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Abstract

Whenmaking causal inferences, post-treatment confounders complicate analyses of time-varying
treatment effects. Conditioning on these variables naively to estimate marginal effects may in-
appropriately block causal pathways and may induce spurious associations between treatment
and the outcome, leading to bias. To avoid such bias, researchers often use marginal structural
models (MSMs) with inverse probability weighting (IPW). However, IPW requires models for the
conditional distributions of treatment and is highly sensitive to their misspecification. Moreover,
IPW is relatively inefficient, susceptible to finite-sample bias, and difficult to use with continu-
ous treatments. We introduce an alternative method of constructing weights for MSMs, which
we call “residual balancing.” In contrast to IPW, it requires modeling the conditional means of
the post-treatment confounders rather than the conditional distributions of treatment, and it is
therefore easier to use with continuous treatments. Numeric simulations suggest that residual
balancing is bothmore efficient andmore robust tomodelmisspecification than IPW and its vari-
ants in a variety of scenarios. We illustrate the method by estimating (a) the cumulative effect of
negative advertising on election outcomes and (b) the controlled direct effect of shared democ-
racy on public support for war. Open source software is available for implementing the proposed
method.
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1 Introduction

Social scientists are often interested in estimating themarginal, or population average, effects of treat-

ment in the presence of post-treatment confounding. Post-treatment confounding is common in

studies of time-varying treatments, where confounders of future treatments may be affected by prior

treatments. For example, political scientists study how the timing and frequency of negative ad-

vertising during political campaigns affect election outcomes (e.g., Lau, Sigelman and Rovner 2007;

Blackwell 2013). In this context, the decision to run negative advertisements at any given point dur-

ing a campaign is affected by a candidate’s position in recent polling data, which itself is affected by

negative advertising conducted previously. Post-treatment confounding is also common in analy-

ses of causal mediation, where confounders for the effect of the mediator on the outcome may be

affected by treatment. For example, when assessing the role of morality in mediating the effects of

shared democracy on public support forwar, post-treatment variables, such as beliefs about the threat

posed by the adversary, may affect both the perceived morality of war and support for military action

(Tomz and Weeks 2013).

Adjusting for post-treatment confounders using conventional methods, for example, by naively

conditioning, stratifying, or otherwise balancing on them, may engender two different types of bias

(Robins 1986, 1999). First, adjusting naively for post-treatment confounders leads to bias from over-

control of intermediate pathways because it blocks, or “controls away,” the effect of treatment on the

outcome that operates through these variables. Second, adjusting naively for post-treatment con-

founders can lead to collider-stratification bias if these variables are also affected by unobserved de-

terminants of the outcome, as conditioning on a variable generates a spurious association between

its common causes even when these common causes are unconditionally independent (Pearl 2009).

Marginal structural models (MSMs) and the associated method of inverse probability weighting

(IPW) avoid these biases and are capable of consistently estimating treatment effects under fairly gen-

eral conditions (Robins 1999; Robins, Hernan and Brumback 2000; VanderWeele 2015). Compared

with more traditional models for time-series cross-sectional data (e.g., fixed effects regression mod-

els), MSMs with IPW can better accommodate dynamic causal relationships (Imai and Kim 2019).

Specifically, unlike conventional methods, this approach allows past treatments to affect current out-

comes (i.e., “carryover effects”) and past outcomes to affect current treatment (i.e., “feedback effects”).
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Because of this flexibility, political scientists have increasingly used MSMs with IPW to draw causal

inferences from longitudinal data (e.g., Ladam, Harden and Windett 2018; Simmons and Creamer

2019; Zhukov 2017).

Nevertheless, IPW has several important limitations. First, IPW requires models for the condi-

tional distributions of exposure to treatment and/or the mediator, and prior research indicates that it

is highly sensitive to their misspecification (e.g.,Kang and Schafer 2007; Lefebvre, Delaney and Platt

2008). Second, even if these models are correctly specified, IPW is relatively inefficient, and it is sus-

ceptible to large finite-sample biases when confounders strongly predict the exposures of interest

(Wang et al. 2006; Cole and Hernán 2008).1 Finally, when the exposures of interest are continuous,

IPW tends to perform poorly because estimates of conditional densities are often unreliable (e.g.,

Vansteelandt 2009; Naimi et al. 2014).

Several remedies have been proposed to improve the efficiency and robustness of IPW. For exam-

ple, Cole and Hernán (2008) suggest truncating or censoring extreme weights to obtain more precise

estimates. With this approach, however, the improved precision comes at the cost of greater bias.

Recently, Imai and Ratkovic (2014, 2015) propose constructing weights for an MSM with covariate

balancing propensity scores (CBPS). By integrating a large set of balancing conditions when estimat-

ing propensity scores, this method is less sensitive to model misspecification. But estimating CBPS

can be computationally demanding, and because of the practical difficulties associated with modeling

conditional densities, this method remains challenging to use with continuous exposures, even in the

cross-sectional setting (Fong et al. 2018).

In this paper, we propose an alternative method of constructing weights forMSMs, which we call

“residual balancing.” Briefly, the method is implemented in two stages. First, a model for the condi-

tional mean of each post-treatment confounder, given past treatments and confounders, is estimated

and then used to construct residual terms. Second, a set of weights is constructed using Hainmueller’s

(2012) entropy balancing method such that, in the weighted sample, (a) the residualized confounders

are orthogonal to future exposures, past treatments, and past confounders, and (b) their discrepancy

with a set of base weights (e.g., survey sampling weights) is minimized. Thus, our proposed method

is an extension of Hainmueller’s (2012) entropy balancing procedure to the longitudinal setting. It

exactly balances sample moments for each of the post-treatment confounders across future expo-
1For expositional simplicity, we occasionally use the term “exposures” to generally refer to treatments or mediators.
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sures, conditional on the observed past, without explicit models for the conditional distributions of

exposure to treatment and/or a mediator.2

Residual balancing has a number of advantages over both conventional methods of covariate

adjustment and over IPW and its variants. First, by appropriately residualizing the post-treatment

confounders, the proposed method avoids bias due to over-control and collider stratification, unlike

conventional methods that condition, stratify, or otherwise balance on these variables naively. Sec-

ond, residual balancing is relatively robust to the model misspecification bias that commonly afflicts

IPW and its variants. Third, residual balancing is also more efficient than IPW because it tends to

avoid highly variable and extreme weights by minimizing their relative entropy with respect to a set

of base weights. Fourth, in contrast to CBPS, residual balancing is computationally attractive in that

the weighting solution is quickly obtained even with a large number of confounders, time periods,

and observations. Finally, because it does not require models for the conditional distributions of the

exposures, residual balancing is easy to use when treatments and/or mediators are continuous. This

advantage may be especially important in political science applications, where continuous exposures

commonly arise in analyses of time-series cross-sectional data (e.g.,Blackwell 2013). An open source

R package, rbw, is available for implementing the proposed method, as is a Stata package with similar

functionality.

In the sections that follow, we first briefly review MSMs and the method of IPW. Next, we in-

troduce the method of residual balancing and conduct a set of simulation studies to evaluate its per-

formance relative to IPW and its variants. We then illustrate the method empirically by estimating

the cumulative effect of negative advertising on election outcomes as well as the controlled direct

effect (CDE) of shared democracy on public support for war. We conclude by discussing the method’s

limitations along with possible remedies.
2Our method of residual balancing should not be confused with the method of “approximate residual balancing”

proposed in Athey, Imbens and Wager (2018). Despite their similar names, the two methods are very different in both
their goals and mechanics. The goal of our method is to adjust for post-treatment confounding when estimating the
effects of time-varying treatments or assessing causal mediation, whereas the goal of “approximate residual balancing” is
to remove bias introduced by penalized regression adjustments when estimating the effects of point-in-time treatments
from high-dimensional linear models. Consequently, with our method, the residuals come from regression models of
the time-varying confounders, and a set of weights are constructed to balance the residualized confounders across future
exposures, past treatments, and past confounders. With “approximate residual balancing,” by contrast, a set of weights
are constructed first to balance the (unresidualized) confounders between static treatment and control groups, and then
they are used to re-weight the residuals from a penalized regression model for the outcome to remove bias introduced
by penalization.
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2 MSMs and IPW: A Review

In this section, we briefly review MSMs and the method of IPW (Robins 1999; Robins, Hernan and

Brumback 2000). Consider first a study with T ≥ 2 time points where interest is in the effect of

a time-varying treatment, At (1 ≤ t ≤ T ), on an end-of-study outcome, Y . At each time point,

there is also a vector of observed time-varying confounders, Lt, that may be affected by prior treat-

ments. Following convention, we use overbars to denote the treatment history, At = (A1, . . . At),

and confounder history, Lt = (L1, . . . Lt), up to time t. Similarly, we denote an individual’s com-

plete treatment and confounder histories through the end of follow-up by A = AT and L = LT ,

respectively. Finally, we use Y (a) to denote the potential outcome under the particular treatment

history a.

An MSM is a model for the marginal mean of the potential outcomes, which can be expressed in

general form as follows:

E[Y (a)] = µ(a; β), (1)

where µ(·) is some function of treatment history, a, and a parameter vector, β, that captures the

marginal effects of interest. For example, with a large number of time points and a binary treatment,

a common parameterization is

E[Y (a)] = β0 + β1cum(a), (2)

where cum(a) =
∑T

t=1 at denotes the total number of time periods on treatment and β1 captures

the marginal effect of one additional wave on treatment. Of course, many other parameterizations

are possible.

An MSM can be identified from observed data under three key assumptions:

1. consistency, which requires that, for any unit, if A = a, then Y = Y (a);

2. sequential ignorability, which requires that treatment at each time point must not be con-

founded by unobserved factors conditional on past treatments and observed confounders, or

formally, that Y (a) ⊥⊥ At|At−1, Lt for any treatment sequence a; and

3. positivity, which requires that treatment assignment must not be deterministic, or formally,

that f(At = at|At−1 = at−1, Lt = lt) > 0 for any treatment condition at if f(At−1 =
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at−1, Lt = lt) > 0, where f(·) denotes a probability mass or density function.

When these assumptions are satisfied, an MSM can be consistently estimated using the method of

IPW.

IPW estimation involves fitting a model for the conditional mean of the observed outcome given

an individual’s treatment history using weights that balance, in expectation, past confounders across

treatment at each time point. The inverse probability weight for individual i is defined as

wi =
T∏
t=1

1

f(At = ai,t|At−1 = ai,t−1, Lt = li,t)
, (3)

where the At−1 = ai,t−1 term can be ignored when t = 1. Since the denominator of equation (3)

can be very small, some units may end up with extremely large weights, leading to highly variable

estimates. To mitigate this problem, Robins, Hernan and Brumback (2000) suggest using a so-called

“stabilized” weight, which is defined as

swi =
T∏
t=1

f(At = ai,t|At−1 = ai,t−1)

f(At = ai,t|At−1 = ai,t−1, Lt = li,t)
. (4)

Sometimes, the probabilities in both the numerator and denominator are also made conditional on a

set of baseline or time-invariant confoundersX :

swi =
T∏
t=1

f(At = ai,t|At−1 = ai,t−1, X = x)

f(At = ai,t|At−1 = ai,t−1, Lt = li,t, X = x)
. (5)

In such cases, these variables need to be included in the MSM to properly adjust for confounding,

which is unproblematic because they cannot be affected by treatment and thus conditioning on them

will not engender bias due to over-control or collider stratification.

In practice, both the numerator and the denominator of the stabilizedweight need to be estimated.

When treatment is binary, the denominator is typically estimated using a generalized linear model

(GLM), with the logit or probit link function, for treatment at each time point, while the numerator is

estimated using a constrained version of this model that omits the time-varying confounders. When

treatment is continuous, models are needed to estimate the conditional densities in both the numer-

ator and the denominator of the weight. After weights have been computed, the marginal effects of
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interest are estimated by fitting a model for the conditional mean of Y given At (and also possibly

X ) with weights equal to swi. When both this model and the models for treatment assignment are

correctly specified, this procedure yields consistent estimates for all marginal means of the poten-

tial outcomes, E[Y (a)], and thus for any marginal effect of interest, provided that the identification

assumptions outlined previously are satisfied.

As shown in prior studies (e.g., Kang and Schafer 2007), IPW estimates of marginal effects can be

highly sensitive to misspecification of the models used to construct the weights. To address this limi-

tation, Imai and Ratkovic (2014, 2015) developed themethod of CBPS to estimate the denominator in

equation (4) for binary treatments. With a logit model for treatment at each time point, this method

augments the score conditions of the likelihood function with a set of covariate balance conditions.

Because the total number of score and balance conditions exceeds the number of model parameters

to be estimated, the generalized method of moments (GMM) is used to minimize imbalance in the

weighted sample. This method of incorporating balance conditions into model-based estimation of

the weights tends to reduce the bias that results when the treatment models are misspecified.

MSMs and IPW estimation can also be used to examine causal mediation (VanderWeele 2015).

Consider now a study with a point-in-time treatment, A, a putative mediator measured at some

point following treatment, M , and an end-of-study outcome, Y . Suppose that both treatment and

the mediator are confounded by a vector of observed baseline covariates, denoted byX , and that the

mediator is additionally confounded by a vector of observed post-treatment covariates, denoted by

Z , which may be affected by the treatment received earlier. In this setting, the potential outcomes of

interest are denoted by Y (a,m).

As before, an MSM models the marginal mean of the potential outcomes. If, for example, treat-

ment and the mediator are both binary, a saturated MSM can be expressed as follows:

E[Y (a,m)] = α0 + α1a+ α2m+ α3am. (6)

From this model, the controlled direct effect of treatment is given by CDE(m) = E[Y (1,m) −

Y (0,m)] = α1 + α3m, which measures the strength of the causal relationship between treatment

and the outcomewhen themediator is fixed at a given value,m, for all individuals (Pearl 2001; Robins

2003). This estimand is useful for assessing causal mediation because it helps to adjudicate between
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alternative explanations for a treatment effect. For example, the difference between a total effect

and the CDE(m) may be interpreted as the degree to which the mediator contributes to a causal

mechanism that transmits the effect of treatment on the outcome (Acharya, Blackwell and Sen 2016;

Zhou and Wodtke 2019).

MSMs for the joint effects of a treatment and mediator, like equation (6), can be identified under

essentially the same assumptions as outlined previously. In this context, the consistency assumption

requires that Y = Y (a,m) if A = a andM = m; sequential ignorability requires that both treat-

ment and the mediator must be unconfounded conditional on the observed past, or formally, that

Y (a,m) ⊥⊥ A|X and Y (a,m) ⊥⊥ M |X,A,Z ; and positivity requires that both treatment and the

mediator are not deterministic functions of past variables. Similarly, the stabilized inverse probability

weights are here defined as

sw∗i =
f(A = ai)

f(A = ai|X = xi)
× f(M = mi|A = ai)

f(M = mi|X = xi, A = ai, Z = zi)
, (7)

and they must be estimated using appropriate models for the conditional probabilities and/or den-

sities that compose this expression. After weights have been computed, the marginal effects of in-

terest – here, the CDE(m) – are estimated by fitting a model for the conditional mean of Y given

A and M with weights equal to sw∗i . Alternatively, it is also possible to define the weights as

sw†i = f(M=mi|X=xi,A=ai)
f(M=mi|X=xi,A=ai,Z=zi)

, in which case X must be included in the MSM to properly adjust

for confounding. Adjusting forX in the MSM is unproblematic because these variables are not post-

treatment confounders, unlike Z .

3 Residual Balancing

In this section, we motivate and explain the method of residual balancing. We first focus on analyses

of time-varying treatment effects, and then we outline how themethod is easily adapted for studies of

causal mediation. Finally, we discuss the advantages and limitations of residual balancing compared

with IPW as well as the similarities and differences between residual balancing and the CBPSmethod.
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3.1 Rationale

To explain the method of residual balancing, it is useful to begin with Robins’ (1986) g-computation

formula. The g-computation formula factorizes the marginal mean of the potential outcome, Y (a),

as follows:

E[Y (a)] =

∫
· · ·

∫
E[Y |A = a, L = l]

T∏
t=1

f(lt|lt−1, at−1)dµ(lt). (8)

In contrast, the conditional mean of the observed outcome Y given A = a can be factorized into

E[Y |A = a] =

∫
· · ·

∫
E[Y |A = a, L = l]

T∏
t=1

f(lt|lt−1, a)dµ(lt). (9)

A comparison of equation (8) with equation (9) indicates that weighting the observed population by

Wl =
T∏
t=1

f(Lt|Lt−1, At−1)

f(Lt|Lt−1, A)
(10)

would yield a pseudo-population in which f ∗(lt|lt−1, a) = f ∗(lt|lt−1, at−1) = f(lt|lt−1, at−1) and

thus E∗[Y |A = a] = E∗[Y (a)] = E[Y (a)], where the asterisk denotes quantities in the weighted

pseudo-population.3 BecauseLt is often high-dimensional, estimation of the conditional densities in

equation (10) is practically difficult.

Nevertheless, the condition that f ∗(lt|lt−1, a) = f ∗(lt|lt−1, at−1) = f(lt|lt−1, at−1) implies that,

in the pseudo-population, the following moment condition would hold for any scalar function g(·)

of Lt:

E∗[g(Lt)|Lt−1, A] = E∗[g(Lt)|Lt−1, At−1] = E[g(Lt)|Lt−1, At−1]. (11)
3In fact, the “stabilized” weight in equation (4) is just a different way of writing equation (10):

Wl =

T∏
t=1

f(Lt|Lt−1, At−1)

f(Lt|Lt−1, A)
=

∏T
t=1 f(Lt|Lt−1, At−1)

f(L|A)
=
f(A)

∏T
t=1 f(Lt|Lt−1, At−1)

f(L,A)

=
f(A)

∏T
t=1 f(Lt|Lt−1, At−1)∏T

t=1 f(Lt|Lt−1, At−1)f(At|Lt, At−1)
=

∏T
t=1 f(At|At−1)∏T

t=1 f(At|Lt, At−1)
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This moment condition can be equivalently expressed as

E∗[δ(g(Lt))|Lt−1, A] = 0, (12)

where δ(g(Lt)) = g(Lt)−E[g(Lt)|Lt−1, At−1] is a residual transformation of g(Lt)with respect to

its conditional mean given the observed past. The moment condition in equation (12) in turn implies

that for any scalar function h(·) of Lt−1 and A, δ(g(Lt)) and h(Lt−1, A) are uncorrelated, that is,

E∗[δ(g(Lt))h(Lt−1, A)] = E∗[δ(g(Lt))]E∗[h(Lt−1, A)] = 0, (13)

where the second equality follows from the fact that E∗[δ(g(Lt))] = E∗E∗[δ(g(Lt))|Lt−1, A] = 0.

The method of residual balancing emulates the moment conditions (13) that would hold in the

pseudo-population were it possible to weight byWl. In other words, it emulates the moment con-

ditions (13) that would be expected in a sequentially randomized experiment. Specifically, this is

accomplished by (a) specifying a set of g(·) functions, G(Lt) = {g1(Lt), . . . gJt(Lt)}, and a set of

h(·) functions,H(Lt−1, A) = {h1(Lt−1, A), . . . hKt(Lt−1, A)}; (b) computing a set of residual terms,

δ(g(Lt)) = g(Lt)−E[g(Lt)|Lt−1, At−1], from the observed data; and then (c) finding a set of weights

such that, for any j, k, and t, the cross-moment of δ(gj(lit)) and hk(li,t−1, ai) is zero in the weighted

data. Hence, it involves finding a set of non-negative weights, denoted by rbwi, subject to the follow-

ing balancing conditions:

n∑
i=1

rbwiδ(gj(lit))hk(li,t−1, ai) = 0, 1 ≤ j ≤ Jt; 1 ≤ k ≤ Kt, (14)

or, expressed more succinctly,

n∑
i=1

rbwicir = 0, 1 ≤ r ≤ nc, (15)

where cir is the rth element of ci = {δ(gj(lit))hk(li,t−1, ai); 1 ≤ j ≤ Jt, 1 ≤ k ≤ Kt, 1 ≤ t ≤ T}

and nc =
∑T

t=1 JtKt is the total number of balancing conditions. The conditions in equation (14)

stipulate that the residualized confounders at each time point are balanced across future treatments,

past treatments, and past confounders, or some function thereof. In this way, the proposed method
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Figure 1: The Logic of Residual Balancing
Note: At denotes treatment at time t, Lt denotes time-varying confounders at time t, Y denotes the
end-of-study outcome.

adjusts for post-treatment confounding without engendering bias due to over-control or collider-

stratification, as the residualized confounders are balanced across future treatments while (appropri-

ately) remaining orthogonal to the observed past.

As long as the convex hull of {ci; 1 ≤ i ≤ n} contains 0, finding the weighting solution is an

under-identified (or just-identified) problem. FollowingHainmueller (2012), weminimize the relative

entropy between rbwi and a set of base weights qi (e.g., a vector of ones or survey sampling weights),4

min
rbwi

∑
i

rbwi log(rbwi/qi), (16)

subject to the nc balancing conditions. This is a constrained optimization problem that can be solved

using Lagrange multipliers. Technical details can be found in Supplementary Material A (see also

Hainmueller 2012).

In Figure 1, we illustrate the logic of residual balancingwith a directed acyclic graph (DAG), which

describes the causal relationships between a time-varying treatmentAt, a vector of time-varying con-
4Alternative loss functions, such as the empirical likelihood (Fong et al. 2018) or the variance (Zubizarreta 2015),

could also be used to construct the weights. We use the relatively entropy metric because it can easily accommodate a
set of base weights. Moreover, in contrast to the empirical likelihood, the relatively entropy metric is convex and thus
computationally convenient.
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founders Lt, and an end-of-study outcome Y with two time periods t = 1, 2. Weighting is intended

to create a pseudo-population in which the confounding arrows L1 → A1, L1 → A2, and L2 → A2

are “broken,” that is, a pseudo-population in which (a) L1 no longer predicts A1 or A2 and (b) L2

no longer predicts A2 given L1 and A1. The first condition requires L1 to be marginally indepen-

dent of both A1 and A2. Thus, any function of L1 should be uncorrelated with any function of A1

and A2 in the weighted population. The second condition, by contrast, requires L2 to be condition-

ally independent of A2 given L1 and A1. To this end, we could divide the original population into a

number of strata defined by L1 and A1 and then balance L2 across levels of A2 within each stratum.

This approach, however, becomes impractical when L1 and A1 are continuous and/or multidimen-

sional. To circumvent this problem, our method invokes a model for the conditional mean of L2

(or some function of L2) given L1 and A1, and it then balances the residuals from this model across

levels of A2 and levels of (L1, A1). This procedure breaks the confounding arrow L2 → A2 but

preserves the the causal arrowA1 → L2, thereby adjusting properly for the observed post-treatment

confounders while avoiding bias due to over-control and collider stratification. Taken together, the

balancing conditions for both L1 and L2 yield a weighted population in which all the confounding

arrows (L1 → A1, L1 → A2, and L2 → A2) are “broken” and all the other arrows are left intact. A

marginal structural model can then be fit to this population in order to estimate the average causal

effects of A1 and A2 on Y .

3.2 Implementation

In practice, residual balancing requires specifying a set of g(·) functions that constitute G(Lt). A

natural choice is to set gj(Lt) = Ljt, where Ljt is the jth element of the covariate vector Lt.

If there is concern about confounding by higher-order or interaction terms, they can also be in-

cluded in G(Lt). Then, the residual terms, δ(g(Lt)), need to be estimated from the data. Because

δ(g(Lt)) = g(Lt)− E[g(Lt)|Lt−1, At−1], they can be estimated by fitting GLMs for g(Lt) and then

extracting the response residuals, δ̂(g(Lt)) = g(Lt)−m(β̂T
t r(Lt−1, At−1)), where r(Lt−1, At−1) =

[r1(Lt−1, At−1), . . . rLt(Lt−1, At−1)] is a vector of regressors andm(·) denotes the inverse link func-

tion of the GLM.

In addition, residual balancing requires specifying a set of h(·) functions that constitute

H(Lt−1, A). Because weighting is intended to neutralize the relationship between Lt and future

12



treatments, we suggest including all future treatments, At, At+1,. . .AT , in H(Lt−1, A). However, if

it is reasonable to assume that the effects of Lt on future treatments stop at At′ , where t ≤ t′ < T ,

treatments beyond time t′ may be excluded from H(Lt−1, A). Equation (13) additionally indicates

that δ(g(Lt)) should be uncorrelated with past treatments, At−1, and past confounders, Lt−1, in the

weighted pseudo-population. BecauseE[δ(g(Lt))|Lt−1, At−1] = 0 by construction, zero correlation

is guaranteed in the original unweighted population, and when the GLMs for g(Lt) are Gaussian,

binomial, or Poisson regressions with canonical links, the score equations ensure that the response

residuals, δ̂(g(Lt)), are orthogonal to the regressors r(Lt−1, At−1) in the original sample. But to

ensure that the response residuals, δ̂(g(Lt)), are also orthogonal to the regressors in the weighted

sample, we suggest including all elements of r(Lt−1, At−1) inH(Lt−1, A).

In general, then, H(Lt−1, A) should include all future treatments as well as all regressors in the

GLMs for g(Lt), including an intercept. A reassuring property of this specification for H(Lt−1, A)

is that if the GLMs for g(Lt) are Gaussian, binomial, or Poisson regressions with canonical links and

they are fit to the weighted sample with all future treatments, At, At+1, . . . AT , as additional regres-

sors, the coefficients on future treatmentswill all be exactly zero and the coefficients on r(Lt−1, At−1)

will be the same as those in the original sample. Therefore, when the GLMs for g(Lt) are correctly

specified, the first moments of g(Lt) are guaranteed to be balanced across future treatments, condi-

tional on past treatments and confounders, as would be expected in a scenario where treatment is

unconfounded by Lt.

In sum, a typical implementation of residual balancing for estimating the marginal effects of a

time-varying treatment proceeds in two steps:

1. At each time point t and for each confounder j, fit a linear, logistic, or Poisson regression of

lijt, as appropriate given its level of measurement, on li,t−1 and ai,t−1, and then compute the

response residuals, δ̂(lijt).

2. Find a set of weights, rbwi, such that:

(a) in the weighted sample, the residuals, δ̂(lijt), are orthogonal to all future treatments and

the regressors of lijt; and

(b) the relative entropy between rbwi and the base weights, qi, is minimized.
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The weighting solution can then be used to fit any MSM of interest.

3.3 Application to Causal Mediation

Residual balancing can also be used to estimate an MSM for the joint effects of a point-in-time

treatment, A, and mediator,M , in the presence of both baseline confounders, X , and a set of post-

treatment confounders, Z , for the mediator-outcome relationship. In this setting, residual balancing

is implemented using essentially the same procedure as outlined previously but with several minor

adaptions. First, for each baseline confounderXj , compute the response residuals, δ̂(xij), by center-

ing it around its sample mean. Then, for each post-treatment confounder Zj , fit a linear, logistic, or

Poisson regression of zij , depending on its level of measurement, on xi and ai, and then compute the

response residuals, δ̂(zij). Finally, find a set of weights, rbwi, such that, in the weighted sample, the

baseline residuals δ̂(xij) are orthogonal to both treatment a and the mediatorm; the post-treatment

residuals δ̂(zij) are orthogonal to treatment, the mediator, and the pre-treatment confounders xij ;

and the relative entropy between rbwi and the base weights qi is minimized. The weighting solution

can then be used to fit any MSM for the joint effects of the treatment and mediator on the outcome,

from which the controlled direct effects of interest are constructed. Alternatively, it is also possible

to skip the first step and construct weights that only balance the residualized post-treatment con-

founders, in which case the baseline confoundersX must be included as regressors in the MSM.

3.4 Comparison with Existing Methods

Compared with IPW, residual balancing has both advantages and limitations. On the one hand, be-

cause it does not require explicit models for the conditional distribution of exposure to treatment

and/or a mediator, residual balancing is robust to the bias that results when these models are mis-

specified, and it is easy to use with both binary and continuous exposures. Also, by minimizing the

relative entropy between the balancingweights and the baseweights, themethod tends to avoid highly

variable and extreme weights, thus yielding more stable estimates of causal effects.

On the other hand, residual balancing requires models for the conditional means of the post-

treatment confounders (or transformations thereof). When these models are misspecified, the mo-
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ment condition in equation (11) is only partially achieved. In this case, equation (12) implies

E∗[g(Lt)|Lt−1, A] = E∗[g(Lt)|Lt−1, At−1] 6= E[g(Lt)|Lt−1, At−1],

where future treatments (i.e., At, At+1,. . .AT ) may still be unconfounded in the weighted pseudo-

population but the pseudo-population no longer mimics the original unweighted population. As a

result, estimates of marginal effects based on residual balancing weights may be biased. In addition,

even when models for E[g(Lt)|Lt−1, At−1] are correctly specified, residual balancing estimates of

marginal effects may still be biased if the balancing conditions are insufficient. For example, if both

the treatment and outcome are affected by the product of two confounders, sayL1tL2t, butL1t andL2t

are only included separately in the G(Lt) functions, uncontrolled confounding may still be present

in the weighted sample, leading to bias.

Residual balancing is similar to the CBPSmethod (Imai and Ratkovic 2015) in that it seeks a set of

weights that balance time-varying confounders across future treatments by explicitly specifying a set

of balancing conditions. Residual balancing differs from CBPS, however, in two important respects.

First, unlike CBPS, residual balancing can easily accommodate continuous treatments and/or media-

tors. As mentioned previously, this is because residual balancing does not require parametric models

for exposure to treatment and/or a mediator, and thus it can balance confounders across both binary

and continuous treatments using a common set of balancing conditions (equation 14). CBPS, by con-

trast, is based on a parametric logistic model for the propensity score, and it is therefore limited to

settings with binary treatments and/or mediators.

Second, residual balancing allows for the specification of more flexible and parsimonious balanc-

ing conditions than those specified with the CBPS method. In fact, the balancing conditions spec-

ified by CBPS can also be generated within the residual balancing framework. To see the connec-

tion, note that CBPS attempts to balance the time-varying confounders across all possible sequences

of future treatments within each possible history of past treatments. Thus, for each confounder j,

there are 2t−1 × (2T−t+1 − 1) = 2T − 2t−1 balancing conditions at time t. Summing over t and

j, the total number of balancing conditions associated with CBPS is nCBPS
c = J [(T − 1)2T + 1].

Because nCBPS
c ∼ O(J · T · 2T ), the number of balancing conditions can easily exceed the sample

size, in which case they are at best approximated (even without the method’s parametric constraints).
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With residual balancing, the number of balancing conditions nc =
∑T

t=1 JtKt depends on the spec-

ification of G(Lt) and H(Lt−1, A). As mentioned previously, a natural specification of G(Lt) is

{L1t, L2t, . . . , Ljt}. If E[gj(Lt)|Lt−1, At−1] is then modeled with a saturated GLM of Ljt on At−1

only, andH(Lt−1, A) is defined as a set of dummy variables for each possible sequence of future treat-

ments interacted with each possible history of past treatments, the balancing conditions in equation

(14) would be equivalent to those for the CBPS method.

With residual balancing, however,G(Lt), E[gj(Lt)|Lt−1, At−1], andH(Lt−1, A) can be specified

more flexibly. For example, when a parsimonious GLM is used to fit E[gj(Lt)|Lt−1, At−1], and only

the Lt regressors of gj(Lt) and T − t+1 future treatments are included inH(Lt−1, A), the number

of balancing conditions will be nc = J
∑T

t=1(T − t + 1 + Lt), which is substantially smaller than

nCBPS
c . In large and even moderately sized samples, these balancing conditions can often be satisfied

exactly.

4 Simulation Experiments

In this section, we conduct a set of simulation studies to assess the performance of residual balanc-

ing for estimating marginal effects with (a) a binary time-varying treatment under correct model

specification, (b) a binary time-varying treatment under incorrect model specification, (c) a contin-

uous time-varying treatment under correct model specification, and (d) a continuous time-varying

treatment under incorrect model specification. In each of these four settings, we compare residual

balancing with four variants of IPW: conventional IPW with weights estimated from GLMs (IPW-

GLM), IPWwith weights estimated from GLMs and then censored (IPW-GLM-Censored), IPWwith

weights estimated from CBPS (IPW-CBPS), and as a benchmark, IPWwith weights based on the true

exposure probabilities (IPW-Truth). Because the CBPS method has not been extended for continu-

ous treatments in the time-varying setting, we assess the performance of IPW-CBPS only for binary

treatments.

The data generating process (DGP) in our simulations is similar to that of Imai and Ratkovic

(2015). It involves four time-varying covariates measured at T = 3 time periods with a sample of

n = 1, 000. At each time t, the covariates Lt are determined by treatment at time t − 1 and a

multiplicative error: Lt = (Utε1t, Utε2t, |Utε3t|, |Utε4t|), where U1 = 1, Ut = (5/3) + (2/3)At−1
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for t > 1 and εjt ∼ N(0, 1) for 1 ≤ j ≤ 4. Treatment at each time t depends on prior

treatment at time t − 1 and the covariates Lt. Specifically, when treatment is binary, it is gen-

erated as a Bernoulli draw with probability p = logit−1[−At−1 + γTLt + (−0.5)t], and when

treatment is continuous, it is generated as At ∼ N(µt = −At−1 + γTLt + (−0.5)t, σ2
t = 22),

where A0 = 0 and γ = α(1,−0.5, 0.25, 0.1)T . Here, we use the α parameter to control the

level of treatment-outcome confounding. We consider two values of α, 0.4 and 0.8, correspond-

ing to scenarios where treatment-outcome confounding is weak and strong, respectively. Finally,

the outcome is generated as Y ∼ N(µ = 250 − 10
∑3

t=1At +
∑3

t=1 δ
TLt, σ

2 = 52), where

δ = (27.4, 13.7, 13.7, 13.7)T . To assess the impact of model misspecification, we use the same DGP,

but we recode the “observed” covariates as nonlinear transformations of the “true” covariates: specif-

ically, L∗t = (L3
1t, 6 · L2t, log(L3t + 1), 1/(L4t + 1))T . We then use only the transformed covari-

ates, L∗t , to implement IPW, its variants, and residual balancing. For IPW and its variants, using the

transformed covariates leads to misspecification of the treatment assignment model. For residual

balancing, the conditional mean model for L∗jt is still correct when treatment is binary but incorrect

when treatment is continuous. However, in both cases, using the transformed covariates (instead of

the original covariates) leads to misspecification of the balancing conditions.

For each scenario described previously, we generate 2,500 random samples. Then, for each sam-

ple, we construct weights using IPW-GLM, IPW-GLM-Censored, IPW-CBPS, and residual balanc-

ing. With IPW-GLM, we estimate the weights using logistic regression for binary treatments and

normal linear models for continuous treatments, assuming homoskedastic errors. With IPW-GLM-

Censored, we follow Cole and Hernán’s (2008) example and censor weights at the 1st and 99th per-

centiles. With IPW-CBPS, we estimate weights using the methods proposed by Imai and Ratkovic

(2015) with the function CBMSM() in the R package CBPS. With residual balancing,G(Lt) = Lt, and

the residual terms are estimated from linear models for Lt with prior treatment At−1 as a regressor,

and H(Lt−1, A) includes At as well as the regressors in the model for Lt (i.e., 1 and At−1). Finally,

with each set of weights, we fit anMSMby regressing the outcome Y on the three treatment variables

{A1, A2, A3} and denote their coefficient estimates as β̂1, β̂2, and β̂3. We obtain the true values of

these coefficients by simulating potential outcomes with the g-computation formula, regressing them

on the treatment variables, and averaging their coefficients over a large number of simulations. The

performance of each method is evaluated using the simulated sampling distributions of β̂1, β̂2, and
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β̂3.

Figure 2 presents results from simulations with a binary treatment. Specifically, this figure dis-

plays a set of violin plots, which show the sampling distributions of β̂1, β̂2, and β̂3 centered at the

true values of these coefficients. In these plots, black dots represent means of the sampling distri-

butions, and the shaded distributions highlight the estimator with the smallest root mean squared

error (RMSE) in each scenario. In this figure, the first two panels show the sampling distributions of

the parameter estimates under correct model specification. Comparing the first and second panels,

we see that IPW and its variants suffer from finite-sample bias and may have skewed sampling dis-

tributions, especially when the covariates are strongly predictive of treatment. By contrast, residual

balancing is roughly unbiased, and its estimates appear approximately normally distributed, regard-

less of the level of confounding. Second, the results indicate that residual balancing is much more

efficient than IPW-GLM, especially when the level of confounding is high. In addition, with a high

level of confounding, both IPW-GLM-Censored and IPW-CBPS yield much less variable estimates

than IPW-GLM, but this gain in precision comes at the expense of greater bias. Residual balancing,

by contrast, improves efficiency without inducing bias.

The last two panels of Figure 2 show the sampling distributions of parameter estimates undermis-

specified models where Lt is measured incorrectly. In these simulations, the treatment assignment

models for IPW and the balancing conditions for residual balancing are misspecified. As indicated by

its extreme level of sampling variation, IPW-GLM is highly unstable whenmodels for the conditional

probability of treatment are misspecified. Consistent with Imai and Ratkovic (2015), IPW-CBPS ap-

pears more robust to model misspecification, as reflected in its substantially smaller sampling varia-

tion compared with IPW-GLM. However, this improvement in precision comes at the cost of greater

bias. In addition, censoring the inverse probability weights also appears to substantially improve the

method’s performance in the presence of misspecification. In fact, IPW-GLM-Censored outperforms

IPW-CBPS in these simulations. Nevertheless, despite the improvements achieved by censoring the

weights or using CBPS, residual balancing consistently produces the most accurate and efficient es-

timates across nearly all scenarios, even though its balancing conditions are incorrectly specified.
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Figure 3 presents another set of violin plots based on simulations with a continuous treatment .

As shown in the first two panels, when both the treatment assignment models and the confounder

models are correctly specified, the bias for IPW and its variants increases substantially with the level

of confounding. Residual balancing, by contrast, is approximately unbiased across both levels of

confounding. Moreover, residual balancing consistently outperforms IPW and its variants in terms

of efficiency. For example, residual balancing is the most accurate and precise estimator for β2 and

β3 under both high and low levels of confounding, and for β1, the performance of residual balancing

is comparable to that of IPW-GLM-Censored.

The last two panels of Figure 3 present sampling distributions under misspecified models where

Lt is measured incorrectly. In these simulations, the treatment assignment models for IPW are mis-

specified, as are both the confounder models and the balancing conditions used with residual bal-

ancing. Consistent with the results discussed previously, this figure also indicates that IPW-GLM is

extremely biased and inefficient under incorrect models for treatment, that censoring the weights

reduces bias and improves efficiency, and that residual balancing yields by far the most accurate and

efficient estimator among all methods. Residual balancing even outperforms IPW based on the true

treatment densities, even though its confounder models and balancing conditions are both misspec-

ified.

5 The Cumulative Effect of Negative Advertising on Vote

Shares

In this section, we illustrate residual balancing by estimating the cumulative effect of negative cam-

paign advertising on election outcomes (Lau, Sigelman and Rovner 2007; Blackwell 2013; Imai and

Ratkovic 2015). Drawing on U.S. senate and gubernatorial elections from 2000 to 2006, Blackwell

(2013) used MSMs with IPW to evaluate the cumulative effects of negative campaign advertising on

election outcomes for 114 Democratic candidates. MSMs are appropriate for this problem because

campaign advertising is a dynamic process plagued by post-treatment confounding. For example,

candidates adjust their campaign strategies on the basis of current polling results, where trailing can-

didates are more likely to “go negative” than leading candidates. At the same time, polling results
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change over time and are likely affected by a candidate’s previous use of negative advertising.

Treatment, At, in this analysis is the proportion of campaign advertisements that are “negative”

(i.e., that mention the opposing candidate) in each campaign-week. Because IPW tends to preform

poorly with continuous treatments, we also consider a binary version of treatment, Bt, for which

the proportion of negative advertisements is dichotomized using a cutoff of 10%, as in Blackwell

(2013). The time-varying confounders, Lt, included in this analysis are the Democratic share in the

polls and the share of undecided voters in the previous campaign-week. This analysis also uses a set

of baseline confounders, X , including total campaign length, election year, incumbency status, and

whether the election is for the senate or governor’s office. The outcome, Y , is the Democratic share

of the two-party vote.

Following Imai and Ratkovic (2015), we focus on the final five weeks preceding the election and

estimate an MSM for the binary version of treatment with form

E[Y (b)|X] = θ0 + θ1cum(b) + θ2V · cum(b) + θT3X, (17)

and an MSM for the continuous treatment with form

E[Y (a)|X] = β0 + β1avg(a) + β2V · avg(a) + θT3X. (18)

In thesemodels, cum(b) denotes the total number of campaign-weeks forwhichmore than 10% of the

candidate’s advertising was negative, avg(a) denotes the average proportion of advertisements that

were negative over the final fiveweeks of the campaign, V is an indicator of incumbency status used to

construct interaction terms that allow the effect of negative advertising to differ between incumbents

and nonincumbents.5 Thus, the effect of an additional week with more than 10% negative advertising

for nonincumbents is θ1, and for incumbents, it is θ1+θ2. Similarly, β1 and β1+β2 correspond to the

effects of a 1 percentage point increase in negative advertising for nonincumbents and incumbents,

respectively. To facilitate comparison of results across the different versions of treatment, we report

estimates for the effects of a 10 percentage point increase in negative advertising—that is, 10β1 and

10(β1 + β2).

We estimate these models with both IPW methods and residual balancing. Specifically, we first
5In equations (17) and (18), the “main” effect of V is captured in the term θT3 X .
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Table 1: Estimated Marginal Effects of Negative Advertising on the Candidate’s Vote Share

Estimator
Dichotomized Treatment Continuous Treatment

Nonincumbent Incumbent Nonincumbent Incumbent

IPW-GLM 1.42 (0.43; 0.49) -1.73 (0.47; 0.55) 0.80 (0.28; 0.32) -1.15 (0.31; 0.34)

IPW-CBPS 0.78 (0.89; 0.87) -2.03 (0.41; 0.53)

Residual
Balancing 0.98 (0.54; 0.68) -1.67 (0.46; 0.68) 0.49 (0.32; 0.43) -0.99 (0.36; 0.43)

Note: For the dichotomized treatment, results represent the estimated marginal effects of an addi-
tional week with more than 10% negative advertising. For the continuous treatment, results repre-
sent the estimated marginal effects of a 10 percentage point increase in the average proportion of
negative advertisements across all campaign-weeks. The two numbers in each parenthesis are the
robust (i.e., “sandwich”) and jackknife standard errors, respectively.

implement IPW-GLM by fitting, at each time point, a logistic regression of the dichotomized treat-

ment on both time-varying confounders and baseline confounders, and then constructing the inverse

probability weights using equation (5). Second, we implement IPW-CBPS with the same treatment

assignment model using the function CBMSM() in the R package CBPS. Finally, we implement resid-

ual balancing by, first, fitting linear models for each covariate in Lt (t ≥ 2) with lagged values of

treatment and the time-varying confounders as regressors, and then extracting residual terms δ̂(Lt).

For each covariate in L1, the residual term is computed as the deviation from its sample mean. Next,

we find a set of minimum entropy weights such that, in the weighted sample, δ̂(Lt) is orthogonal to

treatment at time t and the regressors of Ljt. We compute estimates of standard errors using both

the robust (i.e., “sandwich”) variance estimator6 and the jackknife method.7 R code for implementing

residual balancing in this analysis is available in Part C of the Supplementary Material.

Results from these analyses are presented in Table 1, where the first two columns contain IPW-

GLM, IPW-CBPS, and residual balancing estimates based on the dichotomized version of treatment.
6In Part B of the Supplementary Material, we report a set of simulation results on the performance of the robust

variance estimator for IPW-GLM, IPW-GLM-Censored, IPW-CBPS, and residual balancing. We find that the robust
variance estimator is consistently conservative for residual balancing. For IPW and its variants, the robust variance
estimator appears to sometimes over-estimate and other times under-estimate the true sampling variance, depending on
the particular scenario.

7When possible, the nonparametric bootstrap can also be used with residual balancing and IPW. However, because of
the small sample size of the campaign advertising dataset, the residual balancing algorithmdoes not converge in about 25%
of the bootstrapped samples, likely because the convex hull of {ci; 1 ≤ i ≤ n} does not contain 0 in those cases. Because
it is dubious to use a variance estimate based on a nonrandom fraction of boostrapped samples, we report standard errors
from only the robust variance estimator and the jackknife method.
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For nonincumbent candidates, these results suggest that the effect of negative advertising is positive.

However, both IPW-CBPS and residual balancing yield point estimates that are considerably smaller

than IPW-GLM.While IPW-GLM suggests that an additional week with more than 10% negative ad-

vertising increases a candidate’s vote share by 1.42 percentage points, on average, the estimated effect

is reduced to 0.78 percentage points for IPW-CBPS and 0.98 percentage points for residual balanc-

ing. For incumbent candidates, all threemethods indicate that negative advertising has a substantively

large negative effect on vote shares. Residual balancing, for example, suggests that an additional week

withmore than 10% negative advertising decreases a candidate’s vote share by 1.67 percentage points,

on average.

The last two columns of Table 1 present results based on the continuous version of treatment.

Because IPW-CBPS has not been extended for continuous treatments in the time-varying setting,

we focus on estimates from IPW-GLM and residual balancing. Overall, these results are quite con-

sistent with those based on the dichotomized treatment. For nonincumbents, the effect of negative

advertising appears to be positive, although the estimate from residual balancing is relatively small.

For incumbents, both methods suggest a sizable negative effect. According to the residual balancing

estimate, a 10 percentage point increase in the proportion of negative advertising throughout the

final five weeks of the campaign reduces a candidate’s vote share by about one percentage point, on

average.

6 TheControlledDirect Effect of SharedDemocracy onPublic

Support for War

In this section, we reanalyze data from Tomz and Weeks (2013) to estimate the controlled direct

effect (CDE) of shared democracy on public support for war, controlling for a respondent’s perceived

morality of war. With a nationally representative sample of 1,273 US adults, Tomz and Weeks (2013)

conducted a survey experiment to analyze the role of public opinion in the democratic peace, that

is, the empirical regularity that democracies almost never fight each other. In this experiment, they

presented respondents with a situation in which a country was developing nuclear weapons and,

when describing the situation, they randomly and independently varied three characteristics of the
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country: its political regime (whether it was a democracy), alliance status (whether it had signed a

military alliance with the United States), and economic ties (whether it had high levels of trade with

theUnited States). They then asked respondents about their levels of support for a preventivemilitary

strike against the country’s nuclear facilities. The authors found that individuals are substantially less

supportive of military action against democracies than against otherwise identical autocracies.

To investigate the causal mechanisms through which shared democracy reduces public support

forwar, Tomz andWeeks (2013) alsomeasured each respondent’s beliefs about the threat posed by the

potential adversary (threat), the cost of military intervention (cost), and the likelihood of victory (suc-

cess). In addition, the authors assessed each respondent’s moral concerns about using military force

(morality). With these data, they conducted a causal mediation analysis and found that shared democ-

racy reduces public support for war primarily by changing perceptions of the threat and morality of

using military force. In this analysis, the authors examined the role of each mediator separately by

assuming that they operate independently and do not influence one another. However, it is likely

that one’s perception of morality is partly influenced by beliefs about the threat, cost, and likelihood

of success, which also affect support for war directly. Thus, in the following analysis, we treat these

variables as post-treatment confounders and reassess the mediating role of morality accordingly.

In these data, the outcome, Y , is a measure of support for war on a five-point scale; treatment,A,

denotes whether the country developing nuclear weapons was presented as a democracy; the medi-

ator,M , is a dummy variable indicating whether the respondent thought it would be morally wrong

to strike; the baseline covariates X include dummy variables for each of the two other randomized

treatments (alliance status and economic ties) as well as a number of demographic and attitudinal

controls; and the post-treatment confounders Z include measures of the respondent’s beliefs about

threat, cost, and likelihood of success.8 We estimate the CDE of shared democracy, controlling for

perceptions of morality, using an MSM with form

E[Y (a,m)|X] = α0 + α1a+ α2m+ α3am+ αT
4X. (19)

In this model, we control for baseline covariates because, although treatment is randomly assigned,

they may still confound the mediator-outcome relationship.9 The controlled direct effect is given by
8For detailed descriptions of the variables included in L and Z , see Tomz and Weeks (2013, Table 5).
9Alternatively, these pretreatment confounders can be adjusted for using IPWor residual balancingweights. We adjust
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Table 2: Estimated CDE of Shared Democracy on Support forWar using IPW and Residual Balancing

Total Effect IPW Residual
Balancing

intercept 2.39 (0.05; 0.05) 3.12 (0.05; 0.06) 2.76 (0.05; 0.05)

shared democracy -0.35 (0.07; 0.07) -0.20 (0.07; 0.08) -0.36 (0.08; 0.08)

moral concerns -1.63 (0.14; 0.15) -1.20 (0.13; 0.13)

shared democracy * moral
concerns -0.05 (0.16; 0.16) 0.14 (0.16; 0.16)

Note: Coefficients of pretreatment covariates are omitted. For ease of interpretation, all pretreat-
ment covariates are centered at their means. The two numbers in each parenthesis are robust (i.e.,
“sandwich”) standard errors and jackknife standard errors, respectively.

CDE(m) = α1+α3m, where α1 measures the effect of shared democracy on support for war if none

of the respondents had moral reservations about military intervention and α1 + α3 measures the

effect of shared democracy on support for war if all respondents thought it would be morally wrong

to strike.

We estimate this model with both IPW-GLM and residual balancing weights. Specifically, we first

implement IPW-GLMbyfitting a logitmodel forM withX ,A, andZ as regressors, by fitting a second

logit model forM with only X and A as regressors, and then by using the fitted values from these

models to estimate a set of weights with the following form: sw†i =
P(M=mi|X=xi,A=ai)

P(M=mi|X=xi,A=ai,Z=zi)
. Second,

we implement residual balancing by fitting a linear model for each post-treatment confounder in

Z with X and A as regressors, computing residual terms δ̂(Z), and then finding a set of minimum

entropy weights such that, in the weighted sample, δ̂(Z) is orthogonal toM and the regressors of Z .

Standard errors are computed using the robust (i.e., “sandwich”) variance estimator and the jackknife

method. R code for implementing residual balancing in this analysis is available in Part C of the

Supplementary Material.

As a benchmark, the first column of Table 2 presents an estimate of the total treatment effect from

a regression of Y on X and A. Consistent with the original study, we find that shared democracy

significantly reduces public support for war—specifically, by 0.35 points on the five-point scale, or

about 0.25 standard deviations. The next two columns present IPW and residual balancing estimates,

for them directly in the MSM for the sake of statistical efficiency.
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respectively, for model (19). In this model, the “main effect” of shared democracy represents the

estimated CDE if respondents had no moral reservations about military intervention, and the sum of

this coefficient and the interaction term represents the estimated CDE if respondents did have moral

reservations.

IPW and residual balancing yield somewhat different estimates of these effects. According to

IPW, the estimated CDE of shared democracy is -0.20 if respondents had no moral concerns about

war, and it is -0.25 if respondents thought it was morally wrong to strike. According to residual

balancing, by contrast, the estimated CDE of shared democracy is -0.36 if respondents had no moral

concerns about war, and it is -0.22 if respondents thought military intervention was morally wrong.

Notwithstanding these differences, however, both IPW and residual balancing suggest that most of

the total effect is “direct,” that is, transmitted through pathways other than morality.

7 Discussion and Conclusion

Post-treatment confounding arises in analyses of both time-varying treatments and causal media-

tion, where it complicates the use of conventional regression, matching, and balancing methods for

causal inference. To adjust for this type of confounding, researchers most often use MSMs along

with the associated method of IPW estimation (Robins 1999; Robins, Hernan and Brumback 2000;

VanderWeele 2015). IPW, however, is highly sensitive tomodel misspecification, relatively inefficient,

susceptible to finite-sample bias, and difficult to use with continuous treatments. Several remedies

for these problems have been proposed, such as censoring the weights (Cole and Hernán 2008) or

constructing them with CBPS (Imai and Ratkovic 2014; 2015), but these corrections are not without

their own limitations.

In this article, we proposed the method of residual balancing for constructing weights that can

be used to estimate MSMs. Like IPW, residual balancing avoids the bias that afflicts conventional

methods of covariate adjustment when some or all of the covariates are post-treatment confounders.

In contrast to IPW, residual balancing does not require models for the conditional distribution of

exposure to treatment and/or a mediator. Rather, it entails modeling only the conditional means

of the post-treatment confounders, and because it simultaneously imposes covariate balancing and

minimum entropy conditions on the weights, the method is both more efficient and more robust
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to model misspecification than IPW. It is also much easier to use with continuous treatments, which

obviates the need for arbitrary quantile binning as is often employed in practice (e.g., Wodtke, Harding

and Elwert 2011; Blackwell 2013).

Residual balancing also appears to outperform IPW even when the weights are constructed with

CBPS, which also incorporate explicit balancing conditions when estimating the conditional proba-

bilities of exposure. The reason, we believe, is that IPW with CBPS is torn between two conflicting

goals. On the one hand, it imposes a parametric logistic model on the propensity score, which lim-

its the number of balancing conditions that can be satisfied with inverse probability weights. On

the other hand, it attempts to balance the time-varying confounders across all possible sequences

of future treatments within all possible histories of prior treatments, generating an extremely large

number of balancing conditions. Therefore, the search for covariate balancing weights is almost al-

ways an over-identified problem with CBPS, leading to weights that can at best satisfy the balancing

conditions approximately. In this situation, IPW with CBPS may remain biased if certain impor-

tant balancing conditions are not well satisfied in the weighted sample. By contrast, residual balanc-

ing does not impose a parametric structure on the conditional probability/density of the exposure.

Moreover, it models the conditional means of the time-varying confounders and balances only their

residuals across a parsimonious representation of future treatments and the observed past. There-

fore, the search for residual balancing weights is often an under-identified problem, leading to exact,

rather than approximate, balance in the weighted sample.

Despite its many advantages, residual balancing is still limited in several ways. First, it requires

modeling the conditional means of the post-treatment confounders (or transformations thereof). As

noted earlier, when these models are misspecified, the pseudo-population created by the residual

balancing weights will no longer mimic the original unweighted population, making estimates of

marginal effects biased for the target quantities of interest. This problem might be mitigated in prac-

tice by combining residual balancing with a sensitivity analysis to assess the robustness of estimates

to different parametric models for the post-treatment confounders. Another remedy might involve

fitting non- or semi-parametric models for E[g(Lt)|Lt−1, At−1], although this may potentially en-

gender inferential problems (e.g., a lack of
√
n-consistency; see Newey 1994) and thus additional

research is needed to better understand the method’s performance with these types of models for the

post-treatment confounders.
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Second, even when models for the conditional means of the post-treatment confounders are cor-

rectly specified, residual balancing estimates of marginal effects may still be biased if the balancing

conditions are insufficient. In practice, this bias can be mitigated by including more functions (e.g.,

cross-product and higher-order terms) in G(Lt). Nevertheless, if there are a large number of time-

varying confounders, inclusion of their cross-product and higher-order terms would multiply the

number of balancing conditions, making exact balance more difficult to achieve. In those cases, the

balancing conditions in equation (15) may need to be relaxed to allow for approximate, rather than

exact, balance (e.g., Wang and Zubizarreta Forthcoming). We leave this extension for future work.

Another important direction for future researchwill be to further investigate the theoretical prop-

erties of residual balancing. For example, consistency may be established if the method can be recast

as a form of IPW with treatment probabilities/densities estimated from a proper scoring rule (an ob-

jective function that is not necessarily the log-likelihood). As Zhao and Percival (2017) show, when

treatment is binary and the estimand is the average treatment effect on the treated (ATT), entropy

balancing weights can be recast as inverse probability weights estimated from a tailored objective

function that differs from the Bernoulli likelihood. However, this relationship does not hold when

the estimand is the average treatment effect (ATE). Specifically, Zhao (2019) shows that inverse proba-

bility weights for the ATE can be viewed as a set of covariate balancing weights only when a different

loss function (
∑

i(wi − 1) log(wi − 1) − wi), rather than the entropy loss (
∑

iwi logwi), is used

in the optimization problem. This result suggests that alternative loss functions may be required to

establish a formal link between residual balancing and IPW. Future work should therefore explore

the properties and performance of residual balancing with a variety of loss functions, including but

not limited to the entropy loss on which we focus in the present study.

These limitations notwithstanding, residual balancing appears to provide an efficient and ro-

bust method of constructing weights for MSMs. It should therefore find wide application in

analyses of time-varying treatments and causal mediation, wherever post-treatment confounding

presents itself. To facilitate its implementation in practice, we have developed an open-source

R package, rbw, for constructing residual balancing weights, which is available from GitHub:

https://github.com/xiangzhou09/rbw. A Stata package with similar functionality is also available

from GitHub: https://github.com/gtwodtke/rbw. In addition, Part C of the Supplementary Material

provides R code illustrating the use of rbw in our two empirical examples.
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A. Minimization of Relative Entropy

Following Hainmueller (2012), we use the method of Lagrange multipliers to find a set of weights rbwi that

minimize their relative entropy with the base weights qi subject to the balancing constraints. Substituting

δ̂(gj(lit)) for δ(gj(lit)) in equation (14) in the main text, the balancing constraints can be written as

n∑
i=1

rbwiĉir = 0, 1 ≤ r ≤ nc,

where ĉir is the rth element of ĉi = {δ̂(gj(lit))hk(li,t−1, ai); 1 ≤ j ≤ Jt, 1 ≤ k ≤ Kt, 1 ≤ t ≤ T}. In

addition, we impose a normalization constraint
∑

i rbwi = n such that the residual balancing weights sum to

the sample size. Thus, the primal optimization problem is

min
rwi

Lp =

n∑
i=1

rbwi log
rbwi
qi

+

nc∑
r=1

λr

n∑
i=1

rbwicir + λ0(

n∑
i=1

rbwi − n), (1)

where {λ1, . . . , λnc} are the Lagrange multipliers for the balancing constraints and λ0 is the Lagrange multi-

plier for the normalization constraint. Since the loss function Lp is strictly convex, the first order condition of

equation (1) implies that the solution for each weight is

rbw∗i =
nqi exp(−

∑nc
r=1 λrcir)∑N

i=1 qi exp(−
∑nc

r=1 λrcir)
. (2)
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Inserting equation (2) into Lp leads to the dual problem given by

max
λr

Ld = − log
( n∑
i=1

qi exp
(
−

nc∑
r=1

λrcir
))
,

or equivalently,

min
Z

Ld = log
(
Q′ exp

(
CZ
))
,

whereQ = [q1, q2, . . . , qn]
′,C = [c1, c2, . . . , cn]

′, andZ = −[λ1, λ2, . . . , λnc ]
′. Since both the gradient and

the Hessian have closed-form expressions, this problem can be solved using Newton’s method. Inserting the

solutions for λr into equation (2) yields the residual balancing weights.

B. Performance of the Robust (“Sandwich”) Variance Estimator

In most applications of marginal structural models (MSMs), standard errors are computed with the robust

(“sandwich”) variance estimator. In this section, we present a simulation study that evaluates the performance

of the robust variance estimator for MSM coefficients estimated via IPW-GLM, IPW-GLM-Censored, IPW-

CBPS, and residual balancing (under the same setup described in Section 4 of the main text). The results are

shown in Figures S1-S4, where the box plots display the sampling distributions of the robust standard errors

divided by the true standard errors estimated from the 2,500 random samples. Across nearly all scenarios, and

especially when the confounder models are correctly specified, the robust variance estimator is conservative

for residual balancing, that is, it tends to overestimate the true sampling variance. Consequently, as Tables

S1-S2 show, when the confounder models are correctly specified, confidence intervals constructed with these

standard errors typically ensure true coverage rates that are at least equal to, and often exceed, the nominal

coverage rate. By contrast, results from this simulation study suggest that the robust variance estimator may

underestimate the true sampling variance under IPW-GLM in many different situations, even though it is ex-

pected to be conservative in large samples (Robins 1999; Robins, Hernan and Brumback 2000). As a result,

confidence intervals constructed with these standard errors often fall short of the nominal coverage rate, even

when the propensity score models are correctly specified.
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Figure S1: Performance of the robust (“sandwich”) variance estimator for a binary treatmentwith correctmodel
specification. The left and right panels correspond to the settings of “mild confounding” (α = 0.4) and “strong
confounding” (α = 0.8) respectively. Four different methods are compared: IPW based on the standard logistic
regression (IPW-GLM), IPW based on the standard logistic regression with weights censored at the 1st and
99th percentiles (IPW-GLM-Censored), IPW based on the CBPS (IPW-CBPS), and residual balancing. As a
benchmark, results from IPW based on true treatment probabilities (IPW-Truth) are also reported. The box
plots show the sampling distributions (from 2500 random samples) of the robust standard errors divided by
the true standard errors (estimated via the 2500 random samples).

Table S1: Coverage of 95% confidence intervals constructed with robust (“sandwich”) standard errors for a
binary treatment with correct model specification.

Mild Confounding Strong Confounding
β1 β2 β3 β1 β2 β3

IPW-Truth 0.94 0.92 0.93 0.90 0.85 0.88
IPW-GLM 0.95 0.97 0.97 0.92 0.90 0.90

IPW-GLM-Censored 0.94 0.95 0.97 0.93 0.79 0.82
IPW-CBPS 0.90 0.83 0.95 0.87 0.40 0.67

Residual Balancing 0.98 1.00 0.99 0.98 1.00 0.98
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Figure S2: Performance of the robust (“sandwich”) variance estimator for a continuous treatment with correct
model specification. The left and right panels correspond to the settings of “mild confounding” (α = 0.4)
and “strong confounding” (α = 0.8) respectively. Three different methods are compared: IPW based on the
standard logistic regression (IPW-GLM), IPW based on the standard logistic regression with weights censored
at the 1st and 99th percentiles (IPW-GLM-Censored), and residual balancing. As a benchmark, results from
IPW based on true treatment probabilities (IPW-Truth) are also reported. The box plots show the sampling
distributions (from 2500 random samples) of the robust standard errors divided by the true standard errors
(estimated via the 2500 random samples).

Table S2: Coverage of 95% confidence intervals constructed with robust (“sandwich”) standard errors for a
continuous treatment with correct model specification.

Mild Confounding Strong Confounding
β1 β2 β3 β1 β2 β3

IPW-Truth 0.72 0.63 0.56 0.68 0.39 0.34
IPW-GLM 0.91 0.85 0.88 0.8 0.58 0.66

IPW-GLM-Censored 0.91 0.72 0.77 0.83 0.27 0.40
Residual Balancing 0.98 0.99 1.00 0.97 0.99 0.99

4



Figure S3: Performance of the robust (“sandwich”) variance estimator for a binary treatment with incorrect
model specification. The left and right panels correspond to the settings of “mild confounding” (α = 0.4) and
“strong confounding” (α = 0.8) respectively. Four differentmethods are compared: IPW based on the standard
logistic regression (IPW-GLM), IPW based on the standard logistic regression with weights censored at the 1st
and 99th percentiles (IPW-GLM-Censored), IPW based on the CBPS (IPW-CBPS), and residual balancing. As
a benchmark, results from IPW based on true treatment probabilities (IPW-Truth) are also reported. The box
plots show the sampling distributions (from 2500 random samples) of the robust standard errors divided by
the true standard errors (estimated via the 2500 random samples).

Table S3: Coverage of 95% confidence intervals constructed with robust (“sandwich”) standard errors for a
binary treatment with incorrect model specification.

Mild Confounding Strong Confounding
β1 β2 β3 β1 β2 β3

IPW-Truth 0.94 0.92 0.93 0.90 0.85 0.88
IPW-GLM 0.64 0.69 0.69 0.44 0.49 0.44

IPW-GLM-Censored 0.84 0.39 0.57 0.88 0.60 0.74
IPW-CBPS 0.69 0.03 0.13 0.47 0.00 0.01

Residual Balancing 0.94 0.80 0.82 0.90 0.75 0.76
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Figure S4: Performance of the robust (“sandwich”) variance estimator for a continuous treatmentwith incorrect
model specification. The left and right panels correspond to the settings of “mild confounding” (α = 0.4)
and “strong confounding” (α = 0.8) respectively. Three different methods are compared: IPW based on the
standard logistic regression (IPW-GLM), IPW based on the standard logistic regression with weights censored
at the 1st and 99th percentiles (IPW-GLM-Censored), and residual balancing. As a benchmark, results from
IPW based on true treatment probabilities (IPW-Truth) are also reported. The box plots show the sampling
distributions (from 2500 random samples) of the robust standard errors divided by the true standard errors
(estimated via the 2500 random samples).

Table S4: Coverage of 95% confidence intervals constructed with robust (“sandwich”) standard errors for a
continuous treatment with incorrect model specification.

Mild Confounding Strong Confounding
β1 β2 β3 β1 β2 β3

IPW-Truth 0.72 0.63 0.56 0.68 0.39 0.34
IPW-GLM 0.48 0.11 0.06 0.29 0.02 0.02

IPW-GLM-Censored 0.33 0.00 0.00 0.10 0.00 0.00
Residual Balancing 0.89 0.69 0.72 0.87 0.64 0.66
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C. Illustrative R Code

In this appendix, we illustrate the implementation of residual balancing using the R package rbw for the two

empirical examples.

devtools::install_github("xiangzhou09/rbw")

library(rbw); library(survey)

## Example 1: The Cumulative Effect of Negative Advertising on Candidate's Voteshare ##

# models for time-varying confounders

m1 <- lm(dem.polls ~ (d.gone.neg.l1 + dem.polls.l1 + undother.l1) * factor(week),

data = campaign_long)

m2 <- lm(undother ~ (d.gone.neg.l1 + dem.polls.l1 + undother.l1) * factor(week),

data = campaign_long)

xmodels <- list(m1, m2)

# residual balancing weights

fit <- rbwPanel(exposure = d.gone.neg, xmodels = xmodels, id = id, time = week,

data = campaign_long)

campaign_wide <- merge(campaign_wide, fit$weights, by = "id")

# fitting a marginal structural model

rbw_design <- svydesign(ids = ~ 1, weights = ~ rbw, data = campaign_wide)

msm_rbw <- svyglm(demprcnt ~ cum_neg * deminc + camp.length + factor(year) + office,

design = rbw_design)

## Example 2: The Controlled Direct Effect of Shared Democracy on Public Support for War ##

haven::read_dta("peace.dta")

# models for post-treatment confounders

m1 <- lm(threatc ~ ally + trade + h1 + i1 + p1 + e1 + r1 + male + white + age + ed4 + democ,

data = peace)

m2 <- lm(cost ~ ally + trade + h1 + i1 + p1 + e1 + r1 + male + white + age + ed4 + democ,

data = peace)

m3 <- lm(successc ~ ally + trade + h1 + i1 + p1 + e1 + r1 + male + white + age + ed4 + democ,

data = peace)

# residual balancing weights

fit <- rbwMed(treatment = democ, mediator = immoral, zmodels = list(m1, m2, m3),

data = peace)

peace$rbw <- fit$weights

# fitting a marginal structural model

rbw_design <- svydesign(ids = ~ 1, weights = ~ rbw, data = peace)

msm_rbw <- svyglm(strike ~ ally + trade + h1 + i1 + p1 + e1 + r1 + male + white +

age + ed4 + democ + democ * immoral, design = rbw_design)
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