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Abstract

Statistical analysis of mobility tables has long played a pivotal role in com-

parative stratification research. This article proposes a shrinkage estimator

of the log-odds ratio for comparing mobility tables. Building on an empirical

Bayes framework, the shrinkage estimator improves estimation efficiency by

“borrowing strength” across multiple tables while placing no restrictions on

the pattern of association within tables. Numerical simulation shows that the

shrinkage estimator outperforms the usual maximum likelihood estimator

(MLE) in both the total squared error and the correlation with the true val-

ues. Moreover, the benefits of the shrinkage estimator relative to the MLE

depend on both the variation in the true log-odds ratio and the variation in

sample size among mobility regimes. To illustrate the effects of shrinkage,

the author contrasts the shrinkage estimates with the usual estimates for the

mobility data assembled by Hazelrigg and Garnier for 16 countries in the

1960s and 1970s. For mobility tables with more than two categories, the

shrinkage estimates of log-odds ratios can also be used to calculate summary

measures of association that are based on aggregations of log-odds ratios.

Specifically, the author constructs an adjusted estimator of the Altham index

and, with a set of calibrated simulations, demonstrates its usefulness in
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enhancing both the precision of individual estimates and the accuracy of

cross-table comparisons. Finally, using two real data sets, the author shows

that in gauging the overall degree of social fluidity, the adjusted estimator of

the Altham index agrees more closely with results from the Unidiff model

than does the direct estimator of the Altham index.

Keywords
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1. INTRODUCTION

Comparative mobility analysis has long been at the core of social strati-

fication research. To investigate how patterns of intergenerational mobi-

lity differ across countries or vary over time, stratification researchers

typically compare a collection of mobility tables that cross-classify

fathers and sons by their occupations or classes. To draw such compari-

sons, researchers until the 1970s had relied on simple calculations of

inflow and outflow rates (e.g., Lipset and Zetterberg 1956; Miller 1960)

or the construct of “mobility ratios” (e.g., Glass and Berent 1954;

Rogoff 1953), both of which turned out to be inadequate to separate

changes in relative mobility (also known as exchange mobility, circula-

tion mobility, or social fluidity) from changes in marginal distributions

(i.e., structural mobility).1 Beginning in the late 1960s, thanks to the

pioneering work of Leo Goodman (1968, 1969), it has been recognized

that all associations in an I 3 J contingency table can be captured by a

sufficient set of (I � 1)(J � 1) odds ratios.2 This fundamental discovery

paved the way for the subsequent development of log-linear and log-

multiplicative models (e.g., Duncan 1979; Goodman 1979; Hauser

1980), in which the natural logarithms of odds ratios are expressed as

regression coefficients or their linear combinations.

Given the centrality of odds ratios in depicting the structure of row-

column association, a natural approach to comparing mobility tables, as

suggested by Goodman (1969), is to directly compare their correspond-

ing (log) odds ratios in search of similarities and differences. Although

mobility studies in sociology have been dominated by log-linear model-

ing since the 1970s, this older model-free approach has its own appeal

because it allows a panoramic view of the association between origin

and destination without invoking parametric assumptions (see Hout and
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Guest [2013] for an illustration). Meanwhile, using log-odds ratios as

building blocks, Altham (1970) proposed a number of aggregate mea-

sures of association for comparing contingency tables. One of these

measures (see section 3) has been recently used to examine long-term

trends in occupational mobility in Great Britain and the United States

(Ferrie 2005; Long and Ferrie 2007, 2013).

Unlike log-linear modeling, the model-free approach to comparing

mobility tables imposes no parametric constraints on the pattern of asso-

ciation between origin and destination. Instead, it requires that every

log-odds ratio be estimated separately from data. Estimation of single

log-odds ratios, however, can be highly imprecise in practice. Indeed,

the usual maximum likelihood estimator (MLE) of the log-odds ratio

(i.e., log n11n22

n12n21
) will be accompanied by a large standard error unless all

of the associated cells contain many cases,3 a condition that often fails

for real mobility tables. As a result, direct comparisons in sample log-

odds ratios across tables are prone to conflate true variations in relative

mobility with sampling fluctuations. On one hand, if relative mobility is

constant and trendless in all complex societies, as implied by the

hypothesis of constant social fluidity (CSF; Erikson and Goldthorpe

1992; Featherman, Jones, and Hauser 1975; Grusky and Hauser 1984),

the observed differences will stem entirely from sampling and measure-

ment errors. On the other hand, if social fluidity does differ across coun-

tries and change over time, sampling variability may also contaminate

empirical comparisons between mobility regimes. In particular, when

the mobility tables under investigation vary greatly in sample size, the

relatively sparse tables are more likely to be estimated at the extremes

of the mobility spectrum because they are subject to larger sampling

errors. Because sample size is presumably unrelated to the true amount

of social fluidity, this statistical artifact may distort the rank order of

mobility regimes in the size of origin-destination association. Such a

distortion can be substantively significant unless sampling errors are

negligible relative to systematic variations among mobility regimes.

The latter condition, unfortunately, seldom holds in comparative mobi-

lity research.

In log-linear modeling, estimation uncertainty is partly alleviated

through parametric assumptions. For example, the CSF model assumes

no cross-table variation in all log-odds ratios, and the Unidiff model

(Erikson and Goldthorpe 1992; Xie 1992) stipulates that the relative

magnitudes of different log-odds ratios are uniform in all tables. These
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assumptions, however, may accord poorly with real data. In this article,

I propose a shrinkage method for estimating log-odds ratios that

attempts to enhance estimation efficiency without explicitly constrain-

ing the patterns of row-column association. Building on an empirical

Bayes model (Efron and Morris 1973; Fay and Herriot 1979), the

shrinkage estimator “borrows strength” across multiple tables while pla-

cing no restrictions on the structure of association within tables. As I

will show by simulation, the shrinkage method leads to lower total

squared errors than does the usual MLE of the log-odds ratio. More

important, when tables vary greatly in sample size—a situation that we

often encounter in comparative mobility analysis—the shrinkage esti-

mates exhibit markedly higher correlations with the true log-odds ratios

than do the usual estimates. Therefore, the shrinkage method can

enhance the accuracy of cross-table comparisons in the degree of row-

column association. Moreover, the shrinkage estimates of log-odds

ratios can be used to calculate summary measures of association that

are based on aggregations of log-odds ratios. To illustrate this point, I

construct an adjusted estimator of the Altham index (Altham 1970;

Altham and Ferrie 2007), and, with a set of calibrated simulations,

demonstrate its usefulness in enhancing both the precision of individual

estimates and the accuracy of cross-table comparisons. Finally, using

two sets of real mobility tables, I show that in gauging the overall

degree of social fluidity, the adjusted estimates of the Altham index

agree more closely with results from the Unidiff model than do direct

estimates of the Altham index.

2. SHRINKAGE ESTIMATION OF LOG-ODDS RATIOS

2.1. Usual Estimator of the Log-odds Ratio

Let us consider K 2 3 2 contingency tables, which, say, cross-classify

fathers and sons according to nonmanual and manual classes in K coun-

tries. Denoting by nijk the cell frequency pertaining to the ith row and

the jth column in country k, the observed log-odds ratios for these tables

can be expressed as

Yk = log
n11kn22k

n12kn21k

, k = 1, 2, � � �K: ð1Þ
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Assuming a multinomial sampling distribution for each country, these

sample log-odds ratios are also the maximum likelihood estimates of

population log-odds ratios.4 They are therefore asymptotically normal,

that is,

ffiffiffiffiffiffiffiffiffiffi
nþþk

p
(Yk � uk)!d N (0, Vk),

where nþþk and uk represent the sample size and the population log-

odds ratio for country k. Using the delta method, it is not hard to show

that the asymptotic variance of Yk is

s2
k =

Vk

nþþk

=
1

nþþkp11k

þ 1

nþþkp12k

þ 1

nþþkp21k

þ 1

nþþkp22k

,

where the pijk’s denote the unknown cell probabilities (Agresti

2002:75–76).

Substituting the observed proportions for the pijk’s, we obtain a sam-

ple estimate of s2
k:

cs2
k =

1

n11k

þ 1

n12k

þ 1

n21k

þ 1

n22k

: ð2Þ

Because there is a finite, however small, probability that any of the

four cells are zero, the observed log-odds ratio (equation 1) may equal ‘

or �‘. In such cases, a common practice is to add one half to all of the

four cell frequencies, yielding a modified estimator (Agresti 2002:71):

fYk = log
n11k þ 0:5ð Þ n22k þ 0:5ð Þ
n12k þ 0:5ð Þ n21k þ 0:5ð Þ :

Haldane (1956) showed that this modification reduces the sampling

bias from the order of O(n�1) to the order of O(n�2). Moreover, Gart

and Zweifel (1967) noted that the corresponding variance estimator

fs2
k =

1

n11k þ 0:5
þ 1

n12k þ 0:5
þ 1

n21k þ 0:5
þ 1

n22k þ 0:5

is an unbiased estimator of Var(fYk ) except for terms of O(n�3). I there-

fore adopt these adjustments in the case of zero cells throughout the rest

of the article.5

Since the observed log-odds ratio (equation 1) coincides with the

MLE, it is consistent and asymptotically efficient. Nonetheless, the
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asymptotic variance estimator (equation 2) indicates that the MLE can

be highly imprecise in small samples: Unless all of the four cells con-

tain many cases, the standard error will be very large. As a result, if we

directly compare the observed log-odds ratios from different tables,

those from relatively sparse tables will be more likely to be ranked at

the extremes. This is undesirable because sample size is presumably

unrelated to the true degree of association. The shrinkage approach I

present below aims to improve both the precision of estimates from

sparse tables and the accuracy of ranking among different mobility

regimes.

2.2. Empirical Bayes Shrinkage

To explicate the shrinkage approach, let us first accept the normal

approximations of the observed log-odds ratios, that is,

Yk juk ;
indep

N (uk ,cs2
k ): ð3Þ

Now consider a Bayes model in which the population log-odds ratios

themselves follow a normal prior

uk ;
i:i:d:

N (m, t2), ð4Þ

where m and t2 are hyperparameters representing the prior mean and

the prior variance of the unknown uk’s. It is easy to show that the pos-

terior distribution of uk is also normal, and the Bayes estimator, that is,

the posterior mean, can be written as

E uk jYkð Þ= mþ (1�
cs2

k

t2 þcs2
k

)(Yk � m): ð5Þ

Estimating the hyperparameters m and t2 directly from the data, say,

through maximizing the marginal likelihood, leads to an empirical

Bayes estimator (Efron and Morris 1973, 1975)

ûEB
k = m̂þ (1�

cs2
kbt2 þcs2

k

)(Yk � m̂): ð6Þ
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In the statistics literature, ûEB
k has been described as a shrinkage estima-

tor because it “shrinks” the observed outcome Yk toward the estimated

prior mean m̂ with a shrinkage factor of
bs2

kbt2þbs2
k

. The shrinkage factor,

clearly, depends on the precision of the observation Yk: the larger is the

sampling variance cs2
k , the stronger is the degree of shrinkage. Indeed,

the empirical Bayes estimator can be expressed as a precision-weighted

average between Yk and m̂ (Raudenbush and Bryk 1985, 2002):

ûEB
k =

1= bt2

1= bt2 þ 1=cs2
k

m̂þ 1=cs2
k

1= bt2 þ 1=cs2
k

Yk ,

where the weight accorded to Yk is proportional to its sampling precision

1=cs2
k and the weight accorded to m̂ is proportional to 1= bt2 , a measure of

the concentration of the unknown uk’s around the prior mean m.

Because the shrinkage factor in the posterior mean (equation 5) is a

convex function of the prior variance t2, a substitution of a nearly

unbiased estimate bt2 for t2 would produce an upward bias for the

shrinkage factor
bs2

k

t2þbs2
k

(by Jensen’s inequality). To alleviate this prob-

lem, Morris (1983) suggested that the estimator (equation 6) be replaced

by

ûEB
k = m̂þ ½1� K � 3ð Þcs2

k

K � 1ð Þ bt2 þcs2
k

� ��(Yk � m̂), ð7Þ

where the multiplying constant K�3
K�1

is used to offset the bias of
bs2

kbt2þbs2
k

as

an estimate of the shrinkage factor
bs2

k

t2þbs2
k

.

The empirical Bayes framework sketched above was initially pro-

posed by Efron and Morris (1973, 1975) to interpret the James-Stein

rule for estimating multivariate normal means. Indeed, Stein (1956) and

James and Stein (1961) discovered that for simultaneous estimation of

unrelated normal means, the usual MLE (i.e., Yk’s) can be inadmissible

and dominated by a shrinkage estimator similar in form to the empirical

326 Zhou



Bayes estimator (equation 7). On the other hand, the empirical Bayes

method closely parallels the notion of best linear unbiased prediction

(BLUP) in random-effects models (Robinson 1991). Specifically, when

both the prior variance t2 and the sampling variances s2
k are known, it

can be shown that the following statistic minimizes the mean squared

error between uk and any unbiased estimator of uk that is linear in the

Yk’s (Harville 1976):

ûBLUP
k = m̂þ (1� s2

k

t2 þ s2
k

)(Yk � m̂): ð8Þ

Here m̂ =
Pk

k = 1 wkYk=
Pk

k = 1 wk is the minimum variance unbiased

estimator (MVUE) of m, where wk = 1=(t2 þ s2
k). Replacing the var-

iance components t2 and s2
k with their estimates would yield the

empirical best linear unbiased predictor (EBLUP) of uk , which coin-

cides with the empirical Bayes estimator (equation 7), except for the

lack of the multiplying constant K�3
K�1

.

While the theoretical work by James and Stein (1961) demonstrates

the advantage of shrinkage in a fixed-effects world, the concepts of

BLUP and EBLUP justify the empirical Bayes estimator through a

random-effects formulation. From either perspective, the key idea is to

reduce the influence of sampling variability by “borrowing strength”

from other observations (as reflected in m̂). Because the shrinkage factor

roughly equals the ratio of the sampling variance s2
k to the overall var-

iance of Yk (i.e., t2 þ s2
k), the shrinkage rule may be interpreted as

“purging” sampling errors from the estimation of true parameters. This

procedure can be highly effective when sampling uncertainty is substan-

tial relative to the true variation among the parameters of interest. As

illustrated by Efron and Morris (1975), given data from the first 45 at-

bats of 18 Major League Baseball players in the 1970 season, the shrink-

age approach performs much better than the MLE in predicting their

future batting averages. More recently, Savitz and Raudenbush (2009)

showed that similar types of shrinkage estimators can improve the preci-

sion and predictive validity of ecometric measures in neighborhood

studies. Considering that observed log-odds ratios frequently suffer from

large sampling errors, we expect that the shrinkage approach can signifi-

cantly enhance the estimation precision of log-odds ratios by pooling

data from multiple mobility tables.
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Meanwhile, we notice from equation (7) that the degree of shrinkage

is higher for observations with larger sampling variances. This relation-

ship is intuitive because the need for “borrowing strength” should be

stronger for relatively imprecise estimates. Differences in the degree of

shrinkage, moreover, can alter the rank order of the estimates; that is,

the shrinkage estimates may rank the population log-odds ratios differ-

ently from the observed log-odds ratios. Efron and Morris (1975) noted

that the empirical Bayes method typically outperforms MLE in ordering

the true values. Therefore, besides improving the estimation precision

of individual log-odds ratios, the shrinkage approach can also enhance

the accuracy of cross-table comparisons.

2.3. Estimation, Inference, and Implementation

To empirically estimate m and t2, a natural idea is to derive their MLE

on the basis of the joint marginal distribution

Yk ;
indep

N (m, t2 þcs2
k ):

Unfortunately, the likelihood equation in this case defies an analytical

solution. I now describe an alternative approach proposed by Carter and

Rolph (1974), one that is closely related to the procedures used in Fay

and Herriot (1979), Morris (1983), and Sidik and Jonkman (2005). As

mentioned above, when t2 is known, the MVUE of m is given by the

weighted average of the Yk’s

m̂ t2
� �

=

PK
k = 1 wk t2ð ÞYkPK

k = 1 wk t2ð Þ
,

where the weights are

wk t2
� �

=
1

t2 þcs2
k

:

Here wk t2ð Þ and m̂ t2ð Þ highlight their dependence on t2. Meanwhile,

we observe that the weighted sum of squared deviations of the Yk’s fol-

lows a chi-square distribution with K � 1 degrees of freedom, that is,XK

k = 1
wk t2
� �

Yk � m̂ t2
� �� �2

;x2
K�1:
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Thus we have

E
PK

k = 1 wk t2ð Þ Yk � m̂ t2ð Þð Þ2
h i

= K � 1:

Carter and Rolph (1974) suggested that t2 be estimated as the unique

positive solution that satisfiesPK
k = 1 wk

bt2

� �
Yk � m̂ bt2

� �� �2

= K � 1:

In the case in which no positive solution exists, bt2 is set to be zero. To

solve the above equation, a simple Newton-Raphson procedure was

described by Fay and Herriot (1979:276), which typically converges in

fewer than ten iterations. With the converged value of bt2 , the prior mean

m is estimated accordingly as m̂ bt2

� �
. By plugging m̂ and bt2 into equa-

tion (7), we obtain the empirical Bayes estimates of the unknown uk’s.

To fully assess the uncertainty of the empirical Bayes estimator

(equation 7), we must take into account the estimation of m, t2, and

s2
k’s. To avoid analytical challenges, I now consider a naive estimator

of the standard error of ûEB
k that treats the variance estimates bt2 andcs2

k ’s as the true underlying parameters. Denoting by Bk the shrinkage

factor
K�3ð Þbs2

k

K�1ð Þ bt2þbs2
k

� � in equation (7), the mean squared error between

ûEB
k and uk can be written as

E ûEB
k � uk

� �2
= E 1� Bkð ÞYk þ Bkm̂� uk½ �2

= E 1� Bkð Þ Yk � ukð Þ þ Bk m̂� ukð Þ½ �2

= 1� Bkð Þcs2
k þ 2 1� Bkð ÞBk

wkP
wk

� �cs2
k þ B2

k( bt2 � 2wk
bt2P

wk

þ 1P
wk

):

Therefore, by taking the square root of the right-hand side, we obtain an

estimator of the standard error of ûEB
k . Alternatively, we can fit random-

effects models using standard software for meta-analysis (such as the

metafor package in R; see Viechtbauer 2010) and extract estimates of

BLUPs and their standard errors, which should be very close to the

empirical Bayes estimates.

The standard error derived above tends to underestimate the uncer-

tainty of ûEB
k ’s because it ignores the estimation of t2 and s2

k’s. A fully
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Bayesian approach, as noted by Raudenbush and Bryk (2002), will take

account of the estimation uncertainty of m, t2, and uk’s simultaneously.

To build a full Bayes model, we may supply the hyperparameters m and

t2 with noninformative priors (e.g., by setting a normal prior with a var-

iance of 106 for m and a uniform prior from 0 to 104 for t2). Such a

model can be easily implemented using standard Markov chain Monte

Carlo software such as BUGS. In section 2.5, I illustrate both the empiri-

cal Bayes and the full Bayes methods using a set of 16 mobility tables.

2.4. Usual Estimator versus Shrinkage Estimator in Simulation

We now turn our attention back to the setting of K 2 3 2 mobility tables,

each representing a country. As noted earlier, the shrinkage factor is

decided by the sampling variance of the observed log-odds ratio relative

to the true variation in log-odds ratio among the K countries. The influ-

ence of shrinkage, therefore, should be stronger when the true variation

in mobility is relatively small compared with sampling errors. On the

other hand, because sampling variance typically differs from country to

country, the shrinkage estimates may exhibit a different rank order from

that of the usual estimates. Clearly, the extent of this discrepancy should

depend on the extent of variation in sample size among these countries.

In this subsection, I use numerical simulation to examine how potential

advantages of the shrinkage approach vary along these two dimensions.

I compare the performance between the usual estimator (equation 1) and

the shrinkage estimator (equation 7) in two aspects: (1) total squared

error and (2) correlation with the true log-odds ratios.

Let us consider 100 2 3 2 mobility tables depicting, say, intergenera-

tional mobility between white-collar and blue-collar occupations in 100

countries.6 Following the convention in mobility table analysis, I repre-

sent father’s occupation in rows and son’s occupation in columns. In this

simulation, I assume that these countries are at the same stage of indus-

trial development such that 40% of the sample is from white-collar ori-

gin in all of the 100 mobility tables. In other words, the row marginal

distribution is fixed to be (.4, .6). Despite the homogeneous origin distri-

bution, I allow these countries to vary in the extent of relative mobility

as measured by the log-odds ratio. In particular, I create three scenarios

in which the true variation in log-odds ratio among these countries is

small, medium, and large. Suppose that a son’s occupation given a

father’s occupation follows a binomial distribution, and use pk
1j1 and pk

1j2
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to denote the probabilities of working in a white-collar occupation

respectively for a person from white-collar origin and for a person from

blue-collar origin in country k. I assume that pk
1j1 and pk

1j2 are indepen-

dently and uniformly distributed around .7 and .3, respectively, which

means that the probability of being immobile (i.e., staying in the main

diagonal of the table) is about .7 for both white-collar and blue-collar

occupations. I then construct the three scenarios by letting the range of

the two uniform distributions be .08, .16, and .24.7 In other words, pk
1j1

and pk
1j2 are independently drawn from the following two distributions:

pk
1j1 ;

i:i:d:
Uniform :7� :04�a, :7þ :04�að Þ, k = 1, 2, � � � 100, ð9Þ

pk
1j2 ;

i:i:d:
Uniform :3� :04�a, :3þ :04�að Þ, k = 1, 2, � � � 100, ð10Þ

where the parameter a, which may take 1, 2, and 3, is used to generate

settings in which the true variation in log-odds ratio is small, medium,

and large.

The three scenarios above differ in the true variation of log-odds ratio

and thus in the estimate of t2 in equation (7), which will affect the

shrinkage factor uniformly for all countries. As mentioned earlier, the

contrasts between the shrinkage estimator and the usual estimator may

also depend on the amount of variation in sample size among the mobi-

lity tables, which shapes the variation among the cs2
k ’s. Therefore, I also

compare the performance between the two estimators as variation in

sample size changes from very small to very large. Specifically, I

assume that the sample size follows a log-uniform distribution as below:

log nþþk ;
i:i:d:

Uniform log 800�2b, log 1250�2b
� �

, k = 1, 2, � � � 100, ð11Þ

where nþþk denotes the sample size for country k. I vary the parameter

b from 0 to 4 with a step size of 1, thereby generating five scenarios

with a gradual change in the variation of sample size while fixing the

medium sample size among these countries to be about 1,000. For exam-

ple, sample size will range between 800 and 1,250 when b takes 0 but

range between 50 and 20,000 when b takes 4.

In this simulation, I exhaust all possible combinations of a and b,

resulting in 3 3 5 = 15 scenarios. For each of these scenarios, I gener-

ated the 100 mobility tables in the following steps:
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1. For each table k, generate the sample size using n++k = exp Mð Þb e,
where M is a random draw from the uniform distribution shown in

equation 11 and exp Mð Þb emeans taking the integer closest to exp(M).

2. Calculate the row marginals (n1þk , n2þk) by assigning 40% of the sam-

ple size nþþk to the first category (i.e., white collar).

3. Generate the transition probabilities pk
1j1 and pk

1j2 using the uniform dis-

tributions shown in equations 9 and 10.

4. Create the mobility table (n11k , n12k , n21k , n22k) using binomial draws

for each row, that is, binomial (n1þk , pk
1j1) for the first row and

binomial (n2þk , pk
1j2) for the second row.

Given the simulated tables, I applied both the usual estimator (equation

1) and the empirical Bayes estimator (equation 7) to estimate the log-

odds ratios. I then evaluated the performance of the two estimators

using two criteria: (1) total squared error, i.e.,
P100

k = 1 ûk � uk

� �2
, and (2)

Pearson’s correlation coefficient (among the 100 countries), that is,

Cor(ûk , uk). To smooth random fluctuations, I averaged these two mea-

sures over 500 iterations of the above procedures (data generation, esti-

mation, and evaluation) for each of the 15 scenarios.

Figure 1 presents the results, with panel A for total squared errors and

panel B for the correlation coefficients. In both panels, I represent the

usual estimator in squares and the shrinkage estimator in triangles. The

three scenarios in which the true variation in log-odds ratio is small,

medium, and large are represented respectively by solid, dashed, and

dotted lines. First, we observe that in virtually all of the 15 scenarios,

the shrinkage estimator exhibits lower total squared errors and higher

correlations with the true values than does the usual estimator. This is

consistent with theoretical results on joint estimation of normal means

as discussed by Efron and Morris (1973, 1975). Second, as shown by

both panels, the benefits of the shrinkage estimator are greater when the

true variation in log-odds ratio is smaller. This relationship is intuitive

because the shrinkage approach is essentially pooling information across

cases, which should be more effective when these cases are more similar

to each other. We also note that for both estimators, the correlation with

the true values increases as the true variation in log-odds ratio increases.

This is because when the true differences are larger, they are less likely

to be confounded by sampling fluctuations and thus more likely to be

detected from the data. Finally, reading along the x-axis, we find that

the advantage of the shrinkage estimator becomes more pronounced as
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Figure 1. Usual estimator versus empirical Bayes estimator of the log-odds
ratio (LOR) in total squared error (A) and Pearson’s correlation with the true
values (B) under different scenarios.
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the variation in sample size increases. In fact, both estimators perform

worse when there is greater variation in sample size. However, the

shrinkage estimator is far more robust than the usual estimator in this

aspect. For instance, in the case in which the true variation in log-odds

ratio is small (solid lines), the correlation between the usual estimates

and the true values declines from above .7 to below .5 as the variation in

sample size changes from very small to very large, whereas the correla-

tion between the shrinkage estimates and the true values stays roughly

unchanged (about .71) regardless of the variation in sample size.

To sum up, this simulation study suggests that the shrinkage estima-

tor almost always outperforms the usual estimator in joint estimation of

multiple log-odds ratios, either in terms of total squared error or in terms

of the correlation with the true values. Moreover, the advantage of the

shrinkage estimator is more pronounced when there is less variation in

the true log-odds ratio or more variation in sample size. In particular,

the higher correlations with the true values exhibited by the shrinkage

estimator reveal its great potential for enhancing the accuracy of cross-

table comparisons.

2.5. Shrinkage at Work: An Example

I now apply the shrinkage method to the mobility data assembled by

Hazelrigg and Garnier (1976), which provide 3 3 3 classifications of

son’s occupation by father’s occupation for 16 countries in the 1960s

and 1970s (henceforth referred to as HG-16). The data are displayed in

Table 1. In each of the 16 tables, occupation is categorized as white col-

lar, blue collar, or farm. Let us consider two sets of log-odds ratios that

are of particular substantive interest: (1) the log-odds ratio pertaining to

the 2 3 2 subtable of white-collar and blue-collar workers and (2) the

log-odds ratio pertaining to the 2 3 2 subtable of blue-collar workers

and farmers. We may perceive these two log-odds ratios as measuring

the strengths of class boundaries between white collar and blue collar

and between blue collar and farm. For each measure, I contrast the

observed log-odds ratios with both the empirical Bayes estimates and

the full Bayes estimates. To generate the full Bayes estimates, I ran five

independent Markov chains, each containing 4,000 iterations, and

retained the last 2,000 vectors from each run. The point estimates and

the standard errors of the log-odds ratios were estimated respectively as

the posterior means and the posterior standard deviations.
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The results are shown in Table 2. On one hand, we observe that for

countries with very large sample sizes, such as Spain, United States,

and West Germany, both the point estimates and the standard errors are

largely the same across different methods. Because within-sample pre-

cision is sufficiently high for these countries, the shrinkage factors

assigned to the observed log-odds ratios are almost zero. The shrinkage

estimates, therefore, closely resemble the MLE in both location and pre-

cision. On the other hand, for relatively sparse tables, such as Finland,

Norway, and Sweden, both the point estimates and the standard errors

are markedly changed under the shrinkage methods. However, the

empirical Bayes approach and the full Bayes approach yield essentially

identical point estimates, although the latter gives slightly larger stan-

dard errors as it incorporates the uncertainty of the prior variance t2.

Table 1. Mobility Tables for 16 Countries, Father’s Occupation by Son’s
Occupation

Australia Belgium France Hungary

292 170 29 497 100 12 2,085 1,047 74 479 190 14
290 608 37 300 434 7 936 2,367 57 1,029 2,615 347
81 171 175 102 101 129 592 1,255 1,587 516 3,110 3,751

Italy Japan Philippines Spain

233 75 10 465 122 21 239 110 76 7,622 2,124 379
104 291 23 159 258 20 91 292 111 3,495 9,072 597
71 212 320 285 307 333 317 527 3,098 4,597 8,173 14,833

United States West Germany West Malaysia Yugoslavia

1,650 641 34 3,634 850 270 406 235 144 61 24 7
1,618 2,692 70 1,021 1,694 306 176 369 183 37 92 13
694 1,648 644 1,068 1,310 1,927 315 578 2,311 77 148 223

Denmark Finland Norway Sweden

79 34 2 39 29 2 90 29 5 89 30 0
55 119 8 24 115 10 72 89 11 81 142 3
25 48 84 40 66 79 41 47 47 27 48 29

Note: The row and column categories are “white collar,” “blue collar,” and “farm” for all

countries in the table.

Source: Grusky and Hauser (1983:56); see also Raftery (1995:115).
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Overall, shrinkage estimates based on either approach are more precise

than the usual estimates.

To demonstrate the effects of shrinkage, I visualize the contrasts

between the observed log-odds ratios and the empirical Bayes estimates

Table 2. Point Estimates and Estimated Standard Errors for Two Sets of Log-
odds Ratios in HG-16 under Different Estimation Methods

LOR between White Collar
and Blue Collar

LOR between Blue
Collar and Farm

Observed
Empirical

Bayes
Full

Bayes Observed
Empirical

Bayes
Full

Bayes

Australia 1.28
(.12)

1.35
(.11)

1.35
(.12)

2.82
(.20)

2.82
(.19)

2.82
(.19)

Belgium 1.97
(.13)

1.93
(.12)

1.94
(.13)

4.37
(.40)

3.95
(.34)

3.98
(.37)

France 1.62
(.05)

1.62
(.05)

1.62
(.05)

3.96
(.14)

3.91
(.14)

3.90
(.14)

Hungary 1.86
(.09)

1.85
(.09)

1.85
(.09)

2.21
(.06)

2.21
(.06)

2.21
(.06)

Italy 2.16
(.18)

2.05
(.15)

2.05
(.16)

2.95
(.23)

2.93
(.22)

2.95
(.22)

Japan 1.82
(.14)

1.81
(.13)

1.81
(.13)

2.64
(.25)

2.66
(.23)

2.66
(.23)

Philippines 1.94
(.17)

1.89
(.14)

1.90
(.15)

2.74
(.12)

2.74
(.12)

2.74
(.12)

Spain 2.23
(.03)

2.23
(.03)

2.23
(.03)

3.32
(.04)

3.31
(.04)

3.31
(.04)

United States 1.45
(.06)

1.47
(.06)

1.46
(.06)

2.71
(.13)

2.71
(.13)

2.71
(.13)

West Germany 1.96
(.05)

1.95
(.05)

1.95
(.05)

2.10
(.07)

2.11
(.07)

2.11
(.07)

West Malaysia 1.29
(.12)

1.36
(.11)

1.35
(.12)

2.09
(.10)

2.10
(.10)

2.10
(.10)

Yugoslavia 1.84
(.31)

1.80
(.21)

1.80
(.23)

2.37
(.31)

2.45
(.28)

2.43
(.30)

Denmark 1.61
(.26)

1.67
(.19)

1.67
(.21)

3.26
(.41)

3.14
(.34)

3.13
(.37)

Finland 1.86
(.33)

1.80
(.21)

1.81
(.23)

2.62
(.37)

2.67
(.32)

2.67
(.31)

Norway 1.34
(.27)

1.52
(.19)

1.52
(.22)

2.09
(.38)

2.27
(.33)

2.26
(.33)

Sweden 1.65
(.25)

1.69
(.19)

1.69
(.19)

3.35
(.63)

3.11
(.45)

3.09
(.49)

Note: Numbers in parentheses are estimated standard errors. HG-16 = the 16 3 3 3 mobility

tables assembled by Hazelrigg and Garnier (1976); LOR = log-odds ratio.
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in Figure 2, in which 9 of the 16 countries are marked for illustration:

Belgium, France, Hungary, Italy, Spain, United States, West Malaysia,

Norway, and Sweden. Panel A shows the log-odds ratio between white

collar and blue collar. First, we find that most of the cross-country dif-

ferences are consistent between the two sets of estimates: for example,

according to either estimator, Spain and West Malaysia are respectively

the least mobile (i.e., with the highest log-odds ratio) and the most

mobile (i.e., with the lowest log-odds ratio) among the nine countries.

However, because the observed log-odds ratios differ in sampling preci-

sion, the shrinkage estimator implies a slightly different rank order

among these countries. In particular, Norway is more mobile than the

United States according to the usual estimator (i.e., the observed odds

ratio) but less mobile than the United States according to the shrinkage

estimator. In other words, the empirical Bayes model suggests that the

higher mobility of Norway exhibited by the raw data is due simply to

its larger sampling variance, not because the barrier between white-

collar and blue-collar jobs is more permeable in Norway than in the

United States.8

Panel B demonstrates the effects of shrinkage for the log-odds ratio

between blue collar and farm. Overall, these estimates are much higher

than the estimates in panel A, indicating that the barrier between these

two classes is much harder to cross than the barrier between white-collar

and blue-collar jobs. Similar to panel A, the rankings among the nine

countries are not much altered under the shrinkage approach, except that

Norway is again “shrunk toward the mean.” We also find that the influ-

ence of shrinkage is the most pronounced for Belgium, which is mark-

edly less mobile than France according to the observed log-odds ratio

but closely resembles France in their shrinkage estimates. This is clearly

related to the sparse cell of (blue collar, farm) in the Belgian table (see

again Table 1).

3. ADJUSTED ESTIMATION OF THE ALTHAM INDEX

For mobility tables with more than two categories, we can use the

shrinkage estimator (equation 7) to calculate summary measures of

association that are based on aggregations of log-odds ratios. In this sec-

tion, I construct an adjusted estimator of the Altham index, an aggregate

measure of association that has been recently used for studying interge-

nerational occupational mobility (Ferrie 2005; Long and Ferrie 2007,
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Figure 2. Usual estimates and shrinkage estimates for two sets of log-odds
ratios in HG-16. HG-16 = the 16 3 3 3 mobility tables assembled by
Hazelrigg and Garnier (1976); Log OR = log-odds ratio.
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2013). Results from a set of calibrated simulations suggest that using

shrinkage estimates of log-odds ratios can substantially improve the

estimation precision of the Altham index.

3.1. An Adjusted Estimator of the Altham Index

To assess the total amount of association embodied in a two-way con-

tingency table, Altham (1970) proposed a number of measures that are

based on aggregations of log-odds ratios. One such measure is identical

to the Euclidean distance between the full sets of log-odds ratios in two

I 3 J tables P and Q, that is,

d P, Qð Þ=
XI

i = 1

XJ

j = 1

XI

l = 1

XJ

m = 1
log

pijplm

pimplj

� log
qijqlm

qimqlj

				 				2
" #1=2

,

where pij and qij denote the probabilities associated with the cell (i, j) in

table P and table Q. Although the metric d(P, Q) gauges the distance

between the row-column associations in tables P and Q, it does not tell

us in which table the rows and the columns are more closely associated.

To answer this question, we can compare d(P, J ) with d(Q, J ), where J

denotes a contingency table in which the rows and columns are com-

pletely independent. Because all of the log-odds ratios are zero in an

independent table, we have

d P, Jð Þ=
XI

i = 1

XJ

j = 1

XI

l = 1

XJ

m = 1
log

pijplm

pimplj

				 				2
" #1=2

: ð12Þ

We can see that d(P, J ) is the square root of the sum of all squared log-

odds ratios in table P. A larger value of d(P, J ) indicates a stronger

association between the rows and columns. Hence, when P is a mobility

table, a larger d(P, J ) corresponds to a more rigid class regime.

Although this approach to comparing mobility tables is lesser known

than log-linear models in comparative stratification research, it has been

recently used by economic historians to study long-term trends in occu-

pational mobility in Great Britain and the United States (Ferrie 2005;

Long and Ferrie 2007, 2013). From here on, I use “the Altham index”

to mean d(P, J ) for a contingency table P.
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Now suppose we have a set of I 3 I mobility tables M1, M2, � � �Mk

for K countries. For each country k, we can directly calculate the

Altham index by substituting the observed log-odds ratios:

d̂Direct Mk , Jð Þ=
XI

i = 1

XJ

j = 1

XI

l = 1

XJ

m = 1
log

nijknlmk

nimknljk

				 				2
" #1=2

, k = 1, 2, � � �K,

ð13Þ

where nijk denotes the observed frequency associated with the cell (i, j)

in table k.9 On the other hand, we can use the shrinkage estimator of the

log-odds ratio for each row-column combination (i, j, l, m), yielding an

adjusted estimator of the Altham index:

d̂Adjusted Mk , Jð Þ=
XI

i = 1

XJ

j = 1

XI

l = 1

XJ

m = 1
ûEB

i, j, l, mð Þ, k

			 			2
 �1=2

, k = 1, 2, � � �K,

ð14Þ

where ûEB
i, j, l, mð Þ, k denotes the shrinkage estimator (equation 7) of the log-

odds ratio log
pijplm

pimplj
in table k. Because the Altham index is not a linear

function of the log-odds ratios, the adjusted estimator (equation 14) can-

not be expressed as a weighted average between the direct estimator

(equation 13) and a common mean as in equation (7). However, as we

will see, the key effect of this adjustment is also “pulling” the direct

estimates toward the middle, the extent of which depends on sample

sizes of the corresponding tables.

3.2. Direct Estimator versus Adjusted Estimator in Simulation

Below, I use numerical simulation to evaluate the performance of the

direct estimator (equation 13) and the adjusted estimator (equation 14)

for the Altham index. As in the case of the log-odds ratio, I compare

them in two aspects: (1) total squared error and (2) correlation with the

true values. To mimic mobility regimes in the real world, I use HG-16

to motivate my simulation setup. First, I fitted the 16 3 3 3 mobility

tables using four log-linear (or log-multiplicative) models: (1) quasi-

perfect mobility, (2) uniform inheritance, (3) perfect blue-collar mobi-

lity, and (4) the Unidiff model with full row-column interaction. These

models were proposed by Grusky and Hauser (1984) (a, b, c) and Xie
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(1992) (d) to compare mobility regimes of the 16 countries.10 I then

treated the estimated parameters as the true parameters, yielding four

data-generating models, that is, four simulation setups. For each of the

four setups, I generated 1,000 independent samples of the 16 tables and,

for each sample, obtained the direct and the adjusted estimates of the

Altham index. With the “true” Altham indices readily available from the

model parameters, I evaluated the two estimators using three criteria: (1)

total squared error, (2) Pearson’s correlation with the true values, and

(3) Spearman’s rank correlation with the true values. To smooth random

fluctuations, each of the three measures was averaged over the 1,000

samples, thus producing the total mean squared error (total MSE) and

the average correlation coefficients. The results are summarized in

Table 3.

We first observe in this table that the adjusted estimator leads to a

substantial reduction in total MSE in all of the four scenarios. For

example, when data are generated from the Unidiff model, total MSE

for the adjusted estimator is only about half of that for the direct esti-

mator (38.8 / 77.0 = 50.4%). Moreover, the adjusted estimates com-

pete well with the direct estimates in correlating with the true Altham

indices. Specifically, the adjusted estimator (on average) brings an

increase in Pearson’s correlation in all of the four scenarios and an

increase in Spearman’s rank correlation in two of the four scenarios.

Therefore, the shrinkage-based method for calculating the Altham

index not only yields more precise individual estimates but may also

enhance the accuracy of cross-table comparisons in the overall degree

of association.

3.3. An Illustration Using HG-16

I now apply both estimators of the Altham index to the real data in HG-

16. The results are shown in Figure 3A, in which the same nine coun-

tries as in section 2.5 are highlighted for illustration. Clearly, with the

shrinkage estimates of log-odds ratios, the Altham index tends to be

shrunk toward the middle, yet the degree of shrinkage varies consider-

ably from country to country. For example, the adjusted estimate is very

similar to the direct estimate for France, but the estimate for Sweden is

heavily altered by the adjustment. According to the direct estimates,

Sweden ranks as the least mobile (i.e., with the highest Altham index)

among the 16 countries; but by the adjusted estimates, Sweden stands
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right in the middle, more mobile than Hungary, France, Belgium, Italy,

and Spain. Such a sharp contrast suggests that the high (direct) estimate

of the Altham index for Sweden is primarily a result of large sampling

errors for some of the log-odds ratios in the Swedish data. As was shown

in Table 1, the cell (white collar, farm) of the Swedish table contains no

observation, which may have led to an incredibly high estimate of the

Altham index.

We can also evaluate the Altham index for a subset of the mobility

table. Figure 3B presents the results for the same set of tables with the

farm-farm cells excluded. The uniqueness of the farm-farm cell has

been emphasized by Xie and Killewald (2013), who argued that the

extremely persistent degree of self-recruitment from farming among

farmers (regardless of historical contexts) challenges the utility of odds

ratio–based measures for comparing mobility regimes with very differ-

ent levels of industrialization. Hence, calculating the Altham index

without the farm-farm cell serves as a sensitivity check on the results in

Figure 3A. Two findings emerge from this analysis. First, compared

with panel A, we find that the exclusion of the farm-farm cell leads to

significant changes in the positions of these countries along the mobility

spectrum. For instance, when the full tables are analyzed, France and

Hungary are fairly close to each other, both ranking among the least

mobile regimes; when the farm-farm cells are excluded, France appears

Table 3. Direct Estimator versus Adjusted Estimator of the Altham Index in
Simulation

Data-generating

Average Correlation
with d Mk , Jð Þ

Model Estimator Total MSE Pearson Spearman’s Rank

Quasi-perfect
mobility

d̂Direct Mk , Jð Þ 91.9 .916 .894

d̂Adjusted Mk , Jð Þ 73.5 .919 .886

Uniform
inheritance

d̂Direct Mk , Jð Þ 39.6 .904 .886

d̂Adjusted Mk , Jð Þ 22.3 .940 .918

Perfect blue-collar
mobility

d̂Direct Mk , Jð Þ 107.5 .894 .885

d̂Adjusted Mk , Jð Þ 74.0 .904 .873

Unidiff (full
interaction)

d̂Direct Mk , Jð Þ 77.0 .867 .855

d̂Adjusted Mk , Jð Þ 38.8 .906 .882

Note: MSE = mean squared error.
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Figure 3. Direct estimates and adjusted estimates of the Altham index for
HG-16 (A) and HG-16 without farm-farm cells (B). HG-16 = the 16 3 3 3
mobility tables assembled by Hazelrigg and Garnier (1976).
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to be one of the most mobile countries, whereas Hungary stands out as

the single most immobile regime, with an Altham index far higher than

those of the others. Second, although the adjusted estimates have the

same rank order as the direct estimates for the nine countries marked

here, they differ substantially in relative positions. For example, accord-

ing to the direct estimates (without the farm-farm cell), Norway and

Sweden are far apart, one very close to West Malaysia and the other

only slightly lower than Spain; however, with the shrinkage-based

adjustment, these two Nordic countries are much more similar, with

their Altham indices closer to France and the United States than to

West Malaysia and Spain.

4. SHRINKING TOWARD CONVERGENCE:
COMPARING THE ALTHAM INDEX WITH THE
UNIDIFF MODEL

Although the Altham index provides a simple summary measure of the

row-column association for a mobility table, log-linear modeling has

been far more popular among sociological studies on intergenerational

class mobility, in part because of its flexibility for accommodating fine-

grained theoretical hypotheses (e.g., Erikson and Goldthorpe 1987;

Hout 1984, 1988; Yamaguchi 1987). Among a plethora of log-linear

and log-multiplicative models that have been proposed for studying

mobility tables, the Unidiff model (also known as the log-multiplicative

layer effect model) is particularly recognized for its ability to provide a

single parameter that captures cross-table differences in social fluidity

(Erikson and Goldthorpe 1992; Xie 1992). Hence, the Altham index

and the Unidiff model constitute two different approaches to making

overall comparisons between mobility tables. In this section, I first

establish a theoretical equivalence between these two approaches in the

ideal case in which the Unidiff model is the true data-generating model.

Then, using two real data sets, I show that the adjusted estimates of the

Altham index agree more closely with the layer effects estimated under

the Unidiff model than do direct estimates of the Altham index.

4.1. The Unidiff Model, the Layer Effect, and the Altham Index

As in section 3.1, let us consider a set of I 3 I mobility tables

M1, M2, . . . Mk for K countries. In a log-linear analysis, these tables are
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typically treated as a three-way table with I rows, I columns, and K

layers. Denoting by Fijk the expected frequency in the ith row, the jth

column, and the kth layer (i.e., the kth country), the saturated log-linear

model can be written as

log Fijk = mþ mR
i þ mC

j þ mL
k þ mRL

ik þ mCL
jk þ mRC

ij þ mRCL
ijk :

In this equation, the first six terms are used to saturate the marginal dis-

tributions of both the origin and the destination in each country, while

the last two terms, mRC
ij and mRCL

ijk , capture variations in the origin-

destination association across countries. However, because the saturated

model exhausts all degrees of freedom, it would severely overfit the

data. In practice, the researcher often wants to specify mRC
ij and mRCL

ijk in

a parsimonious fashion. The Unidiff model, in particular, assumes that

these countries share a common pattern of association between origin

and destination while allowing the strength of association to vary across

countries. As a result, the model can be written as

log Fijk = mþ mR
i þ mC

j þ mL
k þ mRL

ik þ mCL
jk þ cijfk : ð15Þ

Here, the parameter cij characterizes the common pattern of association,

and the parameter fk , which is called the “layer effect,” identifies the

relative position of country k along the mobility spectrum.

According to equation (15), the expected log-odds ratio associated with

the row-column combination (i, j, l, m) in table k can be calculated as

u i, j, l, mð Þ, k = log Fijk � log Fimk � log Fljk þ log Flmk = u�i, j, l, mfk , ð16Þ

where u�i, j, l, m = cij � cim � clj þ clm. Therefore, under the Unidiff

model, any log-odds ratio in a given table is the product of a common

log-odds ratio u�i, j, l, m and the layer effect fk . Clearly, a greater value of

fk implies a lower degree of social fluidity. Substituting the above

expression into equation (12), the Altham index becomes

d Mk , Jð Þ=
X

i, j, l, m
u i, j, l, mð Þ, k

		 		2h i1=2

=
X

i, j, l, m
u�i, j, l, m

			 			2
 �1=2

fk : ð17Þ

Because the term
P

i, j, l, m u�i, j, l, m

			 			2
 �1=2

does not depend on k, the

Altham index d(Mk , J ) is directly proportional to the layer effect fk . In
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other words, these two measures of association are equivalent under the

Unidiff model.

Real mobility data, however, may fail to support the assumptions of

the Unidiff model. For example, according to the likelihood ratio test,

the Unidiff model fits poorly for HG-16 (Xie 1992:390). In such cases,

we may conclude that different mobility regimes exhibit different pat-

terns of relative mobility, and proceed to develop more flexible models,

such as the regression-type models proposed by Goodman and Hout

(1998), to capture the nuances of cross-table differences. Nonetheless,

tempted by such questions as “Overall, is country A more mobile than

country B?” the researcher may still be interested in reducing subtle,

multidimensional differences to simple, one-dimensional contrasts. In

this regard, the Unidiff model and the Altham index constitute two rea-

sonable yet distinct approaches. A natural question, then, is whether

these two approaches would yield concordant results. Because the layer

effect and the Altham index are equivalent when the Unidiff model is

true, we would expect that they produce more similar results when data

are more congruent with the Unidiff model. On the other hand, given

the advantages of the adjusted estimator over the direct estimator for

the Altham index, it is reasonable to conjecture that the adjusted estima-

tor agrees more closely than the direct estimator with results from the

Unidiff model. Below, I use two sets of real mobility tables to test these

two hypotheses.

4.2. Shrinking toward Convergence: Evidence from Two Data

Sets

I apply both estimators of the Altham index, along with the Unidiff

model, to two data sets: (1) HG-16 (i.e., the 16 3 3 3 mobility tables

assembled by Hazelrigg and Garnier [1976]) and (2) a collection of 149

6 3 6 mobility tables from 35 countries assembled by Ganzeboom,

Luijkx, and Treiman (1989), henceforth GLT-149. Whereas occupation

in HG-16 is crudely classified as white collar, blue collar, and farm,

GLT-149 adopts the six-category version of the EGP class scheme

(Erikson, Goldthorpe, and Portocarero 1979): the service class (I + II),

routine nonmanual workers (III), petty bourgeoisie (IVa + IVb), farmers

and agricultural laborers (IVc + VIIb), skilled manual workers (V +

VI), and unskilled manual workers (VIIa).
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To assess the extent to which different estimators of the Altham

index accord with the layer effects estimated under the Unidiff model, I

use Spearman’s rank correlation as well as the Pearson correlation.

Previous researchers analyzing HG-16 have pointed out that Hungary

significantly deviates from the other 15 countries in patterns of inter-

class mobility (Grusky and Hauser 1984; Xie 1992). For this reason, I

analyzed both the full set of HG-16 and the 15 tables excluding the

Hungarian case (henceforth referred to as HG-15). The results are

shown in Table 4. We can see that for all three data sets, the fitted layer

effects f̂Unidiff
k tend to correlate more strongly with the adjusted esti-

mates of the Altham index than with the direct estimates, especially by

Spearman’s rank correlation. For example, the rank correlation for

GLT-149 is .839 between d̂Direct Mk , Jð Þ and f̂Unidiff
k but .899 between

d̂Adjusted Mk , Jð Þ and f̂Unidiff
k .

On the other hand, we notice that when Hungary is excluded from

HG-16, both estimates of the Altham index become more aligned with

the fitted layer effects. The Pearson correlation, for example, increases

from .858 to .917 between d̂Direct Mk , Jð Þ and f̂Unidiff
k and from .852 to

.939 between d̂Adjusted Mk , Jð Þ and f̂Unidiff
k . These results accord well with

our first hypothesis: because Hungary contributes the lion’s share to the

model deviance (i.e., G2), its exclusion considerably improves the fit

between the data and the Unidiff model, thereby producing greater con-

sistency between model-free (i.e., the Altham index) and model-based

(i.e., the Unidiff model) inferences. To explore this relationship further,

I examine how the above correlations change as the most poorly fitted

cases are progressively excluded from the data sets. Specifically, for

Table 4. Correlations of Direct and Adjusted Estimates of the Altham Index
with f̂Unidiff

k

Data Set Estimator
Pearson’s

Correlation
Spearman’s

Rank Correlation

HG-16 d̂Direct Mk , Jð Þ .858 .832

d̂Adjusted Mk , Jð Þ .852 .876

HG-15 (without Hungary) d̂Direct Mk , Jð Þ .917 .846

d̂Adjusted Mk , Jð Þ .939 .893

GLT-149 d̂Direct Mk , Jð Þ .817 .839

d̂Adjusted Mk , Jð Þ .803 .899
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HG-16, I performed a stepwise elimination of Hungary, France, West

Germany, the United States, and Spain—in order of decreasing G2 under

the Unidiff model—and recalculated the correlations for each subset of

the 16 tables. For GLT-149, the same procedures were followed except

that five tables, rather than one table, were removed at a time and the

correlation coefficients were recalculated until 40 tables were deleted.

Figure 4 shows the results, with panel A for HG-16 and panel B for

GLT-149. In both panels, I represent Pearson’s correlation in solid lines

and Spearman’s rank correlation in dashed lines. Meanwhile, squares

and triangles denote direct and adjusted estimates of the Altham index,

respectively. From the four contrasts between squares and triangles, we

notice that the adjusted estimates of the Altham index almost always

correlate more strongly with the fitted layer effects than do the direct

estimates. On the other hand, reading along the x-axis, we find that the

correlation coefficients generally increase as the most poorly fitted cases

are excluded from the data sets. The upward drift, however, is more

noticeable for the adjusted estimator than for the direct estimator. As a

result, the gap between d̂Direct Mk , Jð Þ and d̂Adjusted Mk , Jð Þ in their corre-

lations with f̂Unidiff
k grows larger as data align more closely with the

Unidiff model. For example, when the full set of GLT-149 is analyzed,

the Pearson correlation between d̂Adjusted Mk , Jð Þ and f̂Unidiff
k is .803,

slightly lower than that between d̂Direct Mk , Jð Þ and f̂Unidiff
k (.817; see

again Table 4); but when the 40 tables with the largest deviances are

excluded, the adjusted estimates of Altham indices correlate much more

strongly with the fitted layer effects than do the direct estimates.

In short, these results suggest that in assessing the overall degree of

social fluidity, the adjusted estimator of the Altham index accords more

closely with the Unidiff model than does the direct estimator. Moreover,

the contrast becomes more pronounced when data are more congruent

with the Unidiff model. How do we understand these findings? First, we

note that the adjusted estimator of the Altham index differs from the

direct estimator only in its reliance on shrinkage estimates of the log-

odds ratios. As mentioned earlier, the underlying principle of the shrink-

age method is to borrow information from other cases, particularly

through an empirical Bayes model with a normal prior. The adjusted

estimator of the Altham index, therefore, may be considered as a semi-

parametric method because it uses a normal Bayes model to smooth data

across multiple tables but imposes no parametric constraints on the pat-

tern of association within tables. In contrast, the direct estimator of the
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Figure 4. Direct estimates versus adjusted estimates of the Altham index in
their correlations with f̂Unidiff

k for varying subsets of HG-16 and GLT-149.
HG-16 = the 16 3 3 3 mobility tables assembled by Hazelrigg and Garnier
(1976); GLT-149 = a collection of 149 6 3 6 mobility tables from 35
countries assembled by Ganzeboom, Luijkx, and Treiman (1989).

Comparing Mobility Tables 349



Altham index is fully nonparametric, involving no data smoothing either

across or within tables. On the other hand, the Unidiff model stipulates

that all log-odds ratios are determined as a product of a common pattern

of association and table-specific effects. This multiplicative specifica-

tion requires the Unidiff model to pool data both across tables (for esti-

mating cij) and across cells within tables (for estimating fk). Hence, in

the way that data are pooled to draw inferences, the adjusted estimator

of the Altham index stands closer than the direct estimator to the Unidiff

model, which probably explains why the shrinkage approach boosts con-

vergence between a descriptive index and a parametric model in gauging

social fluidity.

5. SUMMARY AND DISCUSSION

Building on an empirical Bayes framework, I have proposed a shrinkage

estimator of the log-odds ratio for comparing mobility tables. This esti-

mator enhances estimation precision by borrowing information across

multiple tables while placing no restrictions on the pattern of association

within tables. This approach stands in stark contrast to the usual MLE

of the log-odds ratio, which involves no data pooling either across or

within tables. Numerical simulation suggests that the shrinkage estima-

tor outperforms the usual MLE in both the total squared error and the

correlation with the true values. Moreover, the benefits of the shrinkage

method are greater when there is less variation among the true log-odds

ratios or more variation in sampling precision.

Furthermore, the shrinkage estimator of the log-odds ratio can be

used to calculate the Altham index, an aggregate measure of association

that has been recently adopted in comparative mobility research. Results

from a set of calibrated simulations suggest that the adjusted estimator

can substantially improve estimation precision while maintaining high

correlations with the true values. Finally, using two real data sets, we

find that the adjusted estimator of the Altham index accords more

closely with the Unidiff model than does the direct estimator of the

Altham index. This finding, as I have discussed, stems from the fact that

both the Unidiff model and the shrinkage approach enforce information

sharing across tables, albeit via apparently different mechanisms.

The shrinkage estimator (equation 7) derives from a Bayes model in

which a common prior, that is, equation (4), is assumed for all cases.

This assumption can easily be relaxed to incorporate our prior
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knowledge about the similarities and differences between mobility

regimes. In particular, we can extend the prior distribution (equation 4)

to

uk ;
indep

N (aþ bT Xk , t2),

where Xk denotes a group of exogenous variables posited to affect the

true log-odds ratio. The empirical Bayes estimator (equation 7) then

becomes

ûEB
k = âþ b̂T Xk þ ½1�

K � R� 3ð Þcs2
k

K � R� 1ð Þ bt2 þcs2
k

� ��(Yk � â� b̂T Xk),

where â and b̂ denote estimates of a and b, and R represents the dimen-

sion of Xk .11 In this formulation, the usual estimate Yk is shrunk not

toward a common mean but toward the conditional mean âþ b̂T Xk . For

example, if we assume that economic development promotes social

mobility, as the “thesis of industrialism” suggests (Treiman 1970), Xk

could be a measure of the level of industrialization in country k. In this

case, the shrinkage estimator borrows information not uniformly from

all countries but mainly from countries at similar levels of industrializa-

tion. Note that if the number of tables K far exceeds the number of pre-

dictors R, the adjustment factor K�R�3
K�R�1

will be close to one and the

empirical Bayes estimates can be approximated by EBLUPs from

mixed-effects meta-analysis of log-odds ratios (see Viechtbauer [2010]

for a guide to implementation).

For evaluating the overall degree of social fluidity, the Unidiff model

and the Altham index constitute two valid yet distinctive approaches.

The Unidiff model stipulates that all log-odds ratios are determined

multiplicatively by a common pattern of association and layer-specific

effects. This is a flexible but nontrivial assumption. Not only does it

require that different log-odds ratios within a table are of the same rela-

tive magnitudes in all mobility regimes, but it also means that the rank

order among mobility regimes does not depend on which log-odds ratio

is being examined. For example, a Unidiff model for HG-16 would

imply that the two sets of log-odds ratios in Figure 2 exhibit the same

relative positions in the two panels, which is obviously at odds with the

data. The Unidiff model, therefore, may incur a model specification bias

if the true mobility regimes being compared do not comport with the
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“common-pattern” assumption. In contrast, the Altham index is fully

nonparametric, thus being exempt from any type of model specification

bias. For the same reason, however, direct calculation of the Altham

index is susceptible to large sampling errors, especially for sparse tables.

The shrinkage approach presented in this paper—which exploits a para-

metric Bayes model to “borrow strength” across tables but remains

model-free within tables—serves as an eclectic formula for comparing

mobility regimes, striking a balance between sampling variance and

model specification bias. Clearly, this approach is applicable not only to

comparative mobility analysis but to any area of research that calls for

comparisons of multiple two-way contingency tables.
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Notes

1. The inadequacy of mobility ratio as a measure of association has been discussed by

Blau and Duncan (1967:93–97), Tyree (1973), Hauser (1980:426–30), and Hout

(1983:17–18).

2. Typically, the same occupational classification is used for origin and destination,

that is, fathers and sons. In this case, I = J .

3. This observation derives from the fact that an estimated variance of the sample

log-odds ratio can be expressed as 1=n11
þ 1=n12

þ 1=n21
þ 1=n22

(Agresti 2002:71).

See also section 2.

4. The same conclusion holds when the sampling distribution is Poisson or product

multinomial; see Powers and Xie (2008:79–80).

5. Clogg and Eliason (1987) noted that the practice of adding constants to all cells

tends to shrink the data toward equiprobability. As we will see, this problem will

be less relevant for the shrinkage estimator because the modified sample estimate

Yk is unlikely to receive much weight when there are zero cells.

6. For convenience, the agricultural sector is omitted in this simulation study.

7. The parameters for the row marginal distribution, the average transition probabil-

ities, and the ranges of the transition probabilities are all chosen on the basis of the

empirical mobility tables for 16 countries collected by Hazelrigg and Garnier

(1976).

8. If we calculate the z score for the difference in observed log-odds ratio between

Norway and the United States, we will find that it is not statistically significant.

9. As before, when any of the four cells are zero, one half is added to all of the four

cells before calculation.
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10. Models 1, 2, and 3 correspond respectively to models A2, A3, and A4 in Grusky

and Hauser (1984:389); model 4 corresponds to model FIx in Xie (1992:390).

11. The adjustment factor changes from K�3
K�1

to K�R�3
K�R�1

because R additional degrees of

freedom are used to estimate the hyperparameters; see Morris (1983) for a more

technical discussion.
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