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Abstract

The study of causal mechanisms abounds in political science, and causal mediation analysis has

grown rapidly across different subfields. Yet, conventional methods for analyzing causal mech-

anisms are difficult to use when the causal effect of interest involves multiple mediators that are

potentially causally dependent—a common scenario in political science applications. This article

introduces a general framework for tracing causal paths with multiple mediators. In this frame-

work, the total effect of a treatment on an outcome is decomposed into a set of path-specific

effects (PSEs). We propose an imputation approach for estimating these PSEs from experimen-

tal and observational data, along with a set of bias formulas for conducting sensitivity analysis.

We illustrate this approach using an experimental study on issue framing effects and an obser-

vational study on the legacy of political violence. An open-source R package, paths, is available

for implementing the proposed methods.
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The study of causal mechanisms abounds in political science. In political psychology, for example,

scholars investigate the pathways through which the framing of political issues in mass media and

elite communications affects citizens’ attitudes and behavior (e.g. Druckman and Nelson 2003; Nel-

son et al. 1997a; Slothuus 2008). In political economy, a growing body of research examines the

mechanisms through which historical events shape contemporary social and political outcomes (e.g.,

Acharya et al. 2016b; Lupu and Peisakhin 2017; Mazumder 2018). Over the past decade, studies of

causal mediation have grown rapidly across different subfields of political science because empiri-

cal evaluation of the mechanisms hypothesized to transmit causal effects is central for testing and

refining theories of social and political processes (Acharya et al. 2016a; Imai et al. 2011).

A common approach to assessing causal mediation involves decomposing the total effect of a

treatment on an outcome into two components: an indirect effect operating through a mediator of

interest and a direct effect operating through alternative pathways. This is typically accomplished

via an additive decomposition in which the average total effect of treatment is partitioned into the

so-called average natural direct and indirect effects (Pearl 2001), which are also known as the average

direct effect (ADE) and average causal mediation effect (ACME), respectively (Imai et al. 2010, 2011).

Despite its conceptual simplicity, this approach faces an important limitation when the causal

effect of interest involves multiple, potentially overlapping, causal pathways—a common scenario

in political science applications. In particular, the ADE and ACME can only be identified under a

set of potentially strong assumptions: (i) no unobserved treatment-outcome confounding, (ii) no un-

observed treatment-mediator confounding, (iii) no unobserved mediator-outcome confounding, and

(iv) no treatment-induced mediator-outcome confounding (Imai et al. 2010; VanderWeele 2015). Of

these assumptions, (iv) is especially restrictive because it requires that there must not be any post-

treatment variables that affect both the mediator and outcome, whether they are observed or not.

Consequently, if two mediators are present and one mediator affects both the other mediator

and the outcome, the ACME for the second mediator cannot be identified without functional form

assumptions (Imai and Yamamoto 2013). To circumvent this problem, empirical studies have of-

ten assumed, sometimes implicitly, that different mediators are causally independent (i.e., they do
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not affect each other), an assumption that is strong, untestable, and unrealistic in many applications.

Moreover, when the causal effect of interest involves multiple mediators that are causally dependent,

the causal pathways through those mediators are not mutually exclusive, rendering their mediating

effects inseparable even conceptually. In fact, the overlapping of causal pathways via different media-

tors may require us to reformulate and reassess the “competing hypotheses” of underlying processes.

The prevailing practice of treating causally dependentmediators as independent can be bothmethod-

ologically problematic and theoretically inaccurate.

In this article, we show that in the presence of multiple mediators, a more fruitful approach to

analyzing causal mechanisms is to trace different causal paths explicitly. Specifically, we make three

novel contributions to the methodological toolbox for causal mediation analysis. First, drawing on

a previous identification result for path-specific effects (PSEs; Avin et al. 2005), we provide a general

framework for effect decomposition with an arbitrary number of mediators. In particular, we pro-

vide, for the first time, a general formula that decomposes the total effect of treatment intoK+1 PSEs

— one “direct effect” andK mutually exclusive indirect effects — in the presence ofK causally or-

dered mediators. This is in contrast to the previous literature on PSEs, which has focused on the case

of two mediators (e.g., Albert and Nelson 2011; Daniel et al. 2015). TheK +1 PSEs are nonparamet-

rically identified under the assumption that observed variables can be arranged in a directed acyclic

graph (DAG) and, in this DAG, no unobserved confounding exists for any of the treatment-outcome,

treatment-mediator, and mediator-outcome relationships (Pearl 2009).

Second, we develop a new method for estimating the PSEs. Our proposed method, based on

model-assisted imputation of counterfactual outcomes, holds several distinct advantages over con-

ventional methods for analyzing causal mediation (e.g., Baron and Kenny 1986; Imai et al. 2011).

First, it can accommodate either one or multiple mediators, whether different mediators are treated

as causally independent, causally dependent, or analyzed as a whole. The proposed approach can

therefore be applied to broader empirical settings than are possible with existing approaches. Sec-

ond, in contrast to the simulation approach developed by Imai et al. (2010), the imputation approach

does not require modeling the conditional distributions of the mediators given their antecedent vari-

3



ables. This is especially appealing because in many political science applications, the mediators of

interest are continuous and/or multivariate, making it practically difficult to model their conditional

distributions. The imputation approach, instead, involves modeling only the conditionalmeans of the

outcome variable itself, given treatment, pretreatment confounders, and varying sets of mediators.

Estimating conditional means as opposed to distributions is substantially less demanding in terms

of both statistical power and the assumptions required, and the analyst needs correct modeling as-

sumptions only for the outcome variable, not for any of the mediators. Moreover, these models can

be fit via any method of the analyst’s choice, be it linear regression, generalized linear models (GLM),

or, as we will illustrate, data-adaptive methods such as Bayesian Additive Regression Trees (BART;

Chipman et al. 2010; Hill 2011).

Third, we propose a set of bias formulas for assessing the sensitivity of estimated PSEs to the

unconfoundedness assumptions required. Although these assumptions are customary in the media-

tion literature (VanderWeele 2015), it is never possible to completely rule out the presence of unob-

served confounding in many empirical settings (Bullock et al. 2010). To address this limitation, we

develop a bias factor approach for conducting sensitivity analysis with regard to unobserved con-

founding for the mediator-outcome relationships —which may occur in both experimental and ob-

servational studies. As an extension of the bias formulas developed by VanderWeele (2010) for the

single-mediator setting, our approach provides a set of general-purpose formulas that allow us to

calculate potential biases of the estimated PSEs due to unobserved confounding — regardless of the

models used to estimate the PSEs.

Taken together, these methodological innovations represent a new, more general framework for

analyzing causal mechanisms in empirical political science research. Our framework improves upon

existing approaches (e.g. Imai et al., 2011) by allowing multiple mediators, offering a finer decompo-

sition of the treatment effect into multiple PSEs, each corresponding to one of the mediators, and

providing a method for sensitivity analysis. Applied researchers can adopt our framework to make

richer inferences about how causal effects operate through multiple pathways. To facilitate practice,

we offer an open-source R package, paths, for implementing all of the proposed methods, which is

4



available at the Comprehensive R Archive Network (CRAN).

The rest of the paper is organized as follows. For ease of exposition, we start with the case of

two causally ordered mediators, for which we present a decomposition of the total effect of treat-

ment into a set of PSEs, outline the assumptions needed for identifying these PSEs, and introduce

an imputation approach to estimation. We next generalize the framework for defining, identifying,

and estimating PSEs to the setting with an arbitrary number of causally ordered mediators. We then

describe the bias factor approach to sensitivity analysis. Finally, we illustrate these methods using

several empirical examples where researchers have endeavored to disentangle causal pathways in the

presence of multiple causally dependent mediators.

Path-Specific Causal Effects

In political psychology, scholars study how issue framing, i.e., a presenter’s deliberate emphasis on

certain aspects of a political issue, shapes citizens’ attitudes and behavior (Chong andDruckman 2007;

Nelson et al. 1997b). An important debate in this literature concernswhether issue framing affects cit-

izens’ opinions by altering their beliefs about the issue (hereafter the “belief” mediator) or by changing

their perceived importance of different issue-related considerations (hereafter the “importance” me-

diator) (e.g., Druckman andNelson 2003; Nelson et al. 1997a; Nelson andOxley 1999; Slothuus 2008).

To assess the relative importance of these two mechanisms, Slothuus (2008) conducted a survey ex-

periment on a sample of 408 Danish students. Specifically, the author examined how two versions of

a newspaper article on a social welfare reform bill—one highlighting the reform’s purported positive

effect on job creation (the “job frame”) and the other emphasizing its negative impact on the poor (the

“poor frame”)—affect the respondent’s support for the reform. After randomly assigning respondents

to either the job frame or the poor frame, the author asked them a series of five-point-scale questions

to measure (a) their beliefs about why some people receive welfare benefits, or who is responsible

for the situation of welfare recipients and (b) their perceived importance of competing issue-related

considerations (e.g., work incentives versus living conditions among the poor). Finally, the author
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measured the outcome variable by asking the respondents whether and to what extent they support

the proposed welfare reform.

In this study, the author implicitly assumes that the belief mediator and the importance mediator

are causally independent. This assumption would be violated if, for example, issue framing induced

respondents to modify their beliefs about why some people received welfare benefits, and, in turn,

their modified beliefs caused a change in their perceived importance of competing considerations. In

fact, this is a major concern in the framing effects literature. As Miller (2007, 711-712) points out on

the basis of her experimental study, “individuals use information obtained from themedia to evaluate

how important issues are,” and “whenmedia exposure to an issue causes negative emotional reactions

about the issue, increased importance judgments will follow.” Moreover, Imai and Yamamoto’s (2013,

153) reanalyses of Slothuus’s data suggest that the independence assumption is unlikely to hold in this

application. If this is the case, the ACME of the importance mediator cannot be nonparametrically

identified, since the belief mediator acts as a treatment-induced confounder between the importance

mediator and the outcome. Yet, as we will show, we can still identify the strength of the causal path

issue frame→importance→support for welfare reform, which represents the amount of treatment effect

operating via the perceived importance of competing considerations above and beyond that operating

via the respondent’s issue-related beliefs. This quantity is substantively important because it reflects

the independent role of the importance mediator in transmitting the framing effect.

Path-Specific Effects

WeuseA to denote a binary treatment, Y an outcome of interest, andX a vector of observed pretreat-

ment confounders. Although our framework can accommodate an arbitrary number of mediators,

for ease of exposition, we first consider the case where two (sets of) mediators, M1 andM2, lie on

the causal paths from A to Y . We assume thatM1 precedesM2, such that no component ofM2 can

causally affect any component ofM1.1 A causal DAG that is consistent with the hypothesized rela-
1Note that M1 and M2 can each consist of multiple variables and that the causal relationships

among the component variables can be left unspecified, as long asM1 causally precedesM2.

6



Figure 1: Causal Relationships with Two Causally Ordered Mediators.

X A M2M1 Y

(a) A M2M1 Y

(c) A M2M1 Y

(b) A M2M1 Y

(d) A M2M1 Y

Note: A denotes the treatment, Y denotes the outcome of interest,X denotes a vector of pretreatment covari-
ates, andM1 andM2 denote two causally ordered mediators. The confounding arcs between X and each of
the other nodes are omitted in subgraphs (a)-(d).

tionships between these variables is shown in the top panel of Figure 1. In Slothuus’s (2008) study

on issue framing effects, A represents the issue frame presented to the respondent, Y represents the

respondent’s support for the proposed welfare reform,M1 represents the respondent’s beliefs about

why some people receive welfare benefits, andM2 represents the respondent’s perceived importance

of competing considerations.

In this DAG, four possible paths exist from the treatment to the outcome, as shown in the lower

panels of Figure 1: (a)A → Y ; (b)A → M2 → Y ; (c)A → M1 → Y ; and (d)A → M1 → M2 → Y .

If the mediatorsM1 andM2 are causally independent, i.e., if they do not affect each other, the last

path does not exist. In this case, the total effect ofA on Y can be partitioned into the effect operating

throughM1 (A → M1 → Y ), the effect operating throughM2 (A → M2 → Y ), and a “direct” effect

not operating throughM1 orM2 (A → Y ) (Imai and Yamamoto, 2013). However, in the general case

whereM1 andM2 are causally dependent, it is not possible to partition the mediating effects ofM1

andM2 into their respective components, since some of the total effect of A on Y operates through

bothM1 andM2, as represented by the path A → M1 → M2 → Y .

To define the PSEs formally, we use the potential outcomes notation. Specifically, we use
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Y (a,m1,m2) to denote the potential outcome under treatment status a and mediator valuesM1 =

m1 and M2 = m2, M2(a,m1) to denote the potential value of the mediator M2 under treatment

status a and mediator value M1 = m1, and M1(a) to denote the potential value of the mediator

M1 under treatment status a. This notation allows us to define nested counterfactuals. For example,

Y
(
1,M1(0),M2(0,M1(0))

)
represents the potential outcome in the hypothetical scenariowhere the

unit was treated but the mediatorsM1 andM2 were set to values they would have taken had the sub-

ject not been treated. Further, if we let Y (a) denote the potential outcome when treatment status is

set to a and the mediatorsM1 andM2 take on their “natural” values under treatment status a (i.e.,

M1(a) andM2(a,M1(a))), we have Y (a) = Y
(
a,M1(a),M2(a,M1(a))

)
by definition.

Under the above notation, the average total effect (henceforth ATE) of A on Y can be written as

a telescoping sum (VanderWeele et al. 2014):

E[Y (1)− Y (0)] = E[Y
(
1,M1(1),M2(1,M1(1))

)
− Y

(
0,M1(0),M2(0,M1(0))

)
]

= E[Y
(
1,M1(0),M2(0,M1(0))

)
− Y

(
0,M1(0),M2(0,M1(0))]︸ ︷︷ ︸

A→Y

+ E[Y
(
1,M1(0),M2(1,M1(0))

)
− Y

(
1,M1(0),M2(0,M1(0))

)
]︸ ︷︷ ︸

A→M2→Y

+ E[Y
(
1,M1(1),M2(1,M1(1))

)
− Y

(
1,M1(0),M2(1,M1(0))

)
]︸ ︷︷ ︸

A→M1→Y ;A→M1→M2→Y

≡ τA→Y + τA→M2→Y + τA→M1⇝Y , (1)

The three terms in equation (1) represent the PSEs for causal paths A → Y , A → M2 → Y , and

A → M1 ⇝ Y , respectively, with a straight arrow denoting a single direct path and a squiggly

arrow representing a combination of multiple paths.2 Specifically, the first term (τA→Y ) corresponds
2Equation (1) is not the onlyway of defining the PSEs for the causal pathsA → Y ,A → M2 → Y ,

and A → M1 ⇝ Y . An alternative decomposition, for example, can be obtained by switching the

0s and 1s in equation (1) and then flipping the signs of both sides. In general, when the treatment

and the mediators have an interaction effect on the outcome, the PSEs defined by these alternative

decompositions will be different. We focus on equation (1) in the main text and illustrate the above
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to the amount of treatment effect if the mediatorsM1 andM2 were set to values they would have

taken under treatment status A = 0 for each unit, representing the causal path A → Y . The second

term (τA→M2 →Y ) corresponds to the amount of treatment effect operating through the mediatorM2

under treatment status A = 1 and mediator statusM1 = M1(0), representing the causal path A →

M2 → Y . The last term (τA→M1⇝Y ) corresponds to the amount of treatment effect operating through

the mediatorM1 under treatment status A = 1. It represents the causal path A → M1 ⇝ Y , or the

combination of the causal paths A → M1 → Y and A → M1 → M2 → Y .

Although four causal paths exist from A to Y , equation (1) partitions the ATE into only three

components: τA→Y , τA→M2→Y , and τA→M1⇝Y . In particular, the last component τA→M1⇝Y encompasses

both the causal pathA → M1 → Y and the causal pathA → M1 → M2 → Y . It reflects the overall

mediating effect ofM1, some of which may also operate throughM2. By contrast, the component

τA→M2→Y captures only the causal path A → M2 → Y , but not A → M1 → M2 → Y . Thus it

should not be interpreted as the overall mediating effect ofM2. Instead, it reflects the “independent”

mediating effect ofM2, i.e., the mediating effect ofM2 above and beyond that ofM1.

Thus, in the issue framing example, τA→Y reflects the direct effect of issue framing on the respon-

dent’s support for welfare reform, i.e., the fraction of the total effect operating neither through the

belief mediator nor through the importance mediator; τA→M2 →Y reflects the effect of issue framing

operating only through changing the respondent’s perceived importance of competing considera-

tions; and τA→M1⇝Y reflects the effect of issue framing operating through changing the respondent’s

beliefs about the issue, regardless of whether the modified beliefs subsequently change the perceived

importance of competing considerations.

Identification

Following Pearl (2009), we use a DAG to denote a nonparametric structural equation model with

mutually independent errors. In this framework, the top panel of Figure 1 corresponds to a set of

nonparametric structural equations that underlie our key identification assumption: no confounding

alternative decomposition in Supporting Information (SI) F.
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exists for any of the treatment-mediator, treatment-outcome, andmediator-outcome relationships after con-

ditioning on their antecedent variables (see SI A). This assumption is much stronger than the standard

ignorability assumption that researchers often invoke to identify the ATE in observational studies.

Unlike the standard ignorability assumption, which stipulates the conditional independence between

treatment and potential outcomes, this assumption involves multiple conditional independence re-

lationships, some of which pertain to conditional independence between the so-called “cross-world

counterfactuals,” such as Y (a,m1,m2) ⊥⊥ M1(a1)|X,A for any a, a1,m1,m2. Such cross-world

independence relationships will generally be violated when posttreatment confounders are present

for any of the mediator-outcome relationships (Richardson and Robins 2013). Thus, in practice, to

reduce the bias due to potential posttreatment confounding, we recommend that all observed post-

treatment variables be included as components ofM1 orM2, depending on the hypothesized causal

order among these variables. Finally, we note that our identification assumption does not rule out

all forms of unobserved confounding for the causal effects of X on its descendants. For example,

unobserved variables are permitted (although not shown) in Figure 1 that affect bothX and Y .

Under the above assumption, it can be shown that the PSEs defined by equation (1) are non-

parametrically identified (Avin et al. 2005). To identify the components of equation (1), it suffices to

identify the counterfactual expectationE[Y
(
a,M1(a1),M2(a2,M1(a1))

)
] for any combination of a,

a1, a2 ∈ {0, 1}. As proved in SI A, this quantity can be written as a function of observed variables:

E[Y
(
a,M1(a1),M2(a2,M1(a1))

)
]

=

∫∫∫
E[Y |x, a,m1,m2]f(m2|x, a2,m1)f(m1|x, a1)f(x)dm2dm1dx, (2)

where f(·) denotes a probability density/mass function. This equation generalizes Pearl’s (2001) me-

diation formula to the case of two (sets of) causally dependent mediators (see also Daniel et al. 2015).

Note that the last term in equation (1), i.e., τA→M1⇝Y , reflects the combination of the causal paths

A → M1 → Y and A → M1 → M2 → Y . Without additional assumptions, the PSEs for the paths

A → M1 → Y andA → M1 → M2 → Y cannot be separately identified. In the issue framing study,
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for example, we can identify the overall mediating effect via the respondent’s beliefs about the issue

(A → M1 ⇝ Y ), but we cannot pinpoint howmuch of this mediating effect further operates through

the perceived importance of competing considerations (A → M1 → M2 → Y ). Similarly, we can

identify the “independent” mediating effect via the respondent’s perceived importance of competing

considerations (A → M2 → Y ), but we cannot gauge the overall effect of the importance mediator,

which involves both A → M2 → Y and A → M1 → M2 → Y . Nonetheless, the independent

mediating effect is arguably more interesting here because it reflects the effect of the importance

mediator above and beyond that of the belief mediator — an effect that would persist even if issue

framing did not affect the respondent’s beliefs about what had caused the plight of welfare recipients.

Comparison with Existing Approaches

Existing work on causal mediation analysis with multiple mediators has focused on the ACME via

each of the mediators, instead of the PSEs. For example, Imai and Yamamoto (2013) consider the

following decomposition of the ATE:

E[Y (1)− Y (0)] = E[Y (1,M1(1),M2(0,M1(0)))]− E[Y (0,M1(0),M2(0,M1(0)))]︸ ︷︷ ︸
A→Y ;A→M1→Y

+ E[Y (1,M1(1),M2(1,M1(1)))]− E[Y (1,M1(1),M2(0,M1(0)))]︸ ︷︷ ︸
A→M2→Y ;A→M1→M2→Y

≡ ADEM2(0) + ACMEM2(1), (3)

Here, ACMEM2(1) represents the amount of treatment effect operating throughM2 (under treatment

status A = 1), whether the effect also operates throughM1 or not. Similarly, ADEM2(0) reflects the

amount of treatment effect that does not operate throughM2, regardless ofM1.

The above decomposition is useful when the researcher’s substantive interest lies solely in the

mediatorM2, whereas the other mediatorM1 is purely a nuisance that needs to be accounted for due

to the confounding it causes betweenM2 and Y . A limitation of this approach, however, is that nei-

ther the ACME nor the ADE forM2 can be nonparametrically identified becauseM1 is a treatment-
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Table 1: Path-Specific Effects (PSEs) that Compose the Average Causal Mediation Effects (ACMEs)
and Average Direct Effects (ADEs) in the Presence of Two Causally Dependent Mediators.

ADE forM2 ACME forM2

ADE forM1 PSE for A → Y PSE for A → M2 → Y

ACME forM1 PSE for A → M1 → Y PSE for A → M1 → M2 → Y

Note: Under the assumption that the treatment and mediators do not have interaction effects (i.e. the no-
interaction assumption; Robins 2003), the PSE for each path is uniquely defined (i.e., they do not depend on
the reference levels chosen for the other paths), and each of the ADEs and ACMEs equals the sum of the two
component PSEs shown in the same row/column in the table. Without the no-interaction assumption, these
relationships still hold, although the rows and the columns correspond to different PSE decompositions. The
PSE decomposition defined by equation (1) corresponds to the rows; that is, τA→Y + τA→M2→Y=ADEM1(0), and
τA→M1⇝Y = ACMEM1(1).

induced confounder of the relationship between M2 and Y . Moreover, empirical researchers are

often in a situation where both M1 and M2 are of substantive interest, making it inappropriate to

treat the mediatorM1 as purely a nuisance.

In contrast, our proposed approach begins with the following alternative decomposition:

E[Y (1)− Y (0)] = E[Y
(
1,M1(0),M2(1,M1(0))

)
− Y

(
0,M1(0),M2(0,M1(0))]︸ ︷︷ ︸

A→Y ;A→M2→Y

+ E[Y
(
1,M1(1),M2(1,M1(1))

)
− Y

(
1,M1(0),M2(1,M1(0))

)
]︸ ︷︷ ︸

A→M1→Y ;A→M1→M2→Y

≡ ADEM1(0) + ACMEM1(1), (4)

where the two terms represent theADE andACMEwith respect toM1, rather thanM2. A comparison

of equation (4) with equation (1) reveals that ACMEM1(1) = τA→M1⇝Y and ADEM1(0) = τA→Y +

τA→M2→Y . Thus, our proposed approach allows us to estimate the amount of treatment effect that

operates throughM1 (i.e., ACMEM1(1)), and, furthermore, to decompose the ADE forM1 into the

effect operating throughM2 but not throughM1 (τA→M2→Y ) and the effect operating neither through

M1 nor throughM2 (τA→Y ).

Table 1 summarizes how the PSEs relate to the ACMEs and ADEs with respect toM1 andM2.

12



We can see that the PSEs generally represent further decompositions of the ACMEs and ADEs. The

table also shows that, if the mediators M1 and M2 are causally independent, i.e., if the causal path

A → M1 → M2 → Y (bottom right) does not exist, the ACMEs forM1 and forM2 will amount to

PSEs specific to these mediators. The prevailing practice of treating different mediators as causally

independent can therefore be seen as a special case of our approach. Thus, even in applications where

the analyst is willing to assume that different mediators are causally independent, our framework for

defining, identifying, and estimating PSEs can still be applied, except that the estimated PSEs can now

be equivalently interpreted as the overall indirect effects via the corresponding mediators.

Finally, we note that the PSEs are distinct from the controlled direct effect (CDE), an estimand

recently advocated for analyzing causal mechanisms in political science (e.g., Acharya et al. 2016a;

Zhou and Wodtke 2019). The CDE measures the strength of the causal relationship between a treat-

ment and outcome when a mediator is fixed at a given value for all units. Compared with the ACME,

an advantage of the CDE is that it can still be identified in the presence of posttreatment confounders

of the mediator-outcome relationship, provided that these confounders are observed. In practice, the

CDE is useful in contexts where it is reasonable to entertain a policy intervention that sets the me-

diator at a given value for all units. However, unlike the ACME and PSEs, the CDE does not directly

gauge the strengths of different causal paths from the treatment to the outcome.

Estimating Path-Specific Effects

To date, most estimation methods for causal mediation analysis have focused on the setting involv-

ing a single mediator or a set of mediators considered as a whole. In this case, the key quantity for

identifying the ACME and ADE is the nested counterfactual, E[Y (a,M(a∗))], whereM is the sole

mediator of interest, and a, a∗ ∈ {0, 1}. Various estimators have been proposed for this quantity

(e.g., Imai et al. 2010; Tchetgen Tchetgen and Shpitser 2012). In particular, Vansteelandt et al. (2012)

introduced an imputation method, which involves (a) fitting a model of the observed outcome con-

ditional on treatment, the mediator, and a set of pretreatment confounders, (b) using this model to
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impute the counterfactual outcome Y (a,M(a∗)) for each unit with treatment status a∗, and (c) fit-

ting a model of these imputed counterfactuals conditional on the pretreatment confounders. Albert

(2012) proposed a similar method, in which the first two steps are the same and the last step involves

an inverse-probability-of-treatment-weighted average of the imputed counterfactuals.

Here, we develop amethod for estimating the PSEs by extending these imputation-basedmethods

to the case of potential outcomes involving multiply nested counterfactuals. We start with the setting

of two causally ordered mediators, as shown in Figure 1, and discuss the general case of K(≥ 1)

causally ordered mediators in the next section.

An Imputation Approach

Consider equation (1). Because the PSEs τA→Y , τA→M2→Y , τA→M1⇝Y are governed by four counterfac-

tual means E[Y (0)], E[Y (1)], E[Y
(
1,M1(0),M2(0,M1(0))

)
], and E[Y

(
1,M1(0),M2(1,M1(0))

)
],

it suffices to estimate each of these latter quantities. Given the assumption of no unobserved con-

founding for the treatment-outcome relationship, the first two quantities, E[Y (0)] and E[Y (1)], can

be estimated via any conventional method of covariate adjustment, such as matching, weighting, or

regression. Or, in experimental studies where treatment is randomly assigned, they can be estimated

using simple averages of the observed outcome within the control and treatment groups.

Using the mediation formula (2), the latter two quantities, E[Y
(
1,M1(0),M2(0,M1(0))

)
] and

E[Y
(
1,M1(0),M2(1,M1(0))

)
], can be written as

E[Y
(
1,M1(0),M2(0,M1(0))

)
] = E

[
E
[
E[Y |X,A = 1,M1,M2]|X,A = 0

]]
(5)

E[Y
(
1,M1(0),M2(1,M1(0))

)
] = E

[
E
[
E[Y |X,A = 1,M1]|X,A = 0

]]
. (6)

A proof of these equations is given in SI B. Thus, to evaluate these nested counterfactuals, we need

only estimate (a) the conditional means E[Y |X,A = 1,M1,M2] and E[Y |X,A = 1,M1], and (b)

their own conditional means given the pretreatment confoundersX among the untreated units (A =

0). After these estimates are obtained, the outermost expectations in equations (5) and (6) can be
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estimated using their sample analogs.

Alternatively, the nested counterfactuals above can be written as (see SI B)

E[Y
(
1,M1(0),M2(0,M1(0))

)
] = E

[
E[Y |X,A = 1,M1,M2]

Pr[A = 0]

Pr[A = 0|X]

∣∣∣A = 0

]
(7)

E[Y
(
1,M1(0),M2(1,M1(0))

)
] = E

[
E[Y |X,A = 1,M1]

Pr[A = 0]

Pr[A = 0|X]

∣∣∣A = 0

]
. (8)

These equations suggest that to evaluate the nested counterfactuals, we need only estimate

E[Y |X,A = 1,M1,M2], E[Y |X,A = 1,M1], and the probability ratio Pr[A = 0]/Pr[A = 0|X].

After these estimates are obtained, the outer expectation in equations (7) and (8) can be estimated

using their sample analogs.

Hence, equations (5-6) and (7-8) suggest two different routes to estimating the nested counterfac-

tuals E[Y
(
1,M1(0),M2(0,M1(0))

)
] and E[Y

(
1,M1(0),M2(1,M1(0))

)
]. They can be seen as ex-

tensions of Vansteelandt et al.’s (2012) and Albert’s (2012) imputation-based estimators for the ACME

to the estimation of PSEs, respectively. Since the first procedure involves only model-based imputa-

tion and the second procedure involves both imputation and inverse probability weighting, we refer

to them as a “pure imputation estimator” and an “imputation-basedweighting estimator,” respectively.

An important advantage of our proposed estimators over existing approaches to causal mediation

(e.g., Imai et al. 2010) is that they do not require estimating the conditional densities/probabilities of

the mediators. Our approach therefore obviates the problem of high instability and model sensitivity

in the common empirical setting where the mediatorsM1 andM2 are multivariate and/or continu-

ous. Moreover, the proposed approach only requires the analyst to correctly specify models for the

outcome, not for any of the mediators. This will likely reduce the possibility of model misspecifi-

cation, since researchers often have better substantive understandings of the generative process for

the outcome variable itself than for the mediators. Below, we provide a step-by-step guide to the

implementation of these estimators in experimental and observational studies.
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Implementation

First, consider the experimental setting where treatment is randomly assigned. In this case, because

treatment statusA is independent of the pretreatment confoundersX , both equations (5-6) and equa-

tions (7-8) reduce to

E[Y
(
1,M1(0),M2(0,M1(0))

)
] = E

[
E[Y |X,A = 1,M1,M2]|A = 0

]
E[Y

(
1,M1(0),M2(1,M1(0))

)
] = E

[
E[Y |X,A = 1,M1]|A = 0

]
.

Thus, in experimental studies, the imputation approach can be implemented as follows:

1. EstimateE[Y (0)] andE[Y (1)] using sample averages of the observed outcomewithin the con-

trol and treatment groups.

2. Fit an outcome model conditional on the treatment A, the mediators M1 and M2, and the

pretreatment confounders X . For the control units, impute their counterfactual outcome

Y
(
1,M1(0),M2(0,M1(0))

)
by setting A = 1 (while using their observed values of X , M1,

andM2). The average of these imputed counterfactuals constitutes an estimate of the counter-

factual mean E[Y
(
1,M1(0),M2(0,M1(0))

)
].

3. Fit an outcome model conditional on the treatment A, the mediator M1, and the pre-

treatment confounders X . For the control units, impute their counterfactual outcome

Y
(
1,M1(0),M2(1,M1(0))

)
by setting A = 1 (while using their observed values of X ,M1).

The average of these imputed counterfactuals constitutes an estimate of the counterfactual

mean E[Y
(
1,M1(0),M2(1,M1(0))

)
].

4. Calculate the PSEs as defined in equation (1).

In practice, to reduce model dependence, data-adaptive/machine learning methods can be used to fit

the outcome models in steps 2 and 3. This can be useful for mitigating bias due to model misspecifi-

cation, especially when nonlinear or interaction effects are likely to exist (Glynn 2012). Approximate
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standard errors and confidence intervals can be constructed by bootstrapping steps 1-4.

In observational studies, the pure imputation estimator (equations 5-6) and the imputation-based

weighting estimator (equations 7-8) do not coincide. The pure imputation estimator can be imple-

mented as follows:

1. Fit an outcome model conditional on the treatment A and the pretreatment confounders

X . Estimate E[Y (0)] and E[Y (1)] by averaging the predicted values Ê[Y |X,A = 0] and

Ê[Y |X,A = 1] among all units, respectively.

2. Fit an outcome model conditional on the treatment A, the mediators M1 and M2, and the

pretreatment confounders X . For the untreated units, impute their counterfactual outcome

Y
(
1,M1(0),M2(0,M1(0))

)
by setting A = 1 (while using their observed values of X , M1,

andM2).

3. Fit a model of the imputed counterfactual Ŷ
(
1,M1(0),M2(0,M1(0))

)
conditional

on X among the untreated units, and obtain model-based predictions for all units.

The average of these predictions constitutes an estimate of the counterfactual mean

E[Y
(
1,M1(0),M2(0,M1(0))

)
].

4. Fit an outcome model conditional on the treatment A, the mediator M1, and the pre-

treatment confounders X . For the untreated units, impute their counterfactual outcome

Y
(
1,M1(0),M2(1,M1(0))

)
by setting A = 1 (while using their observed values of X and

M1).

5. Fit a model of the imputed counterfactual Ŷ
(
1,M1(0),M2(1,M1(0))

)
conditional

on X among the untreated units, and obtain model-based predictions for all units.

The average of these predictions constitutes an estimate of the counterfactual mean

E[Y
(
1,M1(0),M2(1,M1(0))

)
].

6. Calculate the PSEs as defined in equation (1).
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The imputation-based weighting estimator requires an estimate of the probability ratio Pr[A =

0]/Pr[A = 0|X]. To that end, we can first estimate the numerator Pr[A = 0] using its sample

analog and the denominator Pr[A = 0|X] using a propensity score model for the treatment. Then,

repeat the above procedure while replacing steps 3 and 5 with the following steps, each of which

utilizes an inverse-probability weighted average instead of model-based predictions:

3∗. EstimateE[Y
(
1,M1(0),M2(0,M1(0))

)
] using a weighted average of the imputed counterfac-

tuals Ŷ
(
1,M1(0),M2(0,M1(0))

)
among the untreated units, with weight P̂r[A = 0]/P̂r[A =

0|X].

5∗. EstimateE[Y
(
1,M1(0),M2(1,M1(0))

)
] using a weighted average of the imputed counterfac-

tuals Ŷ
(
1,M1(0),M2(1,M1(0))

)
among the untreated units, with weight P̂r[A = 0]/P̂r[A =

0|X].

To reduce model dependence, data-adaptive/machine learning methods can be used to fit the out-

come models, and, for the imputation-based weighting estimator, also the propensity score model.

Approximate standard errors and confidence intervals can be constructed by bootstrapping steps 1-6.

Alternative Estimation Methods

In statistics and epidemiology, several alternative methods have been proposed to estimate PSEs.

VanderWeele et al. (2014) proposed a weighting estimator that involves estimating the conditional

densities/probabilities of the mediatorsM1 and M2 given their antecedent variables. This estima-

tor, however, is difficult to use when either or both of the mediators is multivariate or continuous, in

which case estimates of the conditional density/probability functions f(m2|x, a,m1) and f(m1|x, a)

tend to be unstable and highly sensitive tomodelmisspecification (Kang and Schafer 2007). Moreover,

even if models for these conditional densities/probabilities are correctly specified, weighting estima-

tors are often inefficient and susceptible to large finite sample biases (Cole and Hernán 2008; Zhou

and Wodtke 2020). Miles et al. (2017) proposed a maximum likelihood estimator that is generally

more efficient than the weighting estimator. However, like the weighting estimator, the maximum
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likelihood estimator also involves estimating the conditional densities/probabilities of the mediators,

making it difficult to use in the presence of multivariate/continuous mediators.

For a specific PSE in the two-mediator setting, Miles et al. (2020) developed a semiparametric

estimator based on the efficient influence function of the estimand. Compared with the weighting,

imputation, and maximum likelihood estimators, this semiparametric estimator is more robust to

model misspecification in that it remains consistent even if some of the treatment/mediator/outcome

models on which it depends are misspecified. Moreover, when data-adaptive methods, combined

with sample splitting, are used to fit the nuisance functions, theoretically valid standard errors can be

constructed from the sample variance of the estimated influence function (Zheng and van der Laan

2011; Chernozhukov et al. 2018). In related work, we have extended this approach for more general

PSEs in settings with more than two mediators (Zhou 2022).

Generalization toK(≥ 1) Causally Ordered Mediators

So far, we have assumed that twomediators lie on the causal paths fromA to Y . The definition, iden-

tification, and estimation of PSEs can be generalized to the setting where the treatment effect oper-

ates through K causally ordered (sets of) mediators. In what follows, we denote these mediators as

M1,M2, . . .MK and assume that for any i < j,Mi precedesMj , such that no component ofMj can

causally affect any component ofMi. In addition, let us denoteM0 = ∅,Mk = {M1,M2, . . .Mk},

andMk(a) = {M1(a),M2(a), . . .Mk(a)}, whereMk(a) = Mk

(
a,M1(a),M2(a,M1(a)), . . .

)
by

definition.

The ATE of A on Y can now be decomposed as

E[Y (1)− Y (0)] = E[Y
(
1,MK(0)

)
− Y (0)]︸ ︷︷ ︸

A→Y

+
K∑
k=1

E[Y
(
1,Mk−1(0)

)
− Y

(
1,Mk(0)

)
]︸ ︷︷ ︸

A→Mk⇝Y

= τA → Y +
K∑
k=1

τA → Mk ⇝ Y . (9)

We assume that the variables A,M1, . . .MK , Y follow a DAG that encodes a nonparametric struc-
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tural equation model with mutually independent errors, such that no unobserved confounding exists

for any of the treatment-mediator, treatment-outcome, and mediator-outcome relationships.

To identify the components of equation (9), it suffices to identify the counterfactual expectations

E[Y (0)], E[Y (1)], and E[Y
(
1,Mk(0)

)
] for all k ∈ {1, . . . K}. Similar to the two-mediator setting,

these counterfactual expectations can be expressed as functions of observed variables:

E[Y
(
1,Mk(0)

)
] = E

[
E
[
E[Y |X,A = 1,Mk]|X,A = 0

]]
(10)

= E
[
E[Y |X,A = 1,Mk]

Pr[A = 0]

Pr[A = 0|X]
|A = 0

]
. (11)

Equations (10) and (11) suggest a pure imputation estimator and an imputation-based weighting es-

timator, respectively, for the PSEs defined in equation (9). The algorithms for implementing these

estimators are detailed in SI C. In the Empirical Illustrations Section, we illustrate the case of three

causally ordered mediators (K = 3) with an empirical example on the legacy of political violence.

Sensitivity Analysis for Unobserved Confounding

The identification of PSEs is premised on a nonparametric structural equationmodel in which no un-

observed confounding exists for any of the treatment-outcome, treatment-mediator, and mediator-

outcome relationships. In observational studies where treatment is not randomly assigned, all of

these assumptions must be scrutinized. If any are violated, estimates of PSEs will likely be biased.

In experimental studies where treatment is randomly assigned, the assumptions of no unobserved

treatment-outcome and treatment-mediator confounding are met by design, but it remains possible

that some of the mediator-outcome relationships are confounded by unobserved factors. To address

this concern, we develop a bias factor approach to sensitivity analysis that allows us to assess the

degree to which estimates of PSEs are robust to unobserved confounding of the mediator-outcome

relationships. This approach can be seen as an extension of the bias formulas developed by Vander-

Weele (2010) to the setting of multiple causally dependent mediators. For ease of exposition, we focus

on the case of two causally ordered mediators in this section and discuss the general case ofK(≥ 1)

20



Figure 2: Causal Relationships with Two Causally OrderedMediators where Unobserved Confound-
ing Exists for the Relationship between Mediators {M1,M2} and outcome Y .

A M1 M2 Y

U

Note: A denotes the treatment, Y denotes the outcome, Mj denotes mediator j. Baseline covariates X are
kept implicit.

causally ordered mediators in SI D.

Suppose there exists an unobserved confounder that affects both the mediators (M1,M2) and

the outcome Y , but not the treatment. Figure 2 shows a causal diagram reflecting the relationships

between these variables, where the baseline covariates X are kept implicit. In this case, because no

unobserved confounding exists for the treatment-outcome relationship, the ATE is still identified,

and their estimates are not subject to confounding bias. We now assess the biases for the PSEs viaM1

and viaM2. Following VanderWeele (2010), we make three simplifying assumptions: (a) U is binary;

(b) the average “effect” of U on Y , conditional on baseline covariates X , the treatment A, and the

mediator setMk = {M1, . . .Mk} (where k ∈ {1, 2}), is constant, which we denote by γk; and (c)

the difference in the prevalence of U between treated and untreated units, conditional on baseline

covariatesX and the mediator setMk (where k ∈ {1, 2}), is constant, which we denote by ηk. Then,

as shown in SI D, estimates of the direct and path-specific effects without adjusting for U are subject

to the following biases:

Bias[τA → Y ] = γ2η2; (12)

Bias[τA → M1 ⇝ Y ] = −γ1η1; (13)

Bias[τA → M2 → Y ] = γ1η1 − γ2η2. (14)
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These formulas (12)-(14) allow us to construct a range of bias-adjusted estimates for τA → Y ,

τA→M1⇝Y , and τA→M2→Y across potential values of (γ1, γ2) and (η1, η2). In practice, wemay focus on

estimands that are of particular relevance to the research question. For example, if we are primarily

interested in the robustness of the estimated PSE viaM1, i.e, τ̂A → M1 ⇝ Y , we can identify the values

of γ1 and η1 that would suffice to reduce it to zero. Alternatively, if we are primarily interested in the

robustness of the estimated direct effect, we can identify the values of γ2 and η2 that would suffice to

reduce τ̂A → Y to zero. In applications, we can also use observed covariates to suggest plausible val-

ues for the sensitivity parameters. For example, if we have an observed binary confounder Z ∈ X ,

we can fit a linear model of Y on X , A, andMk , whose coefficient on Z will provide a plausible

value of γk. In the meantime, we can fit a linear model of Z on A,Mk , and other components ofX ,

whose coefficient onAwill provide a plausible value of ηk. By combining these plausible values of γk

and ηk , we can assess the amount of bias that would result if an unobserved variable “worked exactly

like” Z in confounding the mediator-outcome relationships. In the next section, we illustrate these

techniques with two empirical examples.

Although the bias formulas (12)-(14) are derived under the assumption that U affects both M1

andM2, they are still applicable in the special case where U does not affectM1. In this case, it can be

shown that η1 = 0 (see SI D), leading to a simplification of equations (13)-(14): Bias[τA → M1 ⇝ Y ] = 0

and Bias[τA → M2 → Y ] = −γ2η2. The former result is expected because whenU does not affectM1, no

unobserved confounding exists for theM1-Y relationship, leading to unbiased estimates of the PSE

τA → M1 ⇝ Y .

A common limitation to sensitivity analysis methods for unobserved confounding is the reliance

on simplifying assumptions about the exact form of confounding, which are required for the sake

of interpretability (e.g., Imbens 2003). Our proposed method is no exception. First, the unobserved

confounder U is assumed to be a pretreatment variable. Thus the bias formulas cannot be used to

assess the sensitivity of estimated PSEs to unobserved posttreatment confounders or, for that matter,

to mismeasured mediators. For example, in the issue framing study, the bias formulas cannot be used

to assess bias due tomeasurement error when themeasured belief and importance variables are noisy
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indicators of some true but latent values of beliefs and importance. Second,U is assumed to be binary.

Thus the bias formulas do not directly apply to cases where unobserved confounders are known to

be continuous or multivariate. Finally, by assuming that both γk and ηk are constant, we stipulate

that the conditional expectation E[Y |X,A,Mk, U ] depends on (X,A,Mk) and U additively, and

that the conditional probability Pr[U = 1|X,A,Mk] depends on (X,Mk) andA additively. Given

the stringency of these assumptions, the bias formulas (12)-(14) should best be viewed as an approx-

imation of the true biases that would result from unobserved confounding.3

Empirical Illustrations

We illustrate the proposed methods for estimation and sensitivity analysis by first reanalyzing

Slothuus’s (2008) data on issue framing effects. We then revisit an observational study on the multi-

generational effects of political violence (Lupu and Peisakhin 2017). In SI G, we demonstrate the

utility of our framework with an experimental study by Tomz and Weeks (2013), where the authors

have attempted to isolate the mediating effect of morality in the democratic peace.

Issue Framing Effects

Using a survey experiment on a sample of Danish students, Slothuus (2008) found that individuals

are substantially more supportive of a proposed welfare reform if they are exposed to a newspaper

article that highlights its positive effect on job creation (the job frame) rather than one emphasizing its

negative effect on the poor (the poor frame). To analyze the causal mechanisms underlying this effect,

the author used a series of five-point-scale questions to tap (a) the respondents’ beliefs about why

some people receive welfare benefits (the belief mediator) and (b) their perceived importance of five

competing considerations directly related to welfare policy (the importance mediator). The author

then conducted a mediation analysis under the assumption that the belief mediator and the impor-
3In SI E, we conduct a simulation study to investigate the performance of this approximation un-

der plausible scenarios. The results suggest that the approximation is excellent under these scenarios.

23



tance mediator are causally independent. However, as noted previously, respondents’ beliefs about

welfare recipients likely influence their perceived importance of competing issue-related consider-

ations. In the following analysis, we allow the two mediators to be causally dependent. Following

the literature (Imai and Yamamoto 2013; Miller 2007), we treat respondents’ beliefs about the issue

as causally prior to their perceived importance of competing considerations. Under this assumption,

the pathways that transmit the framing effect can be represented by a DAG akin to the top panel of

Figure 1.

In this DAG, the outcome, Y , is a measure of support for the proposed welfare reform on a seven-

point scale; treatment, A, denotes whether the respondent receives the job frame rather than the

poor frame; the mediatorM1 includes measures of the respondent’s beliefs about why some people

receive welfare benefits, or who is responsible for those people’s situation; the mediatorM2 includes

the respondent’s ratings on the importance of five competing considerations related to welfare pol-

icy; finally, the pretreatment covariates X include measures of gender, education, political interest,

ideology, political knowledge, and extremity of political values.4 We control for a set of pretreatment

covariates because, although treatment is randomly assigned, the mediator-outcome relationships

may still be confounded by the respondent’s baseline characteristics.

Because treatment is randomly assigned in this study, we first estimate E[Y (0)] and E[Y (1)]

using simple averages of the observed outcome within the control and treatment groups. We find

that the average support for the proposed welfare reform (measured on a seven-point scale) is 4.3

among respondents exposed to the job frame and 3.16 among those exposed to the poor frame. The

total effect of treatment, therefore, is about 1.14.

We estimate the PSEs for the paths A → Y , A → M1 ⇝ Y , and A → M2 → Y using the

imputation approach described earlier. To allow for nonlinear and interaction effects, we use BART

to fit the outcome models conditional on treatment, the pretreatment covariates, and varying sets of

mediators (namely, {M1,M2} and {M1}). The results are shown in Table 2. The estimated PSE via

the belief mediator (A → M1 ⇝ Y ) is 0.24 (95% CI: [-0.02, 0.52]), suggesting that the respondent’s
4Detailed definitions of these variables are given in Slothuus (2008).
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Table 2: Estimates of Total and Path-Specific Effects of Issue Framing on Policy Support.

Estimate

Average total effect (ATE) 1.15 [0.61, 1.65]

Through the belief mediator (A → M1 ⇝ Y ) 0.24 [-0.02, 0.52]

Through the importance mediator (A → M2 → Y ) 0.18 [0.01, 0.36]

Direct effect (A → Y ) 0.72 [0.32, 1.08]
Note: Numbers in brackets represent 95% bootstrapped confidence intervals (1,000 iterations).

beliefs about the causes of the situation of welfare recipients have a relatively minor and statistically

insignificant mediating effect. The estimated PSE via the importance mediator (A → M2 → Y )

is 0.18 (95% CI: [0.01, 0.36]), suggesting that the perceived importance of competing considerations

plays an independent, albeit small, role in transmitting the effect of issue framing on policy support.

Finally, we find that over half of the total effect appears to be “direct,” i.e., operating neither through

the belief mediator nor through the importance mediator.

We now conduct a sensitivity analysis for the direct effect of issue framing on policy support.

Suppose there exists a binary unobserved confounder U that affects respondents’ beliefs about the

issue, perceived importance of issue-related considerations, as well as their support for welfare re-

form. Equation (12) indicates that in this scenario, the estimated direct effect is subject to a bias of

γ2η2, where γ2 denotes the average effect of U on policy support (Y ) conditional on treatment (A),

the belief and importance mediators (M1 andM2), and the baseline covariates (X ), and η2 denotes

the difference in the prevalence of U between treated and untreated units conditional on the belief

and importance mediators (M1 andM2) and the baseline covariates (X ).

To obtain some intuition as to the signs of γ2 and η2, let us consider U as a dummy variable

indicatingmiddle- or upper-class background, whichmight lead to stronger support for the proposed

welfare reform, i.e., γ2 > 0. Since treatment is randomly assigned in this study, the prevalence of U

should be similar between treated and untreated units. However, because both middle/upper-class

background (U ) and the job frame (A) are supposed to affect beliefs about the issue (M1) and perceived

importance of competing considerations (M2), the conditional association between A and U given
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Figure 3: Bias-adjusted Estimates of the Direct Effect of Issue Framing on Policy Support.

Note: The contours represent the bias-adjusted estimates of the direct effect (τA→Y ) plotted as a function of
γ2 and η2. The grey area shows the values of γ2 and η2 that would reverse the sign of the estimated τA→Y .
The annotated points represent the γ2 and η2 values that would result if the unobserved variable U “worked
exactly like” one of the observed covariates in its confounding effect on the mediator-outcome relationships.

M1,M2, andX can deviate from zero. Specifically, becauseM1 andM2 are both colliders ofA andU ,

the conditional association betweenA andU might be negative— especially if the effects ofU andA

on themediators are in the same direction. In this scenario, the bias γ2η2 would be negative, implying

an underestimate of the direct effect. From this perspective, our finding that most of the framing effect

does not operate through the belief mediator or the importance mediator appears robust.

We can also use observed binary covariates to obtain a range of plausible values for the sensitivity

parameters γ2 and η2. Here, we consider three such variables — gender, right-wing ideology, and

limited political knowledge, where right-wing ideology and limited political knowledge are dummy

variables obtained by dichotomizing the original measures of ideology and political knowledge at

theirmedians. We then use the procedures described in the preceding section to compute the values of

γ2 and η2 that would result if the unobserved variableU “worked exactly like” each of these covariates

in its confounding effect. Figure 3 shows the contours of bias-adjusted estimates of the direct effect
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at different values of γ2 and η2, as well as those corresponding to an unobserved variable that mimics

gender, right-wing ideology, and limited political knowledge in its confounding effect. We can see

that the original estimate (0.72) can be explained away by unobserved confounding onlywhen both γ2

and η2 are positive andmuch larger than their plausible values suggested by these observed covariates.

The Legacy of Political Violence

Wenow illustrate the imputation approach for tracing causal paths fromobservational data. We rean-

alyze Lupu and Peisakhin’s (2017) data to examine the intergenerational pathways through which ex-

posure to political violence shapes descendants’ political attitudes. In 2014, these authors conducted

a multigenerational survey of Crimean Tatars, a minority Muslim population living in Crimea, to

study the legacy of political violence that occurred during the deportation of Crimean Tatars from

their homeland to Central Asia in 1944. Due to starvation and infectious diseases, a sizable portion

of the deportees died during or shortly after the deportation. Yet, “[a]lthough all Crimean Tatars suf-

fered the violence of deportation, some lostmore familymembers along theway” (Lupu andPeisakhin

2017, 837). Leveraging this variation in violent victimization, the authors found that the grandchil-

dren of individuals who sufferedmore deaths of family members support more strongly the Crimean

Tatar political leadership, hold more hostile attitudes toward Russia, and participate more in politics.

To investigate the intergenerational pathways that transmit the legacy of political violence, the

authors conducted an “implicit mediation analysis” by adding measures of the descendant’s political

identity into their main regression models and assessing the changes in the coefficients of ances-

tor victimization. This approach is potentially problematic, however, because descendants’ political

identities are likely shaped by the political identities of their parents and grandparents, which might

also have a direct effect on descendant political attitudes and behavior. In other words, the identities

of first- and second-generation respondents are posttreatment confounders of themediator-outcome

relationship, i.e., the relationship between descendants’ identities and their political attitudes and be-

havior, implying that the ACME via descendants’ political identities cannot be nonparametrically

identified.
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Figure 4: Causal Pathways from Ancestor Victimization to Descendants’ Regime Support.
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In contrast to the authors’ mediation analyses that focused on the political identity of the de-

scendant as the only mediator, we treat the political identities of first-, second-, and third-generation

respondents as three causally ordered mediators, and focus on the effect of ancestor victimization

on the respondent’s attitude toward Russia’s annexation of Crimea. Our analytical framework can

be represented by the DAG in Figure 4. In this DAG, ancestor victimization (i.e., the treatment) de-

notes whether any family member of the first-generation respondent died during or shortly after the

deportation due to poor conditions; the political identities of first-, second-, and third-generation

respondents (i.e., the mediators) are measured by the intensity of their attachment to the Crimean

Tatars as a social group, their association of that group with victimhood, and their perception of

the threat posed by Russia; regime support (i.e., the outcome) denotes whether the third-generation

respondent supported Russia’s annexation of Crimea; finally, the pretreatment covariates include

measures of the first generation respondent’s family wealth, religiosity, attitudes toward the Soviet

Union, and experience with persecution by state authorities prior to deportation. These covariates

are used to control for potential confounding of the treatment-mediator, treatment-outcome, and

mediator-outcome relationships.

We then estimate the PSEs as defined by equation (9), using both the pure imputation estimator

and the imputation-based weighting estimator. For the pure imputation estimator, we use BART

to estimate all outcome models (including the models for the imputed counterfactuals). For the
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Table 3: Estimates of Total and Path-Specific Effects of Ancestor Victimization on Support for Russia’s
Annexation of Crimea.

Pure imputation
estimator

Imputation-based
weighting estimator

Average total effect (ATE) -0.20 [-0.30, -0.11] -0.20 [-0.30, -0.11]

Through G1 identity (A → M1 ⇝ Y ) -0.10 [-0.15, -0.06] -0.12 [-0.18, -0.07]

Through G2 identity (A → M2 ⇝ Y ) -0.02 [-0.06, 0.02] -0.02 [-0.06, 0.03]

Through G3 identity (A → M3 → Y ) -0.03 [-0.07, 0.00] -0.03 [-0.07, 0.01]

Direct effect (A → Y ) -0.05 [-0.12, 0.03] -0.04 [-0.12, 0.05]
Note: Numbers in brackets represent 95% bootstrapped confidence intervals (1,000 iterations).

imputation-based weighting estimator, we estimate all outcomemodels using BART and estimate the

propensity score model using gradient boosting machines that are calibrated to maximize covariate

balance (McCaffrey et al. 2004; Ridgeway et al. 2017). The results, as shown in Table 3, are similar

between the two estimators. Consistent with the original study, we find that ancestor victimization

significantly reduces the descendant’s support for Russia’s annexation of Crimea— by 0.2 (from 0.64

to 0.44) on the probability scale. By the pure imputation estimator, the direct effect is only about

-0.05, meaning that most of the total effect operates through the political identities of first-, second-,

and third-generation respondents. The bulk of the indirect effect appears to be transmitted through

the political identities of grandparents (“via G1 identity”), rather than through the political identi-

ties of second- and third-generation respondents directly (“via G2 identity” and “via G3 identity”).

This finding suggests that exposure to political violence affects the identities of first-generation re-

spondents and that they transmit these through the family line to shape the political attitudes of their

descendants. This is a key theoretical hypothesis of Lupu and Peisakhin (2017). However, it was not

tested in the authors’ implicit mediation analysis, which considered only the role of the descendant’s

political identity (G3 identity).

To assess the robustness of the above finding to unobserved confounding of the mediator-

outcome relationships, we apply the bias formulas introduced in the preceding section for the PSE

via G1 identity (τA → M1 ⇝ Y ). Suppose there exists a binary unobserved confounder U (e.g., presence
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Figure 5: Bias-adjusted Estimates of the Path-Specific Effect of Ancestor Victimization on Regime
Support via G1 Identity.

Note: The contours represent the bias-adjusted estimates of the PSE via G1 identity (τA→M1⇝Y ) plotted as a
function of γ1 and η1 (with the unadjusted estimate computed from the pure imputation estimator). See the
note for Figure 3 for the interpretation of other elements of the graph.

of some personality trait in the first-generation respondent) that affects both the political identities

of first-, second-, and third-generation respondents and regime support among the grandchildren.

Equation (13) indicates that in this scenario, the estimated PSE via G1 identity suffers a bias of−γ1η1,

where γ1 denotes the effect ofU on regime support (Y ) conditional on ancestor victimization (A), G1

identity (M1), and the baseline covariates (X ), and η1 denotes the difference in the prevalence of U

between treated and untreated units conditional on G1 identity (M1) and the baseline covariates (X ).

To be more concrete, let us consider U as a personality trait of the G1 respondent that facilitates in-

group solidarity, which would suggest a negative effect of U on regime support, i.e., γ1 < 0. The sign

of η1 is less clear. If both violent victimization (A) and the unobserved personality trait (U ) had had

a positive effect on G1 identity (M1), the association between A and U conditional onM1, a collider

betweenA and U , might be negative. In this case,−γ1η1 will be negative, suggesting an overestimate

of the (negative) PSE via G1 identity.
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Figure 5 shows the contours of bias-adjusted estimates of the PSE via G1 identity at different val-

ues of γ1 and η1. In addition, it shows the values of the γ1 and η1 that would result if the unobserved

variableU “worked exactly like” one of three observed binary covariates: whether the G1 respondent

had close relatives subject to dekulakization (dekulakization), whether the G1 respondent’s close rel-

atives privately opposed Soviet authorities (private opposition), whether the G1 respondent’s family

considered it very important to follow Islamic customs and traditions while in deportation (religios-

ity). We can see that the original estimate (-0.1) is quite robust, as it can be attributed entirely to

unobserved confounding only when both γ1 and η1 are sizable (e.g., when γ1 = η1 = −0.32) and far

from their plausible values suggested by these observed covariates.

Concluding Remarks

Despite a growing interest in the study of causal mechanisms in political science, conventional meth-

ods for causalmediation analysis are difficult to usewhen the causal effect of interest operates through

multiple causally dependent mediators. In particular, the ACME cannot be nonparametrically iden-

tified if the mediator-outcome relationship is confounded by posttreatment variables, even if these

variables are observed. In this article, we introduced a general framework for tracing causal paths

with multiple mediators. In this framework, the total effect of a treatment on an outcome is decom-

posed into a set of path-specific effects (PSEs). These PSEs, unlike the ACMEs of individualmediators,

are nonparametrically identified under a set of unconfoundedness assumptions.

We then described an imputation approach for estimating these PSEs from experimental and ob-

servational data. In contrast to conventional methods for analyzing causal mediation, this approach

does not require modeling the conditional distributions of the mediators given their antecedent vari-

ables. All we need is to model the conditional means of the outcome given treatment, pretreatment

confounders, and varying sets of mediators. These conditional means, unlike the conditional distri-

butions of the mediators, can be flexibly estimated using data-adaptive methods such as GBM and

BART. Therefore, minimal modeling assumptions are needed to implement this approach, and dif-
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ferent models of the expected outcome can be used to check the robustness of results. In SI F, we

illustrate this point by showing that for our two empirical examples, estimates of the PSEs are similar

whether we use GLM, GBM, or BART to fit the outcome models.

The identification of PSEs is premised on a set of potentially strong assumptions, which require

that all relevant confounders of the treatment-outcome, treatment-mediator, and mediator-outcome

relationships have been observed and adjusted for. Although standard in studies of causal mediation,

these assumptions must be scrutinized against the research design and subject matter knowledge

in each empirical application. In experimental studies where treatment is randomly assigned, the

assumptions of no unobserved treatment-outcome or treatment-mediator confounding are met by

design, but the mediator-outcome relationships can still be confounded by unobserved factors. As

we have shown, in cases where some of these assumptions are questionable, a set of general-purpose

bias formulas can be used to assess the robustness of conclusions. To facilitate implementation, we

offer an open-source R package, paths, for implementing the proposed methods for estimation and

sensitivity analysis, which is available from Github and CRAN. In addition, in SI H, we provide R

code illustrating the use of paths with our empirical examples.
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Supporting Information

A Proof of Equation (2)

We interpret a DAG as representing a nonparametric structural equation model with mutually inde-

pendent errors (Pearl 2009). Thus the DAG in the top panel of Figure 1 corresponds to the following

nonparametric structural equations:

X = fX(ϵX),

A = fA(X, ϵA),

M1 = fM1(X,A, ϵM1),

M2 = fM2(X,A,M1, ϵM2),

Y = fY (X,A,M1,M2, ϵY ),

where the error terms ϵX , ϵA, ϵM1 , ϵM2 , and ϵY are mutually independent but otherwise arbitrarily

distributed. The potential outcomes defined in the main text can thus be written as

M1(a) = fM1(X, a, ϵM1),

M2(a,m1) = fM2(X, a,m1, ϵM2),

Y (a,m1,m2) = fY (X, a,m1,m2, ϵY ).

From the above equations and the mutual independence of the error terms, we have the follow-

ing conditional independence relationships: (a) M1(a1) ⊥⊥ M2(a2,m1)|X ; (b) Y (a,m1,m2) ⊥⊥

(M1(a1),M2(a2,m1))|X ; (c)M1(a) ⊥⊥ A|X ; (d)M2(a,m1) ⊥⊥ (A,M1)|X ; (e) Y (a,m1,m2) ⊥⊥

1



(A,M1,M2)|X . Thus

E[Y (a,M1(a1),M2(a2,M1(a1)))|X = x]

=

∫
E[Y (a,m1,M2(a2,M1(a1)))|X = x,M1(a1) = m1]fM1(a1)|X=x(m1)dm1

=

∫∫
E[Y (a,m1,m2)|X = x,M1(a1) = m1,M2(a2,m1) = m2]

fM1(a1)|X=x(m1)fM2(a2,m1)|X=x(m2)dm1dm2 by (a)

=

∫∫
E[Y (a,m1,m2)|X = x]fM1(a1)|X=x(m1)fM2(a2,m1)|X=x(m2)dm1dm2 by (b)

=

∫∫
E[Y (a,m1,m2)|X = x]fM1(a1)|X=x,A=a1(m1)fM2(a2,m1)|X=x,A=a2,M1=m1(m2)dm1dm2 by (c) and (d)

=

∫∫
E[Y (a,m1,m2)|X = x,A = a,M1 = m1,M2 = m2]f(m1|x, a1)f(m2|x, a2,m1)dm1dm2 by (e)

=

∫∫
E[Y |x, a,m1,m2]f(m1|x, a1)f(m2|x, a2,m1)dm1dm2 (15)

Marginalizing the above expression over f(x) yields equation (2).
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B Proofs of Equations (5)-(8)

Let us first consider equations (5) and (6). By equation (15), we have

E[Y
(
1,M1(0),M2(0,M1(0))

)
|X = x]

=

∫∫
E[Y |x,A = 1,m1,m2]f(m1|x,A = 0)f(m2|x,A = 0,m1)dm1dm2

=

∫∫
E[Y |x,A = 1,m1,m2]f(m1,m2|x,A = 0)dm1dm2

=E
[
E[Y |x,A = 1,M1,M2]|x,A = 0

]
.

Marginalizing the above expression over f(x) yields equation (5). Similarly,

E[Y
(
1,M1(0),M2(1,M1(0))

)
|X = x]

=

∫∫
E[Y |x,A = 1,m1,m2]f(m1|x,A = 0)f(m2|x,A = 1,m1)dm1dm2

=

∫
E[Y |x,A = 1,m1]f(m1|x,A = 0)dm1

=E
[
E[Y |x,A = 1,M1]|x,A = 0

]
.

Here, the second equality derives from the fact that
∫
E[Y |x,A = 1,m1,m2]f(m2|x,A =

1,m1)dm2 = E[Y |x,A = 1,m1]. Marginalizing the above expression over f(x) yields equation
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(6). Now, consider equations (7) and (8). By the mediation formula (2), we have

E[Y
(
1,M1(0),M2(0,M1(0))

)
]

=

∫∫∫
E[Y |x,A = 1,m1,m2]f(m1|x,A = 0)f(m2|x,A = 0,m1)f(x)dm1dm2dx

=

∫∫∫
E[Y |x,A = 1,m1,m2]f(m1,m2|x,A = 0)f(x)dm1dm2dx

=

∫∫∫
E[Y |x,A = 1,m1,m2]f(m1,m2, x|A = 0)

f(x)

f(x|A = 0)
dm1dm2dx

=

∫∫∫
E[Y |x,A = 1,m1,m2]f(m1,m2, x|A = 0)

f(x)
Pr[A=0|X=x]f(x)

Pr[A=0]

dm1dm2dx (via Bayes’ rule)

=

∫∫∫
E[Y |x,A = 1,m1,m2]f(m1,m2, x|A = 0)

Pr[A = 0]

Pr[A = 0|X = x]
dm1dm2dx

=E
[
E[Y |X,A = 1,M1,M2]

Pr[A = 0]

Pr[A = 0|X]
|A = 0

]
.

Here, the 4th line is due to the fact that f(m1,m2|x,A = 0) = f(m1,m2, x|A = 0)/f(x|A = 0),

and the 5th line is due to the fact that f(x|A = 0) = Pr[A=0|X=x]f(x)
Pr[A=0]

(Bayes’ rule). Similarly,

E[Y
(
1,M1(0),M2(1,M1(0))

)
]

=

∫∫∫
E[Y |x,A = 1,m1,m2]f(m1|x,A = 0)f(m2|x,A = 1,m1)f(x)dm1dm2dx

=

∫∫
E[Y |x,A = 1,m1]f(m1|x,A = 0)f(x)dm1dx

=

∫∫
E[Y |x,A = 1,m1]f(m1, x|A = 0)

f(x)

f(x|A = 0)
dm1dx

=

∫∫
E[Y |x,A = 1,m1]f(m1, x|A = 0)

f(x)
Pr[A=0|X=x]f(x)

Pr[A=0]

dm1dx (via Bayes’ rule)

=

∫∫
E[Y |x,A = 1,m1]f(m1, x|A = 0)

Pr[A = 0]

Pr[A = 0|X = x]
dm1dx

=E
[
E[Y |X,A = 1,M1]

Pr[A = 0]

Pr[A = 0|X]
|A = 0

]
.
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C Algorithms for Implementing the Imputation Approach

withK Causally Ordered Mediators

The pure imputation estimator proceeds as follows:

1. Fit an outcome model conditional on the treatment A and the pretreatment confounders

X . Estimate E[Y (0)] and E[Y (1)] by averaging the predicted values Ê[Y |X,A = 0] and

Ê[Y |X,A = 1] among all units, respectively.

2. For k = 1, 2, . . . K ,

(a) Fit an outcome model conditional on the treatment A, the mediatorsMk , and the pre-

treatment confoundersX . For the untreated units, impute their counterfactual outcome

Y
(
1,Mk(0)

)
using their predicted outcomes at A = 1 and their observed values of X

andMk.

(b) Fit a model of the imputed counterfactual Ŷ
(
1,Mk(0)

)
conditional on X among the

untreated units, and obtain model-based predictions for all units. The average of these

predictions constitutes an estimate of the counterfactual mean E[Y
(
1,Mk(0)

)
].

3. Calculate the PSEs as defined in equation (9).

For the imputation-based weighting estimator, step 2(b) is replaced by an inverse-probability-

weighted average:

1. Fit an outcome model conditional on the treatment A and the pretreatment confounders X .

EstimateE[Y (0)] andE[Y (1)] by averaging the predicted values Ê[Y |A = 0, X] and Ê[Y |A =

1, X] among all units, respectively. In the meantime, estimate Pr[A = 0] using its sample

analog and Pr[A = 0|X] using a propensity score model for the treatment.

2. For k = 1, 2, . . . K ,
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(a) Fit an outcome model conditional on the treatment A, the mediatorsMk , and the pre-

treatment confoundersX . For the untreated units, impute their counterfactual outcome

Y
(
1,Mk(0)

)
using their predicted outcomes at A = 1 and their observed values of X

andMk.

(b) Estimate E[Y
(
1,Mk(0)

)
] using a weighted average of the imputed counterfactuals

Ŷ
(
1,Mk(0)

)
among the untreated units, where the weight is P̂r[A = 0]/P̂r[A = 0|X].

3. Calculate the PSEs as defined in equation (9).

In experimental studies, step (1) can be simplified because E[Y (0)] and E[Y (1)] can be estimated us-

ing simple averages of the observed outcome within the control and treatment groups. In the mean-

time, the inverse-probability weights in step 2(b) are unneeded, as E[Y
(
1,Mk(0)

)
] can be estimated

using a simple average of the imputed counterfactuals among the control units.
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A {M1,M2, . . . ,Mj−1} {Mj,Mj+1, . . . ,MK} Y

U

Figure D1: Causal Relationships withK Causally Ordered Mediators where Unobserved Confound-
ing Exists for the Relationship between Mediators {Mj, . . .MK} and outcome Y .

Note: A denotes the treatment, Y denotes the outcome,Mj denotes mediator j. Baseline Covariates
X are kept implicit.

D Sensitivity Analysis withK(≥ 1) Causally Ordered Media-

tors

Suppose that the treatment effect operates through K causally ordered mediatorsM1,M2, . . .MK ,

and that there exists an unobserved confounder that affects both the outcome Y and the mediators

{Mj,Mj+1, . . .MK}, but not mediators {M1,M2, . . .Mj−1}. Figure D1 shows a DAG reflecting

the relationships between these variables, where the baseline covariates X are kept implicit. In this

case, because no unobserved confounding exists for any of the mediators precedingMj , the PSEs via

M1,M2, . . .Mj−1 are still identified, and their imputation-based estimates are not subject to con-

founding bias. We now assess the biases for the PSEs viaMj,Mj+1, . . .MK . As in the case of two

mediators, we make three simplifying assumptions : (a) U is binary; (b) the average “effect” of U on

Y , conditional on baseline covariates X , treatment A, and mediator setMk = {M1,M2, . . .Mk},

is constant; and (c) the difference in the prevalence of U between treated and untreated units, condi-

tional on baseline covariatesX and the mediator setMk , is constant. Denote the average effect of U

on Y as γk and the conditional difference in the prevalence ofU between treated and untreated units
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as ηk:

γk = E[Y |X,A,Mk, U = 1]− E[Y |X,A,Mk, U = 0];

ηk = Pr[U = 1|X,A = 1,Mk]− Pr[U = 1|X,A = 0,Mk].

Then estimates of the direct and path-specific effects without adjusting for U are subject to the fol-

lowing biases:

Bias[τA → Y (a
∗)] = γKηK ; (16)

Bias[τA → Mj ⇝ Y (a)] = −γjηj; (17)

Bias[τA → Mk ⇝ Y (a)] = γk−1ηk−1 − γkηk, for any k > j. (18)

These formulas can be seen as a generalization of the bias formulas presented in the main text. As in

the case of two mediators, the simplicity of these bias formulas rests on a set of strong and restrictive

assumptions, such as the absence of interaction effects implied by the constancy of γk and ηk.

D.1 Proof of Bias Formulas (16)-(18)

Consider the DAG shown in Figure D1, where the baseline covariates X , which may affect any of

the variables in {A,U,M1 . . .MK , Y }, are kept implicit. To see how the PSEs are connected to

the average direct effect (ADE) and average causal mediation effect (ACME), let us considerMk =

{M1 . . .Mk} as a whole, where k ∈ {1, . . . K}. The ADE and ACME forMk are

ADEk(0) = τA → Y +
K∑

l=k+1

τA → Ml ⇝ Y ;

ACMEk(1) =
k∑

l=1

τA → Ml ⇝ Y .
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Hence the PSEs can be written as

τA → Y = ADEK(0);

τA → Mk ⇝ Y = ACMEk(1)− ACMEk−1(1).

Under the three simplifying assumptions outlined in the main text, VanderWeele (2010) shows that

estimates of the ADE and ACME without adjusting for U are biased by γkηk and by −γkηk , respec-

tively, where

γk = E[Y |X,A,Mk, U = 1]− E[Y |X,A,Mk, U = 0];

ηk = Pr[U = 1|X,A = 1,Mk]− Pr[U = 1|X,A = 0,Mk].

Thus the bias factors for the PSEs can be written as

Bias[τA → Y ] = γKηK ; (19)

Bias[τA → Mk ⇝ Y ] = γk−1ηk−1 − γkηk. (20)

Because the DAG in Figure 2 encodes a nonparametric structural equation model with independent

errors, it implies A ⊥⊥ U |X,Mk for any k < j. Thus we have

ηk = Pr[U = 1|X,A = 1,Mk]− Pr[U = 1|X,A = 0,Mk]

= Pr[U = 1|X,Mk]− Pr[U = 1|X,Mk]

= 0. (21)

It follows from equations (20-21) that

Bias[τA → Mk ⇝ Y ] = 0, for any k < j.
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E A Simulation Study on Bias Formulas (12)-(14)

In this section, we conduct a simulation study to assess the performance of the bias formulas (12)-

(14) when some of the underlying assumptions fail to hold. We consider a binary treatment A, a

continuous outcome Y , two causally ordered mediatorsM1 andM2, and four pretreatment covari-

atesX1, X2, X3, X4 generated from the following model:

(U1, U2, U3, UXY ) ∼ N(0, I4)

UM1M2Y ∼ Bernoulli
(
0.5)

Xj ∼ N((U1, U2, U3, UXY )βXj
, 1) j = 1, 2, 3, 4

A ∼ Bernoulli
(
logit−1[(1, X1, X2, X3, X4)βA]

)
M1 ∼ N

(
(1, X1, X2, X3, X4, A)βM1 + UM1M2Y αM1 , 1

)
M2 ∼ N

(
(1, X1, X2, X3, X4, A,M1)βM2 + UM1M2Y αM2 , 1

)
Y ∼ N

(
(1, UXY , X1, X2, X3, X4, A,M1,M2)βY + UM1M2Y αY , 1

)
.

The coefficients βXj
(1≤ j ≤ 4) and βY are drawn from Uniform[−1, 1], the coefficients βA are

drawn from Uniform[−0.5, 0.5], and the coefficients βM1 and βM2 are drawn from Uniform[0, 0.5].
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Specifically,

βX1 = (0.77,−0.86, 0.35, 0.88)

βX2 = (−0.99,−0.72,−0.1, 0.54)

βX3 = (−0.74, 0.1, 0.91, 0.46)

βX4 = (−0.21,−0.43,−0.21,−0.7)

βA = (−0.36,−0.08,−0.06, 0.4,−0.14)

βM1 = (0, 0.3, 0.42, 0.48, 0.28, 0.41)

βM2 = (0.04, 0.2, 0.09, 0.12, 0.39, 0.34, 0.24)

βY = (−0.27,−0.1, 0.25, 0.2,−0.08, 0.78, 0.76,−0.4, 0.96).

The unobserved variableUXY confounds only theX-Y relationship and thus does not pose an iden-

tification threat. However, the unobserved variable UM1M2Y confounds theM1-Y andM2-Y rela-

tionships, which can lead to biased estimates of the corresponding PSEs. These confounding effects

are governed by the αM1 , αM2 , and αY parameters.

In the above setup, we can show that the parameters γ1 and γ2 are indeed constant, but the param-

eters η1 and η2 are not, because the conditional probability Pr[U = 1|X,A = 1,Mk] corresponds

to a logit, rather than linear, function ofX ,A, andMk. Thus, we expect the bias formulas (12)-(14) to

provide only an approximation of the true biases. To investigate the quality of this approximation at

varying degrees of confounding, we draw 100 triplets of (αM1 , αM2 , αY ) from independent uniform

distributions over [−1, 1], yielding 100 data-generating processes (DGP). Then, for each DGP, we

generate 1,000 Monte Carlo samples of size 2,000, and, for each sample, obtain pure imputation esti-

mates of the PSEs τA→M1⇝Y , τA→M2→Y , and τA→Y using appropriate outcomemodels. For eachDGP

and each PSE, we average the 1,000 estimates and then subtract the true value of the corresponding

PSE, yielding what we call the true biases of our estimated PSEs.

For each Monte Carlo sample of a given DGP, we also fit a linear model of Y onX , A,Mk , and

UM1M2Y , whose coefficient on UM1M2Y constitutes an estimate of γk , and a linear model of UM1M2Y

11



Figure E1: True Biases from Simulation versus Approximate Biases from Equations (12)-(14) in the
Presence of Unobserved Confounding of theM1-Y andM2-Y Relationships.

onX ,A, andMk , whose coefficient onA constitutes an estimate of ηk (despite the fact that ηk is non-

constant and thus ill-defined under our DGPs). Then, for each DGP, we evaluate the “true values” of

γk and ηk by averaging their estimates over the 1,000 samples. We then apply these true values of γk

and ηk to the bias formulas (12)-(14), yielding what we call the approximate biases of our estimated

PSEs.

Figure E1 shows how the approximate bias varies with the true bias across the 100 DGPs for each

PSE of interest, with the 45-degree lines representing perfect alignment. We can see that the bias

formulas provide excellent approximations of the true biases for all of the three PSEs.
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F Empirical Results from Alternative Decompositions and

Models

Equation (9) is not the only way of defining the PSEs for the causal paths A → Y , A → Mk ⇝ Y

(1 ≤ k ≤ K − 1), and A → MK → Y . In particular, switching the 0s and 1s in equation (9) and

then flipping the signs of both sides yields

E[Y (1)− Y (0)] = E[Y (1)− Y
(
0,MK(1)

)
]︸ ︷︷ ︸

A→Y

+
K∑
k=1

E[Y
(
0,Mk(1)

)
− Y

(
0,Mk−1(1)

)
]︸ ︷︷ ︸

A→Mk⇝Y

= τ ∗A → Y +
K∑
k=1

τ ∗A → Mk ⇝ Y . (22)

In the R package paths, we call equations (9) and (22) Type I decomposition and Type II decom-

position, respectively. Figures F1 and F2 show results for our two empirical examples in the main

text under both types of decomposition and three different methods for fitting the outcome models:

Generalized Linear Models (GLM), Gradient Boosting Machines (GBM), and Bayesian Additive Re-

gression Trees (BART). We can see that estimates of PSEs for these two examples are substantively

similar across different specifications.
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Figure F1: Alternative Estimates of Total and Path-Specific Effects of Issue Framing on Policy Support.
Note: GLM = Generalized Linear Model; GBM = Gradient Boosting Machines; BART = Bayesian
Additive Regression Trees. Error ranges correspond to 95% bootstrapped confidence intervals (1,000
iterations).
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Figure F2: Alternative Estimates of Total and Path-Specific Effects of Ancestor Victimization on Sup-
port for Russia’s Annexation of Crimea.
Note: GLM = Generalized Linear Model; GBM = Gradient Boosting Machines; BART = Bayesian
Additive Regression Trees. Error ranges correspond to 95% bootstrapped confidence intervals (1,000
iterations).
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G Morality and the Democratic Peace

With a nationally representative sample of 1,273 US adults, Tomz and Weeks (2013) conducted a

survey experiment to analyze the role of public opinion in the democratic peace, i.e., the empirical

regularity that democracies rarely fight each other. In this experiment, they presented respondents

with a situation in which a country was developing nuclear weapons and, when describing the situ-

ation, they randomly and independently varied three characteristics of the country: political regime

(whether it was a democracy), alliance status (whether it had signed amilitary alliance with the United

States), and economic ties (whether it had high levels of tradewith the United States). They then asked

respondents about their levels of support for a preventive military strike against the country’s nu-

clear facilities. The authors found that individuals are substantially less supportive of military action

against democracies than against otherwise identical autocracies.

To investigate the causal mechanisms through which democracy reduces public support for war,

Tomz andWeeks (2013) also measured each respondent’s beliefs about the threat posed by the poten-

tial adversary (threat), the cost of military intervention (cost), and the likelihood of victory (success). In

addition, the authors assessed each respondent’s moral concerns about usingmilitary force (morality).

With these data, they conducted a causal mediation analysis and found that democracy reduces public

support for war primarily by changing perceptions of the threat and morality of using military force.

In this analysis, the authors examined the role of each mediator separately with the assumption that

they operate independently and do not influence one another. However, it is likely that one’s percep-

tion of morality is partly influenced by beliefs about the threat, cost, and likelihood of success, which

also affect support for war directly. If so, results from the authors’ mediation analysis will likely be

biased estimates of the mediating effects of morality. In fact, the authors recognized this possibility

and addressed it through a “more complicated analysis” (2013, 860):

But did people regard preventive strikes as morally wrong because they thought the

target posed little threat, the attack would involve significant costs, and/or military ac-

tion would fail? To answer this question, we carried out a more complicated analysis
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in which we modeled morality not only as an independent force but also as a potential

consequence of the other mediators. Having estimated this more complicated model,

we credited morality as a mediator only to the extent that democracy changed percep-

tions of morality directly. Where democracy influencedmorality indirectly—by altering

other mediators that, in turn, affected morality—we allocated credit to the other media-

tors and not to morality itself. Even with this conservative method of scoring, morality

mediated more than 10% of the total effect of democracy on support for war.

Clearly, the authors aimed to isolate the mediating effect of morality above and beyond that of threat,

cost, and success, that is, the PSE for the causal path democracy → morality → support for war,

although they did not explicitly define this estimand or describe this “more complicated analysis” in

much detail. In what follows, we apply our proposed methodology to estimate this PSE.

Following Tomz and Weeks (2013), we assume the mediators threat, cost, and success are causally

prior to morality. To simplify our analysis, we group these mediators as a whole, forming a vector-

valued mediator reflecting the respondent’s beliefs about the costs and benefits of war. The causal

mechanisms underlying the effect of democracy can then be represented as a DAG akin to the top

panel of Figure 1. In this DAG, the outcome, Y , denotes whether the respondent opposes a pre-

ventive military strike; treatment, A, denotes whether the country developing nuclear weapons is

presented as a democracy; the mediatorsM1 include measures of the respondent’s beliefs about the

costs and benefits of war; the mediatorM2 is a dummy variable indicating whether the respondent

thought it would be morally wrong to strike; finally, the pretreatment covariatesX include dummy

variables for each of the two other randomized treatments (alliance status and economic ties) as well

as a number of demographic and attitudinal controls. We control for a set of pretreatment covariates

because, although treatment is randomly assigned, the mediator-outcome relationships may still be

confounded by baseline covariates in these data.

Because treatment is randomly assigned in this study, we first estimateE[Y (0)] andE[Y (1)] using

sample averages of the observed outcome within the control and treatment groups. We find that the

proportion of respondents opposing war is 27.6% when the country developing nuclear weapons is
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Table G1: Estimates of Total and Path-Specific Effects of Democracy on Public Opposition to War.

Estimate

Average total effect (ATE) 0.112 [0.056, 0.164]

Through costs and benefits (A → M1 ⇝ Y ) 0.039 [0.014, 0.062]

Through morality (A → M2 → Y ) 0.016 [0.001, 0.033]

Direct effect (A → Y ) 0.058 [0.019, 0.096]
Note: Numbers in brackets represent 95% bootstrapped confidence intervals (1,000 iterations).

an autocracy and 38.8% when it is a democracy. Therefore the ATE is about 11.2%.

We estimate the PSEs for the paths A → Y , A → M1 ⇝ Y , and A → M2 → Y using the

imputation approach described in themain text. To allow for nonlinear and interaction effects, we use

BART to fit the outcome models conditional on treatment, the pretreatment covariates, and varying

sets of mediators (namely, {M1,M2} and {M1}). The results are shown in Table 2. We can see that

taken together, perceived costs and benefits of war and perceived morality of war explain about half

of the total effect. Of the mediated effect, about 70% (0.039/(0.039 + 0.016)) operates through the

respondent’s beliefs about the costs and benefits of war, and the remaining 30% appears to operate

independently via the respondent’s perceived morality of war. These findings are broadly consistent

with those reported by Tomz and Weeks (2013). Nonetheless, it is our framework for tracing causal

paths that offers a precise definition and a rigorous assessment of the mediating role of morality in

the democratic peace.
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H Illustration of the R package paths

The following R code illustrates the use of the R package paths for our two empirical examples.

# install.packages("paths")

library(paths)

library(gbm)

#####################################################

# Example 1: Issue Framing Effects

#####################################################

# variable names

x <- c("gender1", "educ1", "polint1", "ideo1", "know1", "value1")

a <- "ttt"

m1 <- c("W1", "W2")

m2 <- c("M1","M2","M3","M4","M5")

y <- "Y"

m <- list(m1, m2)

# formulas

form_m0 <- as.formula(paste0(y, "~", a))

form_m1 <- as.formula(paste0(y, "~", paste0(c(x, a, m1), collapse = "+")))

form_m2 <- as.formula(paste0(y, "~", paste0(c(x, a, m1, m2), collapse = "+")))

# baseline model for overall treatment effect

lm_m0 <- lm(form_m0, data = welfare)

# GBM outcome models

gbm_m1 <- gbm(form_m1, data = welfare, distribution = "gaussian",

interaction.depth = 3)

gbm_m2 <- gbm(form_m2, data = welfare, distribution = "gaussian",
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interaction.depth = 3)

gbm_ymodels <- list(lm_m0, gbm_m1, gbm_m2)

# causal paths analysis

welfare_paths <- paths(a, y, m, models = gbm_ymodels,

data = welfare, nboot = 250)

# summarize results

summary(welfare_paths)

#####################################################

# Example 2: The Legacy of Political Violence

#####################################################

# K=3 causally ordered mediators

m1 <- c("trust_g1", "victim_g1", "fear_g1")

m2 <- c("trust_g2", "victim_g2", "fear_g2")

m3 <- c("trust_g3", "victim_g3", "fear_g3")

mediators <- list(m1, m2, m3)

# outcome model formulas

formula_m0 <- annex ~ kulak + prosoviet_pre + religiosity_pre + land_pre +

orchard_pre + animals_pre + carriage_pre + otherprop_pre + violence

formula_m1 <- update(formula_m0, ~ . + trust_g1 + victim_g1 + fear_g1)

formula_m2 <- update(formula_m1, ~ . + trust_g2 + victim_g2 + fear_g2)

formula_m3 <- update(formula_m2, ~ . + trust_g3 + victim_g3 + fear_g3)

# outcome models

gbm_m0 <- gbm(formula_m0, data = tatar, distribution = "bernoulli",

interaction.depth = 3)

gbm_m1 <- gbm(formula_m1, data = tatar, distribution = "bernoulli",

interaction.depth = 3)

gbm_m2 <- gbm(formula_m2, data = tatar, distribution = "bernoulli",
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interaction.depth = 3)

gbm_m3 <- gbm(formula_m3, data = tatar, distribution = "bernoulli",

interaction.depth = 3)

gbm_ymodels <- list(gbm_m0, gbm_m1, gbm_m2, gbm_m3)

# causal paths analysis using gbm

tatar_paths <- paths(a = "violence", y = "annex", m = mediators,

gbm_ymodels, data = tatar, nboot = 250)

# summarize results

summary(tatar_paths)

# propensity score model via gbm

formula_ps <- violence ~ kulak + prosoviet_pre + religiosity_pre + land_pre +

orchard_pre + animals_pre + carriage_pre + otherprop_pre

gbm_ps <- gbm(formula_ps, data = tatar, distribution = "bernoulli",

interaction.depth = 3)

# causal paths analysis using both the pure imputation estimator and

# the imputation-based weighting estimator

tatar_paths2 <- paths(a = "violence", y = "annex", m = mediators,

ps_model = gbm_ps, gbm_ymodels, data = tatar, nboot = 250)

# plotting PSEs

plot(tatar_paths2, mediator_names = c("G1 identity", "G2 identity", "G3 identity"),

estimator = "both")

# sensitivity analysis for the path-specific effect via M1

sens_paths <- sens(tatar_paths, confounded = "M1", estimand = "via M1",

gamma_values = - seq(0, 0.5, 0.002), eta_values = seq(-0.5, 0.5, 0.002))

plot(sens_paths)
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