eqs. (7) and (10), we see thatPjGj�1
k¼0 gykHIgk ¼ 0. Therefore the evolution Hamiltonian for the com-

posite system in the ideal limits of Tc ? 0 and N ?1 is e�iHeff t ,
which means that the decoherence interaction between the system
and its environment is completely averaged out. Therefore the men-
tioned decoupling operation sets can suppress their corresponding
kinds of decoherence completely in the ideal limits.

The BB decoupling operators in Eq. (9) can be rewritten as

f1 ¼ exp i
p
2
rð1;0Þx

� �
exp i

p
2
rð2;1Þx

� �
exp i

p
2
rð3;2Þx

� �
;

f2 ¼ exp �i
p
2
rð3;2Þx

� �
exp �i

p
2
rð2;1Þx

� �
exp �i

p
2
rð1;0Þx

� �
;

f3 ¼ exp i
p
2
rð1;0Þx

� �
exp i

p
2
rð2;1Þx

� �
exp i

p
2
rð3;2Þx

� �
� exp i

p
2
rð1;0Þx

� �
exp i

p
2
rð2;1Þx

� �
exp i

p
2
rð3;2Þx

� �
;

v1 ¼ expðiprð1;0Þz Þ expðiprð2;1Þz Þ: ð11Þ

So the decoupling operators {gk} can be physically realized by con-
secutive D.F. fields that interact with state transitions j3iM j2i,
j2iM j1i and j1iM j0i, respectively. For example, g1 can be realized
by a p

2-pulse at frequency x32 which is followed by a p
2-pulse at fre-

quency x21 and another p
2-pulse at frequency x10. The other decou-

pling elements in G can be constructed likewise.
As is discussed in Section 2, the iteration of the sequence of BB

operations with intermediate free evolution
QjGj�1

k¼0 gykU0gk can be
used to effectively average out the interaction Hamiltonian HI.
With the full expressions for these operators {gk} and the knowl-
edge of their physical realization, we demonstrate the exact se-
quences of operations in a cycle in Figs. 2–4.
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Fig. 2 shows a single cycle of the evolution of the four-level atom
system under the decoupler and when a = 1 and b = 0, i.e., the atom
is exposed to an adiabatic reservoir. The evolution can be also
rewritten in the following operator sequence: g2(t4)�U4(t3 + 6sp,t4)g2

(t3) � g1(t3)�U3(t2 + 9sp,t3)g1 (t2) � g3(t2)�U2(t1 + 6sp,t2)g3 (t1) � U1(t0,
t1). Here we assume that the duration for the pulses is sp, which re-
sults in the duration for the operators {gk, k = 1,2,3} to be 3sp or 6sp,
and we use U(ti,tj) to denote the free evolution of the system under
the Hamiltonian H

0
within the time interval ti and tj. For we have as-

sumed that the BB controls can be turned on/off in negligible time sp

(sp� Dt) so we can neglect the effect of sp when we calculate U(ti,tj).
Fig. 3 shows a single cycle of the evolution of the four-level

atom system under the decoupler and when a = 1 and b = 0, i.e.,
the atom is exposed to a thermal reservoir. The evolution can be
also rewritten in the following operator sequence: v1(t2)�U2(t1 +
2sp,t2) v1(t1) � U1(t0,t1).

Fig. 4 shows a single cycle of the evolution of the four-level
atom system under the decoupler and when a = 1 and b = 1, i.e.,
the atom is exposed to a general reservoir. The evolution can be
also rewritten in the following operator sequence: gy1ðt8ÞUðt7; t8Þ
g1ðt7Þgy2ðt7ÞUðt6; t7Þg2ðt6Þgy3ðt6ÞUðt5; t6Þg3ðt5Þvy1ðt5ÞUðt4; t5Þv1ðt4Þvy1
ðt4Þgy1ðt4ÞUðt3; t4Þg1ðt3Þv1ðt3Þvy1ðt3Þgy2ðt3ÞUðt2; t3Þg2ðt2Þv1ðt2Þvy1ðt2Þgy3
ðt2ÞUðt1; t2Þg3ðt1Þv1ðt1ÞUðt0; t1Þ.
4. The numerical simulation in the non-ideal conditions

In the last section, we show the BB decoupling method to sup-
press the amplitude and phase decoherence and the general deco-
herence as well under ideal condition. Our results show that in the
ideal limits the BB decoupling method can suppress all these kinds
of decoherence completely. In this section, we will compare the
free evolvement of ~qðtÞ with the evolution under BB control. Then
we will discuss the BB decoupling scheme in the case when the
number N of the decoupling operation in a fixed duration cycle is
finite. Because the typical involvement time scales of the ampli-
tude damping is much longer than decoherence mechanisms, we
can neglect the effect of this errors [13]. For the advantage of
showing a clear picture of the decoherence properties, we consider
the effect of the BB decoupling scheme to suppress the phase
damping in the four-level atom in the N-configuration.

We turn to the interaction picture. The interaction Hamiltonian
HI can be rewritten as

eH I ¼ �h
X

k1

rð1;0Þz ðjk1ayk1eixk1t þ j�k1ak1e�ixk1tÞ

þ �h
X

k2

rð2;1Þz ðjk2ayk2eixk2t þ j�k2ak2e�ixk2tÞ

þ �h
X

k3

rð3;2Þz ðjk3ayk3eixk3t þ j�k3ak3e�ixk3tÞ: ð12Þ

According to Section 3, a cycle of the unitary evolution of the
atom system under the decoupling operations in the interaction
picture has the form

eUðtð0Þ; tð1ÞÞ ¼ ~g2ðt4Þy eU4ðt3 þ 3sp; t4Þ~g2ðt3Þ

� ~g1ðt3Þy eU3ðt2 þ 3sp; t3Þ~g1ðt2Þ

� ~g3ðt2Þy eU2ðt1 þ 6sp; t2Þ~g3ðt1Þ

� eU1ðt0; t1Þ; ð13Þ

where t(0) and t(1) are the initial and terminal points of the first cycle
and t(0) = t0, t(1) = t4 = t(0) + 4D t. The operators in this sequence take
the following form
eUðDtÞ ¼ expðrð1;0Þz

X
k1

½ayk1eixk1ti nk1ðDtÞ � h:c:�Þ � expðrð2;1Þz

�
X

k2

½ayk2eixk2ti nk2ðDtÞ � h:c:�Þ � expðrð3;2Þz

�
X

k3

½ayk3eixk3ti nk3ðDtÞ � h:c:�Þ; ð14Þ

where Dt = ti � tj is inter-operation period during which the system
undergoes free evolution and nkiðDtÞ ¼ jki

xki
ð1� eixkiDtÞ. Look at the

D.F. field, which is used to offer BB operators, during sp we can define

HD:F:ðx; tÞ ¼ Virðn;n�1Þ
x cos½xn n�1ðtÞ�: ð15Þ

In the interaction picture, by rotating wave approximation (RWA)
method, We get

eHD:F:ðx; tÞ ¼ e
i
�hH0tHD:F:ðx; tÞe�

i
�hH0t � 1

2
Virðn;n�1Þ

x : ð16Þ

The evolution operator during sp is

eUp � e�
i
�h
eHD:F:ðx;tÞsp � e�

i
2�hVir

ðn;n�1Þ
x sp : ð17Þ

Choosing appropriate sp to satisfy Vir
ðn;n�1Þ
x sp

2�h ¼ 	p and arrange appro-

priate the order of i, we get ~giðtjÞ and ~gyi ðtjÞ in the interaction picture.
For example

~g1ðtjÞ ¼ exp i
p
2
rð1;0Þx

� �
exp i

p
2
rð2;1Þx

� �
exp i

p
2
rð3;2Þx

� �
: ð18Þ

So

~giðtjÞ ¼ gi

~gyi ðtiÞ ¼ gyi : ð19Þ

After N cycles of decoupling operations performed on the atom, we
obtain its evolution operatoreU ðNÞðtð0Þ; tðNÞÞ ¼ eUðtðN�1Þ; tðNÞÞ � � � eUðtð1Þ; tð2ÞÞeUðtð0Þ; tð1ÞÞ; ð20Þ

where t(N) = t(0) + 4NDt + 24Nsp, and t(N) is the ending time of the
whole N decoupling operation cycles.

To observe the suppression effect of the BB decoupling opera-
tions on the atom of the adiabatic decoherence, we call for the re-
duced density matrix of the atom ~qs

23ðtÞ ¼ TrEfh2j~qSEðtÞj3ig with
t = t(N) � t(0) = 4N(D t + 6sp) and set t(0) = 0. We assume the com-
posed system of the atom and the environment is initially in the
product state ~qSð0Þ 
 ~qEð0Þ, where ~qEð0Þ is a kind of thermal equi-
librium state which can be factorized into the tensor product of the
density operators of each mode

~qEð0Þ ¼
Y

k

hk ð21Þ

with

Zk ¼ 1� exp � �hxk

jBT

� �� ��1

hk ¼ Z�1
k exp � �hxkaykak

jBT

 !
;

where kB is the Boltzman constant and T is the temperature of the
bath.

Using the formula U�exp(iA)U = exp(iU�AU) and with Eqs. (13)–
(21), we obtain

~qs
23ðtÞ ¼ TrEfh2jeUðtð0Þ; tðNÞÞ~qSð0Þ 
 ~qEð0ÞeU yðtð0Þ; tðNÞÞj3ig

¼ ~qs
23ð0ÞTrE ~qEð0Þexp

X
k1

ayk1eixk1t0g1ðk1;Dt;spÞ
("

þ
X

k2

ayk2eixk2t0g2ðk2;Dt;spÞ þ
X

k3

ayk3eixk3t0g3ðk3;Dt;spÞ � h:c:

)#
¼ ~qs

23ð0Þexpf�C1ðDt;spÞ �C2ðDt;spÞ �C3ðDt;spÞg; ð22Þ
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Fig. 5. The dotted pattern show the evolvement of e�C1�C2�C3 with t under the effect
of the BB decoupling operations. The starred pattern show the evolvement of
e�C01�C02�C03 with t freely. The correlated parameters are Dt = 100 ls, sp = 100 ns, N =
100, T = 190 K, a = 0.35 and xc = 100 Hz.
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where

CiðDt; spÞ ¼
1
2

X
ki

jgiðki;Dt; spÞj2 coth
xki

2T
; ð23Þ

giðki;Dt; spÞ ¼
XN

n¼1

eixki4ðn�1ÞðDtþ6spÞ � nkiðDtÞvkiðDt; spÞ; ð24Þ

and

vk1ðDt; spÞ ¼ �2eixk1ðDtþ6spÞ þ eixk1ð2Dtþ15spÞ þ eixk1ð3Dtþ21spÞ;

vk2ðDt; spÞ ¼ 1þ eixk2ðDtþ6spÞ � 2eixk2ð3Dtþ21spÞ;

vk3ðDt; spÞ ¼ �2þ eixk3ð2Dtþ15spÞ þ eixk3ð3Dtþ21spÞ: ð25Þ

On the other hand, the density matrix without the BB controls is

~qsw
23ðtÞ ¼ ~qs

23ð0Þ expf�C01ðDtÞ � C02ðDtÞ � C03ðDtÞg; ð26Þ

where

C01ðDtÞ ¼ 0;

C02ðDtÞ ¼ 1
2

X
k2

coth
xk2

2T

� � jk2

xk2
ð1� eixk24NDtÞ

���� ����2;
C03ðDtÞ ¼ 2

X
k3

coth
xk3

2T

� � jk3

xk3
ð1� eixk34NDtÞ

���� ����2: ð27Þ

We can define the finite cut-off frequency of each mode of the
environment is xc such that the spectral density I(x) ? 0 for
x > xc [13]. In the continuum limit of the bath mode, we take
the following transformation [13,30]X

k

7!
Z xc

0
dxIðxÞ 1

jjðxkÞj2
: ð28Þ

Then Eqs. (23) and (27) change into

CiðDt;spÞ ¼
1
2

Z xc

0
dxkiIðxkiÞcoth

xki

2T

� �

� vkiðDt;spÞ
xki

ð1� eixkiDtÞ
XN

n¼1

eixki4ðn�1ÞðDtþ6spÞ

�����
�����
2

;

C02ðDtÞ ¼ 1
2

Z xc

0
dxk2Iðxk2Þcoth

xk2

2T

� �
� 1
xk2
ð1� eixk24NDtÞ

���� ����2;
C03ðDtÞ ¼ 2

Z xc

0
dxk3Iðxk3Þcoth

xk3

2T

� �
� 1
xk3
ð1� eixk34NDtÞ

���� ����2: ð29Þ

In order that the BB decoupling scheme works, we need

C1 þ C2 þ C3 < C01 þ C02 þ C03: ð30Þ

Considering the case where the bath is the generally considered Oh-
mic bath and we have the spectral density for each mode of the bath
to be IðxÞ ¼ a

4 xne�x=xc , where a measures the strength of the sys-
tem-environment interaction and n = 1 [13,31–33]. Noting that Ci

and C0i are independent on the difference in xki, we change xki in
Eqs. (25) and (30) to x. As a result, vki(Dt) changes to vi(x,Dt,sp)
and Eq. (30) becomes

jv1ðx;Dt; spÞj2 þ jv2ðx;Dt; spÞj2 þ jv3ðx;Dt; spÞj2

< 5j1þ eixDt þ eix2Dt þ eix3Dt j2: ð31Þ

We can get cos(xcDt) > 0.6506 from Eqs. (23)–(31) when
sp� Dt. So when the time scale Dt of the inter-operation period
of the operations satisfies xcDt 2 [0,arccos(0.6506)], the sum of
the decoherence factors C1 + C2 + C3 under the effect of the BB
decoupling operations is much smaller than the one without the
BB decoupling operations C01 þ C02 þ C03.

Figs. 5 and 6 show that we can use BB decoupling operations to
suppress the decoherence effectively. The duration of the D.F. pulse
(sp) can be as short as 100 ns. The delay between the pulses (Dt) is
adjustable. T = 190 K which is the temperature used in the experi-
ment [22]. The value of a has been used in [13]. The value of xc de-
pends on the specific physical system, which has been discuss in
detail in [14]. N is an adjustable parameter. When the total evolu-
tion duration t is fixed, N should satisfy the condition xct=NjGj 2
½0; arccosð0:6506Þ� to ensure the efficiency of the decoupling
operations.

We numerically simulate logð1� e�C1�C2�C3 Þ, the function of the
minus power of the sum of the decoherence factors, under differ-
ent values of the parameters in the fixed duration t in Figs. 7–9.

Fig. 7 shows how the different values of xc affect decoupling ef-
fect. It is clear that the value of logð1� e�C1�C2�C3 Þ becomes bigger,
which corresponds to a worse decoupling effect, and the needed
cycles times in the fixed time duration t becomes larger in order
that the decoupling operations take effect, as xc increases. This ac-
cords with our theory.

Fig. 8 shows the effect of the different values of T on decoupling
effect. We see that the higher the temperature, the worse the
decoupling effect is, which is in accord with the low temperature
condition needed in our discussion.

Fig. 9 shows the decoupling effect varies with a. Since a mea-
sures the strength of the system-environment interaction, it is easy
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Fig. 7. The logarithm of 1� e�C1�C2�C3 under the effect of the BB decoupling
operations. The correlated parameters are sp = 100 ns, t = 1 ms, T = 190 K, a = 0.35
and xc = 100 Hz for the starred pattern, xc = 1 kHz for the dotted pattern,
xc = 100 kHz for the triangled pattern.
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Fig. 8. The logarithm of 1� e�C1�C2�C3 under the effect of the BB decoupling
operations. The correlated parameters are sp = 100 ns, t = 1 ms, xc = 100 Hz, a = 0.35
and T = 20 K for the starred pattern, T = 190 K for the dotted pattern, T = 300 K for
the triangled pattern.
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Fig. 9. The logarithm of 1� e�C1�C2�C3 under the effect of the BB decoupling
operations. The correlated parameters are sp = 100 ns, t = 1 ms, xc = 100 Hz,
T = 190 K and a = 0.35 for the starred pattern, a = 3 for the dotted pattern, a = 20
for the triangled pattern.
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Fig. 10. The logarithm of 1� e�C1�C2�C3 under the effect of the BB decoupling
operations. The correlated parameters are t = 1 ms, xc = 100 Hz, T = 190 K, a = 0.35
and sp = 0 s for the starred pattern, sp = 100 ns for the triangled pattern.
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to understand logð1� e�C1�C2�C3 Þ becomes bigger and we need to
perform more cycles of BB decoupling operations to obtain the
same decoupling effect as a increases.
Fig. 10 shows that duration of the pulse (sp) almost has no influ-
ence when sp� Dt, so we can neglect it in the permissible error
range. But when t is fixed, as N becomes bigger, the Dt approaches
the same order as sp. Then we should consider the effect of sp.

All these figures show that in the permissible error range, when
sp� Dt and N is large enough to let xcDt 2 [0,arccos(0.6506)],
log(1 � exp(�C1 � C2 � C3)) decreases linearly as logN increase.
It is obvious that the larger the cycle times ‘‘N” in the fixed dura-
tion ‘‘t”, the closer to 1 the value of ‘‘ exp(�C1 � C2 � C3)”, and
the better the effect of suppression of the decoherence as well.
Especially, in the ideal limits, sp ? 0, Dt ? 0 (N ?1), the decoher-
ence is completely suppressed.

5. Summary

In this paper, we have proposed a decoupling bang–bang
scheme for the suppression of the phase damping, the amplitude
damping and the general decoherence in a four-level N-configura-
tion atom system. We have designed sequences of periodic twin-
born pulses to suppress each kind of decoherence. The detailed
discussion shows that the proposed BB decoupling operations
can effectively suppress all these three kinds of decoherence. Fur-
thermore, our numerical simulation shows that we can get better
suppression effect if we enlarge the operation frequency. Further-
more, in the ideal limit sp ? 0, D t ? 0(N ?1), we can suppress
the decoherence completely. What is more, the decoupling effect
will be better when xc, T and a decrease. We also give the effective
time scale of the BB decoupling operations, which is helpful to the
experimental consideration. Provided that the decoupling opera-
tion sequence is performed properly, the coherence and entangle-
ment of the system can be preserved.

Compared to the case with three-level quantum systems, the BB
control sequence becomes more complex. Under general decoher-
ence, the number of BB control operation are 6 and 8 for the three-
level and four-level atom, respectively. It will be interesting to see
how the number of BB control operation increase as the number of
levels increases in a quantum system.
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