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Abstract

A growing body of social science research investigates whether the economic payoff to a col-
lege education is heterogeneous — in particular, whether disadvantaged youth can benefit more
from attending and completing college relative to their more advantaged peers. Scholars, how-
ever, have employed different analytical strategies and reported mixed findings. To shed light
on this literature, I propose a causal mediation approach to conceptualizing, evaluating, and un-
packing the causal effects of college on earnings. By decomposing the total effect of attending
a four-year college into several direct and indirect components, this approach not only clarifies
the mechanisms through which college attendance boosts earnings, but illuminates the ways in
which the postsecondary systemmay be both an equalizer and a stratifier. The total effect of college
attendance, its direct and indirect components, and their heterogeneity across different subpop-
ulations are all identified under the assumption of sequential ignorability. I introduce a debiased
machine learning (DML) method for estimating all quantities of interest, along with a set of bias
formulas for sensitivity analysis. I illustrate the proposed framework and methodology using
data from the National Longitudinal Survey of Youth, 1997 cohort.
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Introduction

Education is long perceived as a ticket to the American dream, a pathway to economic success re-

gardless of a person’s circumstances of birth. Back in 1848, Horace Mann portrayed education as “a

great equalizer of the conditions of men” (Mann 1848). In his 2020 presidential campaign, Joe Biden

envisioned a plan for higher education so that it serves as a gateway to economic opportunity for ev-

eryone, “regardless of their parents’ income or the color of their skin.”1 Biden’s emphasis on the role

of higher education in social mobility is echoed by public opinion— the vast majority of Americans

believe that nowadays a college education is “necessary to get ahead” (Hanson and Zogby 2010).

Echoing the public and political discourse on the role of higher education in equalizing opportu-

nities, a growing body of social science research has investigated whether the economic payoff to a

college education is heterogeneous — in particular, whether disadvantaged youth can benefit more

from attending and completing college relative to their more advantaged peers. If so, it would be

apt for us to characterize higher education as an “equalizer,” in which case inducing more youth into

college would potentially reduce inequality and improve intergenerational mobility.

This body of research, however, has yieldedmixed findings (Hout 2012). On the one hand, several

studies suggest that the economic payoff to a college education may be greater for students from dis-

advantaged backgrounds than for their more advantaged peers (e.g., Card 1993; Attewell et al. 2007;

Maurin and McNally 2008; Brand and Xie 2010; Zimmerman 2014; Giani et al. 2020). These stud-

ies have variously measured (dis)advantage using race/ethnicity, parental income, or the propensity

score, i.e., the probability of attending or completing a four-year college given an array of observed

pre-college characteristics. In particular, Brand and Xie (2010) find that young people with the low-

est propensity scores — typically students from minority and low-income backgrounds — appear

to benefit the most from a bachelor’s degree (henceforth BA degree), a pattern they call “negative se-

lection.” On the other hand, economic studies that pay close attention to unobserved sorting into

college suggest a theory of “positive selection,” i.e., individuals self-select into college on the basis of
1https://joebiden.com/beyondhs/
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their anticipated payoffs to attending college, and those most likely to attend college reap the highest

economic returns from it (Willis and Rosen 1979; Carneiro et al. 2011; but see Zhou and Xie 2020 for

a reanalysis and reinterpretation of Carneiro et al.’s data). More recently, by modeling the earnings

return to college as a flexible function of the propensity score, scholars have reported amore nuanced,

U-shaped pattern of college effects, especially among men (Cheng et al. 2021; see also Zhou and Xie

2016). In addition, a related strand of research on intergenerational income mobility suggests that

once selection processes are adjusted for, the association between parental income and child income

is about as strong among college graduates as among non-graduates, a finding that casts doubt on the

equalizing potential of a college degree (Zhou 2019; Fiel 2020; but see Karlson 2019).

While it is beyond the scope of this paper to fully reconcile the seemingly incongruent findings on

heterogeneous college effects, I highlight an important distinction that has so far received insufficient

attention in this body of research, namely, the distinction between attending college and completing

a BA degree. In fact, almost all previous research on the economic payoff to higher education has

treated college as a dichotomous variable, that is, whether a young adult with a high-school diploma

or equivalent has attended (e.g., Carneiro et al. 2011; Zimmerman 2014), or graduated from (e.g.,

Brand and Xie 2010; Cheng et al. 2021), a four-year college by a certain age. Such a dichotomous

approach has several limitations. First, it fails to distinguish the “direct effect” of college attendance

(short of a BA degree) from its “continuation value,” i.e., its effect on earnings via the possibility it

creates for attaining higher levels of education, particularly a BA degree (Heckman et al. 2018). This

distinction is consequential because patterns of effect heterogeneity may differ sharply between the

direct effect of college attendance and its continuation value. In particular, whereas the direct effect

of college attendance may be equalizing, i.e., being larger among more disadvantaged students (Giani

et al. 2020), its continuation value may be disequalizing, i.e., favoring students from more advan-

taged backgrounds. The latter is plausible because minority and low-income college-goers are much

less likely to complete college relative to their white and more affluent peers (Bowen et al. 2009;

Ciocca Eller and DiPrete 2018). In this case, a dichotomous approach based on either attendance

or completion would obscure the opposing patterns of effect heterogeneity associated with different
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stages of the educational pipeline.

Second, studies that focus on the effect of a BA degree on earnings often conflate high-school

graduates and college dropouts under the umbrella of “non-graduates,” and compare college grad-

uates with non-graduates that are similar on a set of pre-college characteristics. This practice may

lead to bias because it adjusts only for selection into college, but not selection out of college. A college

dropout and a college graduatewho share the same pre-college characteristicsmay differ substantially

in their postsecondary characteristics, such as college quality, college GPA, and field of study. To the

extent that these postsecondary characteristics affect both the chance of college completion and earn-

ings, they are confounders of their causal relationship, which, if not adjusted for, will lead to biased

estimates. Moreover, treating high-school graduates and college dropouts as a whole may engender

spurious patterns of effect heterogeneity. For example, if we aim to examine heterogeneous effects

of a college degree across students with different income backgrounds, high-income non-graduates

may bemore likely than low-income non-graduates to have attended college in the first place. Thus, if

college experience per se (short of a BA degree) boosts earnings— for example, through its effects on

human capital, social capital, and career-related information (see Giani et al. 2020 for a detailed dis-

cussion) — the estimated effect of a BA degree among high-income youth might be smaller than that

among low-income youth simply because the comparison group for high-income college graduates

is, on average, more likely to have enjoyed the benefits of a college experience.

To overcome the limitations of the dichotomous approach, I introduce a causal mediation frame-

work for studying the effects of higher education on earnings and their heterogeneity across individ-

uals with different backgrounds. Specifically, by treating BA completion as a mediator that transmits

the effect of college attendance on earnings (see Figure 1), the proposed framework enables us to de-

compose the average total effect of attending a four-year college into four distinct components: (i) the

direct effect of college attendance (short of a BA degree) on earnings, (ii) the probability of BA com-

pletion given college attendance, (iii) the net effect of BA completion on earnings, and (iv) a residual

component reflecting the covariance between BA completion and its net effect on earnings. Each of

these components may follow a distinct pattern of effect heterogeneity. For example, the direct effect
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of college attendance (i) and the net effect of BA completion (iii) may both follow a pattern of negative

selection (Brand and Xie 2010), but the opposite is likely true for the probability of BA completion

given college attendance (ii). Thus, the proposed decomposition not only clarifies the mechanisms

through which college attendance boosts earnings, but, more importantly, illuminates the ways in

which the postsecondary system may be both an equalizer and a stratifier.

College Attendance

BA Completion

Earnings
(i)

(ii) (iii)

Figure 1: Direct and Indirect Effects of College on Earnings.
Note: Factors that may confound the relationships between college attendance, BA completion, and
earnings are omitted.

When we observe a rich set of individual-, family-, and contextual-level characteristics that may

affect a person’s selection into and out of college, it is reasonable to entertain the assumption of se-

quential ignorability (Robins 1997), which, in our context, means that (a) given observed pre-college

characteristics, no unobserved confounding exists for the effect of college attendance on BA com-

pletion and earnings, and (b) among college goers, given observed pre-college and postsecondary

characteristics, no unobserved confounding exists for the effect of BA completion on earnings. I

show that under sequential ignorability, the total effect of college attendance, its direct and indirect

components, and their heterogeneity across different subpopulations are all identified.

Despite the identification result, given the large number of pre-college and postsecondary charac-

teristics we will likely need to adjust for, estimationmethods based purely on parametric models may

suffer from model uncertainty and large biases due to model misspecification (e.g., Young 2009). To

minimize model dependency while preserving statistical efficiency, I introduce a debiased machine

learning (DML; Chernozhukov et al. 2018; Semenova and Chernozhukov 2021; Zhou 2020) method

for estimating all quantities of interest. Through the use of flexible machine learning methods, care-

5



fully constructed estimating equations, and sample splitting, the DML estimators are not only robust

to model misspecification but also immune to the regularization and overfitting biases that often af-

flict machine learning estimators of statistical parameters. I illustrate the proposed framework and

DML method using data from the National Longitudinal Survey of Youth, 1997 cohort (NLSY97).

Unpacking Heterogeneous College Effects

A Causal Decomposition

We consider completion of a BA degree as an intermediate variable, i.e., a mediator, that transmits

the effect of college attendance on earnings. Thus, the total effect of attending a four-year college

on earnings can be decomposed into a direct effect of college attendance (short of a BA degree) and

an indirect effect that operates through BA completion. The latter component is sometimes referred

to as the “continuation value” of college attendance (e.g., Heckman et al. 2018), and it is governed

by a person’s likelihood of BA completion given college attendance as well as the net effect of BA

completion on earnings. Specifically, for individual i, let Ai denote a binary indicator of attending a

four-year college,Mi a binary indicator of BA completion, and Yi labor market earnings. In addition,

using the potential-outcomes notation (Rubin 1974), letMi(a) denote individual i’s potential status

of BA completion if her college attendance status was set to a, and let Yi(a,m) denote individual i’s

potential earnings if her college attendance status was set to a and BA completion status set to m.

The total effect (TE) of college attendance on earnings can then be expressed as

TEi = Yi
(
1,Mi(1)

)
− Yi(0,Mi(0))

= Yi
(
1,Mi(1)

)
− Yi(0, 0) (becauseMi(0) = 0)

= Yi(1, 0)− Yi(0, 0)︸ ︷︷ ︸
direct effect of

college attendance

+Mi(1)
(
Yi(1, 1)− Yi(1, 0)

)︸ ︷︷ ︸
net effect of

BA completion︸ ︷︷ ︸
indirect effect via
BA completion

. (1)
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Thus, for individual i, the total effect of college attendance is governed by three components: the

direct effect of college attendance (Yi(1, 0) − Yi(0, 0)), whether the person would complete a BA

degree given college attendance (Mi(1)), and the net effect of BA completion (Yi(1, 1)−Yi(1, 0)). The

product of the latter two components constitutes the indirect effect of college via BA completion.

Since for each individual i, only one of the three potential outcomesYi(0, 0), Yi(1, 0), andYi(1, 1)

is observed, neither the direct effect of college attendance nor the net effect of BA completion can be

computed at the individual level. We thus focus on the population- and group-level means of these

effects. First, taking the expectation of equation (1) yields a population-level decomposition:

E[TEi]︸ ︷︷ ︸
:=∆tot

=E[Yi(1, 0)− Yi(0, 0)]︸ ︷︷ ︸
:=∆att

+E[Mi(1)]︸ ︷︷ ︸
:=πcomp

·E[Yi(1, 1)− Yi(1, 0)]︸ ︷︷ ︸
:=∆comp

+ Cov[Mi(1), Yi(1, 1)− Yi(1, 0)]︸ ︷︷ ︸
:=∆cov

=∆att + πcomp∆comp + ∆cov︸ ︷︷ ︸
∆ind

. (2)

Here, ∆tot represents the average total effect of college on earnings, ∆att represents the average direct

effect of college attendance on earnings, and ∆ind represents the average indirect effect via BA com-

pletion. The indirect effect ∆ind equals πcomp∆comp + ∆cov, where πcomp represents the probability of

BA completion if a person attended college, ∆comp represents the average net effect of BA completion

on earnings, and ∆cov is a component reflecting the covariance between BA completion and its net

effect on earnings. Intuitively, ∆cov is positive if those who would complete a BA degree given college

attendance (i.e.,Mi(1) = 1) can benefit more from a BA degree (i.e., larger Yi(1, 1) − Yi(1, 0)) than

those who would not complete a BA degree given college attendance (i.e.,Mi(1) = 0), and negative if

the opposite is true. According to the positive selection thesis (Willis and Rosen 1979; Carneiro et al.

2011), a positive ∆cov may arise if college goers possess knowledge about their individual-specific

payoffs to a BA degree and decide whether to pursue a BA degree on the basis of their anticipated

payoffs. A positive ∆cov may also arise for structural (rather than individual) reasons, for example, if

the financial and cognitive resources of middle- and upper-class students allow them to both com-
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plete college at a higher rate and reap higher economic returns from a BA degree relative to their less

advantaged peers.

To see how each of the above components varies across individuals with different backgrounds,

we can evaluate the conditional expectation of equation (1) given S, some indicator of pre-college

advantage. Analogous to the population-level decomposition (2), we have

E[TEi|Si = s]︸ ︷︷ ︸
:=∆tot(s)

=E[Yi(1, 0)− Yi(0, 0)|Si = s]︸ ︷︷ ︸
:=∆att(s)

+E[Mi(1)|Si = s]︸ ︷︷ ︸
:=πcomp(s)

·E[Yi(1, 1)− Yi(1, 0)|Si = s]︸ ︷︷ ︸
:=∆comp(s)

+ Cov[Mi(1), Yi(1, 1)− Yi(1, 0)|Si = s]︸ ︷︷ ︸
:=∆cov(s)

=∆att(s) + πcomp(s)∆comp(s) + ∆cov(s), (3)

where ∆tot(s), ∆att(s), πcomp(s), ∆comp(s), and ∆cov(s) represent the same components in equation

(2) among individuals with Si = s.

The group-level decomposition (3) enables us to quantify the equalizing and stratifying roles of

higher education. Specifically, the negative selection thesis (Brand and Xie 2010) suggests that the

direct effect of college attendance ∆att(s) and the net effect of BA completion ∆comp(s) may be par-

ticularly large among individuals from disadvantaged backgrounds, contributing to the equalizing

role of higher education. On the other hand, ample empirical evidence indicates that college grad-

uation rates are much higher among students from more advantaged backgrounds relative to their

less privileged peers (e.g., Bowen et al. 2009). Thus the component πcomp(s) is likely an increasing

function of s, contributing to the stratifying role of higher education. Furthermore, as noted ear-

lier, the positive selection thesis suggests that college students may possess knowledge about their

idiosyncratic payoffs to a BA degree and act on it. If such a pattern of self-selection is present and if

it is stronger among more advantaged youth than among less advantaged youth (e.g., due to unequal

access to information about their idiosyncratic returns to a BA degree or unequal capacities to act on

such information), then the within-group covariance component ∆cov(s) may also be an increasing

function of s, contributing to the stratifying role of higher education. Given these competing forces,
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an expansion in college enrollment would have the potential to reduce inequality if the equalizing

roles of college (e.g., those associated with ∆att(s) and ∆comp(s)) outweigh its stratifying roles (e.g.,

those associated with πcomp(s) and ∆cov(s)).

Identification

Since the average total effect and its direct and indirect components all depend on potential outcomes,

they cannot be directly estimated from data. We first need to identify these quantities — i.e., write

them as functions of observed data only — under appropriate assumptions. In particular, the quan-

tities of interest outlined in the previous section are all identified under the assumption of sequential

ignorability (Robins 1997), which, simply speaking, means that given observed covariates, no un-

observed confounding exists for the causal relationships among college attendance, BA completion,

and earnings. Specifically, if we useX to denote a set of observed pre-college characteristics that may

confound the causal effects of college attendance and BA completion on earnings, and Z to denote a

set of observed postsecondary characteristics (e.g., college GPA) that may additionally confound the

causal effect of BA completion on earnings, the sequential ignorability assumption states that (a) con-

ditional on pre-college characteristics X , college attendance is independent of both potential earn-

ings and potential college completion status (i.e.,
(
M(1), Y (0, 0), Y (1, 0), Y (1, 1)

)
⊥⊥ A|X ), and (b)

conditional on pre-college characteristicsX and postsecondary characteristics Z , BA completion is

independent of potential earnings among college goers (i.e.,
(
Y (1, 0), Y (1, 1)

)
⊥⊥M |X,A = 1, Z).

Figure 2 contains a directed acyclic graph (DAG) relating college attendance, BA completion, and

earnings to potential pre-college and postsecondary confounders of their relationships. Here, theX

and Z vectors are assumed to capture a broad range of potential confounders of theA-M ,A-Y , and

M-Y relationships, such as socioeconomic background, cognitive and noncognitive skills, motiva-

tion, personality traits, and social capital. Under this DAG, sequential ignorability will hold if all of

these potential confounders are observed and accurately measured. In practice, however, some of

these confounders (e.g., motivation) are likely unobserved or imperfectly measured. Thus, in most (if

not all) empirical studies, we should view sequential ignorability as a working assumption and con-
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duct a sensitivity analysis (see below) to assess the direction and magnitude of potential bias due to

unobserved confounding.

Pre-College Confounders
(X ): Gender, Race, So-

cioeconomic Background,
Cognitive and Noncognitive
Skills, Motivation, Person-
ality Traits, Social Capital

College Attendance (A) BA Completion (M )

Postsecondary Confounders
(Z): College Quality, Field of
Study, College GPA, Finan-
cial Resources, Social Capital

Earnings (Y )

Figure 2: Hypothesized Causal Relationships in a Direct Acyclic Graph.

Equation (2) implies that to identify the total effect of college attendance (∆tot) and its various

components (∆att, πcomp, ∆comp, ∆cov), it suffices to identify the following expected potential out-

comes: E[M(1)], E[Y (0, 0)], E[Y (1,M(1))], E[Y (1, 0)], and E[Y (1, 1)]. Here I omit the subscript

i for conciseness. Under sequential ignorability, these quantities are identified via Robins’s (1986;

1997) g-formula:

E[M(1)] =

∫
E[M |x,A = 1]dP (x), (4)

E[Y (0, 0)] =

∫
E[Y |x,A = 0]dP (x), (5)

E[Y (1,M(1))] =

∫
E[Y |x,A = 1]dP (x), (6)

E[Y (1, 0)] =

∫∫
E[Y |x,A = 1, z,M = 0]dP (z|x,A = 1)dP (x), (7)

E[Y (1, 1)] =

∫∫
E[Y |x,A = 1, z,M = 1]dP (z|x,A = 1)dP (x), (8)
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whereP (u) denotes the cumulative distribution function of a random variableU . It is easy to see that

πcomp is identified by equation (4), ∆tot identified by equation (6) minus equation (5), ∆att identified

by equation (7) minus equation (5), ∆comp identified by equation (8) minus equation (7), and ∆cov

identified by ∆tot−∆att− πcomp∆comp. Components of the group-level decomposition are identified

analogously, except that all quantities involved in equations (4)-(8) should now be conditioned on

Si = s.

The sequential ignorability assumption is weaker than the ignorability assumption previously in-

voked for studying the effect of a college degree on earnings. For example, Brand and Xie (2010)

used a dichotomous approach that directly compares college graduates with non-graduates that are

similar on a set of pre-college characteristics. This approach implicitly assumes that conditional on

pre-college characteristicsX , BA completion status is independent of potential earnings under com-

pletion and non-completion (i.e.,
(
Y (A, 0), Y (1, 1)

)
⊥⊥ M |X ). This assumption is stronger than

sequential ignorability because it rules out (a) a direct effect of college attendance on earnings (the

arrow A→ Y in Figure 2) and (b) postsecondary characteristics that may confound the effect of BA

completion on earnings (the noncausal path M ← Z → Y in Figure 2). By contrast, sequential

ignorability allows for both (a) and (b).

The sequential ignorability assumption is also weaker than the ignorability assumption required

for identifying the natural direct and indirect effects (NDE and NIE) in a generic causal media-

tion analysis (VanderWeele and Vansteelandt 2009; Imai et al. 2010). The latter requires a condi-

tional independence relationship between the so-called cross-world counterfactuals given pretreat-

ment confounders X , namely, M(a) ⊥⊥ Y (a∗,m)|X , which rules out post-treatment confound-

ing of the mediator-outcome relationship. By contrast, all components of our effect decomposition

are identified under sequential ignorability, which allows for observed post-treatment confounders

Z . To understand this result, note that ∆att and ∆comp correspond to a controlled direct effect

(CDE; Pearl 2001; Robins 2003) and a controlled mediator effect (CME; Zheng and Zhou 2015),

both of which are identified under sequential ignorability. Interestingly, in our context, because

Mi(0) = 0, ∆att = E[Yi(1, 0) − Yi(0, 0)] = E[Yi(1,Mi(0)) − Yi(0,Mi(0))] is also the NDE, and
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∆ind = E[Yi(1) − Yi(1, 0)] = E[Yi(1,Mi(1)) − Yi(1,Mi(0))] is the NIE. Hence, equation (2) is

a more fine-grained decomposition of the ATE than the two-component decomposition routinely

considered in causal mediation analysis; yet, due to the constraintMi(0) = 0, all components are

identified under sequential ignorability.

Nonetheless, sequential ignorability is still a strong and unverifiable assumption, which can be

violated whenever unobserved confounders exist for any of the causal relationships involved. For

example, in my empirical illustration below, some of the potential confounders depicted in Figure 2

such as motivation are not directly measured. This is a common scenario in observational studies of

college effects, or for that matter, in observational studies in general. Thus, in practice, it is prudent

to view sequential ignorability as a working assumption and report the sensitivity of estimated causal

effects to potential violations of sequential ignorability (e.g., Breen et al. 2015). Later in this section,

I outline a bias factor approach for performing sensitivity analysis in our context.

Estimation

Equations (4)-(8) and their group-level counterparts can be estimated via a variety of methods, such

as g-computation (Robins 1986, 1997), sequential g-estimation (Vansteelandt 2009; Joffe and Greene

2009), regression-with-residuals (Zhou andWodtke 2019; Wodtke and Zhou 2020), inverse probabil-

ity weighting (IPW; VanderWeele 2009), and residual balancing (Zhou and Wodtke 2020) (see Zhou

2020 for an overview of various estimation methods). Yet, all of these methods rely on the correct

specification of at least two parametric models about A,M , Z , or Y (implicitly or explicitly). Given

the large number of pre-college covariates and postsecondary characteristics we are likely to en-

counter in practice, estimators based purely on parametric models may suffer large biases due to

model misspecification. To minimize model dependency, I now introduce a debiased machine learn-

ing (DML; Chernozhukov et al. 2018; Semenova and Chernozhukov 2021; Zhou 2020) method for

estimating quantities (4)-(8) and their group-level counterparts.

In our context, the DML approach is characterized by three key elements: a sample-splitting

technique called cross-fitting, the construction of a “Neyman-orthogonal signal” for each of the target
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parameters in equations (4)-(8), and, when estimating the group-level decomposition (3), a linear

model of the Neyman-orthogonal signal on our measure of pre-college advantage S. Specifically, it

involves the following steps:

1. Randomly partition the analytical sample I into J equal-sized subsamples: I1, I2 . . . IJ , where

J is recommended to be a small number such as 5 (Chernozhukov et al. 2018);

2. For each subsample Ij ,

(a) Use the observations in I\Ij (i.e., all observations but those in Ij ) to fit a flexible ma-

chine learning model for each of the following “nuisance functions”:2 Pr[A = 1|x],

Pr[M = 1|x,A = 1], Pr[M = 1|x,A = 1, z], E[Y |x, a], E[Y |x,A = 1, z,m], and

EZ|x,A=1E[Y |X,A = 1, Z,m];

(b) For each observation in Ij , use estimates of the above models to construct a set

of “Neyman-orthogonal signals,” one for each potential outcome: M∗(1), Y ∗(0, 0),

Y ∗
(
1,M(1)

)
, Y ∗(1, 0), and Y ∗(1, 1).

3. In the full sample, use the above signals for potential outcomes to construct the correspond-

ing signals for ∆tot, ∆att, πcomp, and ∆comp. For example, the signal for ∆tot is given by

Y ∗
(
1,M(1)

)
− Y ∗(0, 0), the signal for ∆att is given by Y ∗(1, 0) − Y ∗(0, 0), and so on. The

sample averages of these signals constitute the DML estimates of the corresponding quantities,

and the covariance component is estimated by ∆̂cov = ∆̂tot − ∆̂att − π̂comp∆̂comp.

4. To assess effect heterogeneity by pre-college advantage (e.g., ∆comp(s)), fit a linear model of the

corresponding signal (constructed in step 3) on S. The heterogeneity of the covariance compo-

nent by pre-college advantage is estimated by ∆̂cov(s) = ∆̂tot(s)−∆̂att(s)− π̂comp(s)∆̂comp(s).

In step 2(b), the Neyman-orthogonal signals are plug-in estimates of the recentered efficient influ-

ence functions for the expectations of the corresponding potential outcomes (Semenova and Cher-

nozhukov 2021). Their analytical expressions are given in Supplementary Material A. These signals
2A nuisance function is a function that is not of our primary interest but necessary for construct-

ing estimators of our target quantities (i.e., the components in equations (2) and (3)).
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satisfy several interesting properties, which, when combined with cross-fitting, yield estimators that

are not only robust to model misspecification but also consistent and asymptotically normal under

mild conditions.

Below, I use the estimand E[Y (0, 0)], i.e., average potential earnings under non-college-

attendance, to illustrate the logic of the DMLmethod. As noted above, under sequential ignorability,

E[Y (0, 0)] equals
∫
E[Y |x,A = 0]dP (x) (equation 5). To simplify exposition, let us denote this

quantity by θ. Its Neyman-orthogonal signal can be written as

ϕ(O; µ̂, π̂) = µ̂(X, 0) +
1− A

1− π̂(X)

(
Y − µ̂(X, 0)

)
, (9)

whereO = (X,A,Z,M, Y ) denotes observed data, µ(X,A) := E[Y |X,A] is the conditional mean

of earnings given X and A, π(X) := Pr[A = 1|X] is the propensity score of attending college

givenX , and µ̂(X,A) and π̂(X) denote the empirical estimates of µ(X,A) and π(X), respectively.

In equation (9), we use the notation “ϕ(O; µ̂, π̂)” to highlight that the signal depends on both the

observed dataO and the estimatedmodels µ̂ and π̂. This quantity is useful becauseE[ϕ(O;µ, π)] = θ,

suggesting that we can estimate θ by first estimating the outcome and propensity score models µ and

π and then taking a sample mean of ϕ(O; µ̂, π̂):

θ̂DML = Pn[ϕ(O; µ̂, π̂)], (10)

where Pn[·] := n−1
∑

i[·] denotes the operation of computing a sample mean. In this sense,

ϕ(Oi; µ̂, π̂) can be interpreted as the “contribution” of observation i to the estimator θ̂DML. Second,

the conditional mean of ϕ(O;µ, π) given S = s is
∫
E[Y |x,A = 0]dP (x|s), which, under sequen-

tial ignorability, equals E[Y (0, 0)|S = s]. Thus, we can estimate the latter by averaging ϕ(O; µ̂, π̂)

among members of group s. When S is continuous, however, we cannot estimate such conditional

means nonparametrically. Thus, in step 4 of the above procedure, we fit a linear model of the signal

ϕ(O; µ̂, π̂) on S, which can be seen as a first-order approximation of E[Y (0, 0)|S = s] when S is

continuous but is equivalent to taking a group-specific average of ϕ(O; µ̂, π̂) when S is discrete.
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To understand the property of the estimator θ̂DML, it is best to consider the following decompo-

sition of
√
n(θ̂DML − θ) (Kennedy 2016),

√
n(θ̂DML − θ) =

√
n
(
Pn[ϕ(O; µ̂, π̂)]− P[ϕ(O;µ, π)]

)
=
√
n(Pn − P)[ϕ(O;µ, π)]︸ ︷︷ ︸

A

+
√
nP[ϕ(O; µ̂, π̂)− ϕ(O;µ, π)]︸ ︷︷ ︸

B

+
√
n(Pn − P)[ϕ(O; µ̂, π̂)− ϕ(O;µ, π)]︸ ︷︷ ︸

C

, (11)

where Pg =
∫
gdP denotes the expectation of a function g of observed data under the true distri-

bution P, where g(·) is treated as fixed. In equation (11), term A has a mean of zero and variance

of Var[ϕ(O;µ, π)]. By the central limit theorem, it converges to N
(
0,Var[ϕ(O;µ, π)]

)
. Thus, by

Slutsky’s theorem,
√
n(θ̂DML − θ) will also converge toN

(
0,Var[ϕ(O;µ, π)]

)
if terms B and C are

asymptotically negligible, i.e., if they converge to zero in probability. The latter condition can also be

written as B = op(1) and C = op(1).

First, it can be shown that term B is in the order of
√
nOp(||µ̂ − µ|| · ||π̂ − π||), where || · ||

denotes the L2(P)-norm of a function with respect to probability measure P. The multiplicative

structure of ||µ̂ − µ|| · ||π̂ − π|| facilitates the use of machine learning methods to estimate the µ

and π functions. To see this connection, note that due to the data-driven nature of machine learning

algorithms, they generally do not provide
√
n-consistent estimates of the underlying functions, such

as µ and π. However,
√
n-consistency is not required of either µ̂ or π̂ for

√
n||µ̂ − µ|| · ||π̂ − π||

to converge to zero. In fact, provided that both µ̂ and π̂ are consistent at a faster-than-n1/4 rate,
√
n||µ̂ − µ|| · ||π̂ − π|| will be

√
nop(n

−1/4)op(n
−1/4) = op(1), rendering term B asymptotically

negligible. This condition, unlike the
√
n-consistency required for the nuisance functions in con-

ventional estimators such as IPW, is achievable for many machine learning methods such as Lasso

(Chernozhukov et al. 2018). Second, it can be shown that when cross-fitting is used, term C is in the

order of Op(||ϕ(O; µ̂, π̂) − ϕ(O;µ, π)||), which will also be asymptotically negligible if both µ̂ and

π̂ are consistent.
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In sum, when cross-fitting is used in combination with estimating equation (10), the resulting

estimator will be consistent and asymptotically normal provided that
√
n||µ̂−µ|| · ||π̂−π|| = op(1),

a condition achievable even when the µ and π functions are estimated with flexible machine learning

methods. This property of the DML approach makes it highly attractive in our context, in which

the rich sets of background characteristics (X ) and postsecondary characteristics (Z) (see the next

section) make it unrealistic for us to correctly specify parametric models for college attendance and

college completion, which would be required to justify conventional methods such as IPW. Since the

asymptotic variance of θ̂DML is Var[ϕ(O;µ, π)], we can construct a plug-in estimate of the standard

error as
√

V̂ar[ϕ(O; µ̂, π̂)]/n.

Although the above reasoning is for the estimand E[Y (0, 0)], the same logic applies to our DML

estimators of the other expected potential outcomes (i.e., equations 4, 6-8) and the causal effects

∆tot, ∆att, πcomp, and ∆comp (Zhou 2020). Their standard errors can all be estimated through the

empirical variances of the corresponding Neyman-orthogonal signals. Estimates of the group-level

causal effects ∆tot(s), ∆att(s), πcomp(s), and ∆comp(s) are given by the predicted values of the lin-

ear models in Step 4, and their standard errors can be estimated through the robust (“sandwich”)

estimator of the corresponding regression coefficients (Semenova and Chernozhukov 2021). The co-

variance components ∆cov and ∆cov(s), as noted above, are estimated using the plug-in estimators

∆̂cov = ∆̂tot − ∆̂att − π̂comp∆̂comp and ∆̂cov(s) = ∆̂tot(s)− ∆̂att(s)− π̂comp(s)∆̂comp(s). Their stan-

dard errors can be estimated through the empirical variances of their influence functions, which are

detailed in Supplementary Material B.

A Bias Factor Approach to Sensitivity Analysis

For a generic causal mediation analysis, VanderWeele and Arah (2011) and VanderWeele (2010) in-

troduced a bias factor approach for assessing the sensitivity of estimated total, direct, and indirect

effects to unobserved confounding. In our context, this approach can be adapted to derive a set of

bias formulas for the total effect of college (∆tot), the direct effect of attendance (∆att), and the net

effect of completion (∆comp).
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First, let us consider the total effect of college attendance (∆tot), which may be confounded by

unobserved individual characteristics that affect both college attendance (A) and earnings (Y ). For

analytical tractability, we consider a binary unobserved confounder U , say a personality trait that

predisposes a person to prefer cognitive tasks over noncognitive tasks, that affects both college at-

tendance and earnings. Under some simplifying assumptions regarding the homogeneity of the U-A

and U-Y relationships, the bias for the estimated ∆tot is given by (see Supplementary Material C)

bias[∆tot] = αtotβtot, (12)

where αtot denotes the difference in the prevalence of U between high school graduates (A = 0)

and college goers (A = 1) given pre-college covariates X , and βtot denotes the average difference

in earnings between those with and without U given college attendance status A and pre-college

covariatesX .

Second, unobserved confounders may exist for the causal effect of BA completion (M ) and earn-

ings (Y ). In this case, while the total effect of college attendance may still be unbiased, the direct

effect of college attendance (∆att) and the net effect of BA completion (∆comp) can be over- or under-

estimated. To explore the direction and magnitude of potential bias, let us again consider a binary

unobserved confounder U , say availability of a supportive social network, that affects both BA com-

pletion and earnings but may itself be affected by college attendance (A). Under some simplifying

assumptions regarding the homogeneity of the U-M and U-Y relationships, the biases for the esti-

mated ∆att and ∆comp are given by (see Supplementary Material C)

bias[∆att] = −πcompαcompβnet, (13)

bias[∆comp] = αcompβnet, (14)

where πcomp is the probability of BA completion given college attendance (see equation 2), αcomp de-

notes the difference in the prevalence of U between college dropouts (A = 1,M = 0) and college

graduates (A = M = 1) given both pre-college and postsecondary characteristics (X andZ), and βnet
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denotes the net difference in earnings between those with and without the unobserved characteristic

U givenX , A,M , and Z .

The above formulas can also be used to assess the sensitivity of group-level causal effects ∆tot(s),

∆att(s), and ∆comp(s). In this case, the sensitivity parameters αtot, βtot, πcomp, αcomp, βnet are group-

specific, i.e., depending on S = s. It is clear that if these sensitivity parameters are identical between

individuals with different values of S, estimated patterns of effect heterogeneity will be unaffected. In

other words, our estimates of effect heterogeneity will be biased only if there are group differences in

these sensitivity parameters. For example, if we found that low-propensity college goers benefitmore

from completing college than high-propensity college goers, potential bias in this finding would be

αlow propensity
comp β low propensity

net − αhigh propensity
comp βhigh propensity

net . In the next section, we illustrate this approach

by applying it to our estimates from the NLSY97 data.

Empirical Illustration

Data, Measures, and Implementation

Below I illustrate the proposed methods using data from the National Longitudinal Survey of Youth,

1997 cohort (NLSY97).3 The NLSY97 began with a nationally representative sample of 8,984 men

and women at ages 12-17 in 1997. These individuals were interviewed annually through 2011 and

biennially thereafter. I limit my analytical sample to respondents who had completed at least a high-

school diploma or GED by age 22 and had valid earnings information at ages 30-33, the oldest ages

for which data for the youngest respondents in NLSY97 are available (n = 6, 576).

I construct five sets of variables, each corresponding to a node in Figure 2: college attendance (A),
3Previous studies on the economic returns to college have often used data from the NLSY79 (e.g.,

Brand and Xie 2010; Carneiro et al. 2011). I use the NLSY97 to illustrate the proposed methodology
for two reasons. First, compared with the NLSY79, the NLSY97 traces the educational and labor
market outcomes of a much younger cohort, making the results from my analyses more relevant to
the experience of current and future cohorts of American youth. Second, comparedwith theNLSY79,
the NLSY97 provides a richer set of postsecondary characteristics (Z) that we can adjust for (e.g.,
college GPA) when estimating the causal effect of a BA degree, making the sequential ignorability
assumption more plausible.
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BA completion (M ), earnings (Y ), pre-college characteristics (X ), and postsecondary characteristics

(Z). Specifically, college attendance (A) denotes whether the respondent had attended a four-year

college by age 22, and BA completion (M ) denotes whether the respondent had received a BA degree

by age 29. A respondent is coded as a college goer (i.e., A = 1) if she had either attended a four-year

college by age 22 or received a BAdegree by age 29, and as a high school graduate otherwise (i.e.,A = 0).

Among college goers, a respondent is coded as a college graduate (i.e.,M = 1) if she had received a

BA degree by age 29, and as a college dropout/stopout (i.e., M = 0) otherwise. Earnings denote the

natural logarithm of the respondent’s average annual earnings at ages 30-33 (inflation-adjusted to

2019 dollars). To accommodate respondents with zero earnings (due to unemployment, labor force

nonparticipation, and incarceration), I add a small constant (1,000 dollars) to the respondent’s average

annual earnings before taking the log transformation. To assess the robustness of my findings to this

measurement choice, I have conducted parallel analyses using the percentile rank of earnings as the

outcome. The results are similar to those reported below (see Supplementary Material D).

Guided by the DAG in Figure 2, I include in the vector of pre-college characteristics (X ) several

groups of variables: (a) basic demographic variables (gender, race, ethnicity, age in 1997); (b) socioe-

conomic background (parental education, parental income, parental assets, co-residence with both

biological parents, presence of a paternal figure, rural residence, southern residence); (c) cognitive

and noncognitive skills (percentile score on the Armed Services Vocational Aptitude Battery test,

high school GPA, an index of substance use [ranging from 0 to 3], an index of delinquency [ranging

from 0 to 10], whether the respondent had any children by age 18); and (d) peer and school-level

characteristics (college expectation among peers, and three dummy variables denoting whether the

respondent ever had property stolen at school, was ever threatened at school, and was ever in a fight

at school). In particular, parental education is measured using mother’s years of schooling; when

mother’s years of schooling is unavailable, it is measured using father’s years of schooling. Parental

income is measured as the average annual parental income from 1997 to 2001. Both parental income

and parental assets are inflation-adjusted to 2019 dollars.

Similarly, following the DAG in Figure 2, I include in the vector of postsecondary characteristics
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(Z) several variables pertaining to college quality as well as the respondent’s field of study, college

GPA, and the amounts of loans that the student has taken to finance college. In each survey wave

of the NLSY97, respondents were asked to report, if any, the names of the colleges in which they

were currently or most recently enrolled. Since some respondents attended more than one college, I

focus on the college in which the respondent had been enrolled for the longest time by age 29. The

college characteristics include: (a) college type, which is a trichotomous variable denotingwhether the

college is a public institution, a private not-for-profit institution, or a for-profit institution; (b) college

selectivity, operationalized as three dummy variables denotingwhether the college is one of the “most

competitive,” “highly competitive,” and “very competitive” colleges in Barron’s Profile of American

Colleges 2000; (c) graduation rate, operationalized as the percentage of students graduating within

six years of enrollment measured in 2002; and (d) “upward mobility rate,” measured as the percentage

of students who reach the top quintile of the income distribution among those with parents in the

bottom quintile of the income distribution. Data on graduation rates and upwardmobility rates come

from the Department of Education’s Integrated Postsecondary Education Data System (IPEDS) and

the Opportunity Insights project (Chetty et al. 2020), respectively. In each survey wave, respondents

who were currently or recently enrolled in college were also asked to report their major field of

study. I use a dummy variable to denote whether the field of study in which the respondent had

majored for the longest time by age 29 is a STEM field. College GPA is measured as the respondent’s

cumulativeGPA from the Post-SecondaryTranscript Study (PSTRAN). Finally, I include two variables

representing the total amounts of loans that the respondent had taken from family and friends and

from other sources (including the federal government) to pay for college by age 29. Previous studies

suggest that educational debt affects both the likelihood of college completion (e.g., Dwyer et al. 2012)

and labor market outcomes (e.g., Minicozzi 2005). In my analytical sample, some components of

the pre-college characteristics (X ) and postsecondary characteristics (Z) contain a small fraction of

missing values. They are handled bymultivariate imputation via chained equations, with ten imputed

data sets. The standard errors of our parameter estimates are adjusted using Rubin’s (1987) method.

After constructing the analytical sample, I apply the DML algorithm to implement the decompo-
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sitions (2) and (3). To examine effect heterogeneity by pre-college advantage, I compare individuals

with different estimated propensity scores of attending college.4 Previous research has advocated

the use of the propensity score as a summary index of pre-college advantage in socioeconomic and

academic resources (Brand and Xie 2010; Xie et al. 2012). Thus, heterogeneous returns to college be-

tween individuals with lower and higher propensity scores signify the equalizing versus stratifying

roles of college. Given that recent research has reported U-shaped patterns of effect heterogeneity

by the propensity score (Zhou and Xie 2016; Cheng et al. 2021), I discretize the estimated propensity

score into its quintiles and report quintile-specific estimates of all quantities of interest. Following

Chernozhukov et al. (2018), I use five-fold cross-fitting, meaning that J = 5. All nuisance functions,

including the propensity score of college attendance, are estimated using a super learner (Van der

Laan et al. 2007) composed of Lasso and random forest.5 The NLSY sampling weights are used in the

estimation of all nuisance functions and target parameters.

Results

Table 1 reports estimates of the average total effect (ATE) and its direct and indirect components (i.e.

equation 2). The first column shows that the estimated ATE of attending a four-year college on log

earnings is 0.39, implying a 47.7% earnings premium (e0.39 − 1 = 0.477). The next two columns

indicate that the bulk of the ATE is indirect, i.e., through the possibility of completing a BA degree.

Without completing a BA degree, the average direct effect of college attendance (∆att) is estimated at

0.14, or a 15% earnings premium (e0.14 − 1 = 0.15) relative to high school graduates. The last three

columns show estimates of the three components that compose the indirect effect via BA completion:

the probability of BA completion given attendance (πcomp), the net effect of BA completion (∆comp),

4In my analyses, the estimated propensity scores are treated as given. Thus, standard errors
reported for the propensity-score-specific estimates of total, direct, and indirect effects should be
viewed as approximate standard errors because they do not account for estimation uncertainty for
the propensity score.

5A super learner is a weighted average of different machine learning methods designed to min-
imize prediction error. The algorithm is implemented in the R package SuperLearner (Polley and
van der Laan 2017).
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Table 1: Decomposition of the Average Total Effect (ATE) of College Attendance on Log Earnings.

Total Effect
(∆tot)

Direct Effect
(∆att)

Indirect
Effect (∆ind)

Completion
Prob. (πcomp)

Completion
Effect (∆comp)

Covariance
Term (∆cov)

0.39 (0.05) 0.14 (0.06) 0.25 (0.04) 0.57 (0.01) 0.47 (0.07) -0.02 (0.02)

Note: Numbers in parentheses are estimates of standard errors, which are constructed using the
empirical variances of the corresponding influence functions and adjusted for multiple imputation
via Rubin’s (1987) method.

and the covariance between BA completion and its net effect on earnings (∆cov). Among them, the

covariance component is very small; thus the indirect effect (∆ind = πcomp∆comp + ∆cov) is largely

determined by the product of πcomp and ∆comp (0.57 ∗ 0.47 = 0.27). In particular, the estimated

net effect of BA completion implies an earning premium of 60% (e0.47 − 1 = 0.60) for BA holders

compared with college dropouts/stopouts. The sum of the estimated ∆att and ∆comp is 0.61, which

can be interpreted as the joint effect of attending and completing a four-year college on earnings. In

other words, the earnings premium associated with attending and completing a four-year college as

opposed to not attending college is about 84% (e0.61 − 1 = 0.84).

Figure 3 shows estimates of the total effect and its various components in each of the propensity

score quintiles. We find suggestions of nonlinearity in several components, such as the total and

direct effects of attendance, although estimation uncertainty prevents us from reaching a definitive

conclusion. However, several patterns are discernible for the lowest-propensity individuals, i.e., those

in the first quintile. On the one hand, their estimated direct effect of attendance is particularly large

(0.45), much larger than those for the other quintiles, whose direct effect estimates are all relatively

small and statistically indistinguishable from zero. On the other hand, their estimated indirect effect

via BA completion is exceptionally small; in fact, it is negative. This finding is counterintuitive if we

construe the indirect effect as reflecting the path A → M → Y in Figure 2. Since both the effect of

A onM (i.e., the probability of BA completion given attendance) and the effect ofM on Y (the net

effect of BA completion) are positive, how can the indirect effect of A on Y viaM be negative? This

is due to the (estimated) covariance component for the lowest-propensity group (∆̂cov(s)), which is

not only negative but larger in absolute value than π̂comp(s)∆̂comp(s), rendering the indirect effect
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Figure 3: Estimates of the Total Effect and Its Components by Propensity Score Quintile.
Note: Line ranges represent 95% confidence intervals.

estimate (∆̂ind(s) = π̂comp(s)∆̂comp(s) + ∆̂cov(s)) negative. Substantively, the negative covariance

means that among the lowest-propensity individuals, thosewhowould benefitmore from completing

college are less likely to complete college given attendance, a pattern wemight call “negative selection

among the least advantaged.” As a result of their particularly large direct effect and exceptionally small

indirect effect, the total effect of college among the lowest-propensity individuals appears comparable

to that for their more advantaged peers (e.g., those in the fourth and fifth quintiles). Clearly, without

the effect decomposition, the sharp and countervailing patterns of effect heterogeneity between the

lowest-propensity individuals and their more advantaged peers would be obscured.

Sensitivity Analyses

Due to data limitations, some of the theoretical constructs depicted in Figure 2, such as motivation,

personality traits, and social capital, are not directly captured in theX and Z vectors. Below, I illus-
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trate how the bias factor approach to sensitivity analysis described earlier can be employed to assess

the direction and magnitude of potential biases due to such unobserved confounders. In particular,

let us consider the total effect of college (∆tot), the direct effect of attendance (∆att), and the net effect

of completion (∆comp) for individuals in the lowest and highest propensity score quintiles. First, to the

extent that an unobserved confounder U (e.g., a personality trait that predisposes a person to prefer

cognitive tasks over noncognitive tasks) affects both college attendance and earnings, the bias for our

total effect estimate is given by αtotβtot (equation 12). Given the symmetry of the bias formula, let us

consider only cases whereU is positively associated with log earnings, i.e., βtot > 0, while leaving the

sign of αtot unconstrained. Columns 3-4 of Table 2 report the bias-adjusted estimates of ∆tot for the

lowest- and highest-propensity individuals across a range of potential values of αtot and βtot. Given

that an unobserved characteristic that boosts earnings is likely also positively associated with college

attendance, we may focus on the lower part of Table 2, where αtot and βtot are both positive. In this

case, although our estimates of∆tot will be upwardly biased, they are quite robust to unobserved con-

founding for both groups. For example, even if the unobserved characteristic increases log earnings

by 0.3 (given X and A) and its prevalence differs by as much as 30 percentage points between high

school graduates and college goers (given X ), the bias-adjusted estimates of the total effect are still

sizable — 0.29 and 0.38 for the least and the most advantaged groups, respectively.

Second, if an unobserved confounder exists for the effect of BA completion on earnings (e.g., so-

cial capital accumulated during college), the biases for our estimates of the direct effect of attendance

and the net effect of completion are given by−πcompαcompβnet andαcompβnet (equations 13 and 14), re-

spectively. Columns 5-8 of Table 2 report the bias-adjusted estimates of∆att and∆comp across a range

of potential values of αcomp and βnet. When assessing bias[∆att] for lowest- and highest-propensity in-

dividuals, I replace πcomp with its DML estimate for the corresponding group. Given the symmetry

of these formulas, let us consider only cases where βnet > 0. Since an unobserved characteristic

that boosts earnings is likely positively associated with BA completion, it is reasonable to assume that

αcomp is also positive. Thus, we may focus on the lower panels of Columns 5-8, which suggest that the

direct effect of attendance (∆att) is likely underestimated and the net effect of BA completion (∆comp)
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Table 2: Sensitivity Results for the Total Effect of College (∆tot), the Direct Effect of Attendance (∆att),
and the Net Effect of BA Completion (∆comp) for Individuals in the Lowest and Highest Propensity
Score (PS) Quintiles.

Sensitivity
Parameters Total Effect (∆tot) Direct Effect of

Attendance (∆att)
Net Effect of

Completion (∆comp)

α β
1st PS
Quintile

5th PS
Quintile

1st PS
Quintile

5th PS
Quintile

1st PS
Quintile

5th PS
Quintile

0 0 0.38 0.47 0.45 0.10 0.37 0.42
-0.3 0.1 0.41 0.50 0.44 0.08 0.40 0.45
-0.3 0.2 0.44 0.53 0.43 0.05 0.43 0.48
-0.3 0.3 0.47 0.56 0.42 0.03 0.46 0.51
-0.2 0.1 0.40 0.49 0.44 0.09 0.39 0.44
-0.2 0.2 0.42 0.51 0.44 0.07 0.41 0.46
-0.2 0.3 0.44 0.53 0.43 0.05 0.43 0.48
-0.1 0.1 0.39 0.48 0.45 0.10 0.38 0.43
-0.1 0.2 0.40 0.49 0.44 0.09 0.39 0.44
-0.1 0.3 0.41 0.50 0.44 0.08 0.40 0.45
0.1 0.1 0.37 0.46 0.45 0.11 0.36 0.41
0.1 0.2 0.36 0.45 0.46 0.12 0.35 0.40
0.1 0.3 0.35 0.44 0.46 0.13 0.34 0.39
0.2 0.1 0.36 0.45 0.46 0.12 0.35 0.40
0.2 0.2 0.34 0.43 0.46 0.14 0.33 0.38
0.2 0.3 0.32 0.41 0.47 0.16 0.31 0.36
0.3 0.1 0.35 0.44 0.46 0.13 0.34 0.39
0.3 0.2 0.32 0.41 0.47 0.16 0.31 0.36
0.3 0.3 0.29 0.38 0.48 0.18 0.28 0.33

Note: The sensitivity parameters α and β refer to αtot and βtot for the total effect of college and to
αcomp and βnet for the direct effect of attendance and the net effect of BA completion.

is likely overestimated. In general, our estimates of the BA completion effect are fairly robust for both

the lowest- and highest-propensity groups. The estimated direct effect of attendance, on the other

hand, is much more robust for the least advantaged youth than for the most advantaged youth.

As noted earlier, if the sensitivity parameters are constant across the population, our findings of

effect heterogeneity will be unchanged. However, the sensitivity parameters may differ between less

and more advantaged individuals. Several processes may be at work. On the one hand, it is possi-

ble that low-propensity students who attend and complete college disproportionately possess some
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unobserved trait, such as motivation, that boosts both educational attainment and earnings, and that

high-propensity youth who do not attend or complete college disproportionately face some unob-

served barrier to educational attainment that also affects earnings. If so, biases due to the “imbalance”

of unobserved confounders between treated and untreated individuals (i.e., theα parameters in equa-

tions 12-14) will be larger for both the lowest- and highest-propensity youth than for their medium-

propensity peers. On the other hand, unobserved traits such as motivation might have a greater

effect on earnings among low-propensity youth than among high-propensity youth, whose advan-

taged socioeconomic backgrounds might dilute the influence of other factors. If so, biases due to the

“impact” of unobserved confounders between treated and untreated individuals (i.e., the β parame-

ters in equations 12-14) will be larger for the low-propensity individuals than for high-propensity

individuals. Thus, compared with the first process, the second process is more likely to induce dif-

ferential selection bias between the lowest- and highest-propensity groups. To be concrete, let us

consider the direct effect of attendance, for which our estimated effect heterogeneity will be subject

to a differential selection bias of π5th quintile
comp α5th quintile

comp β5th quintile
net − π1st quintile

comp α1st quintile
comp β1st quintile

net . In this

particular case, however, the differential selection bias would have to reach 0.35 to explain away the

difference between the lowest- and highest-propensity individuals in their estimated∆att (0.45 versus

0.10). Considering the range of plausible values for our sensitivity parameters and the associated bi-

ases, it is highly unlikely that unobserved confounding plays a significant role in driving the observed

effect heterogeneity in ∆att. By contrast, our estimated differences in ∆tot and ∆comp between the

first and fifth propensity quintiles are much smaller and consequently more sensitive to unobserved

confounding.

Concluding Remarks

Higher education can be a double-edged sword in shaping inequality. It may serve as an equalizer if

disadvantaged youth can benefit more from the experience of attending college and from obtaining

a college degree than do their more advantaged peers. On the other hand, it reflects and reinforces
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preexisting inequalities. In the United States, minority and low-income students are much less likely

than their white and more affluent peers to attend a four-year college, and, even when they do, they

are less likely to graduate with a BA degree by their late twenties. In this paper, I have developed

a potential-outcomes approach to conceptualizing, evaluating, and unpacking the causal effects of

college on earnings. By decomposing the total effect of attending a four-year college into several

direct and indirect components, this approach not only helps unveil the mechanisms through which

college attendance boosts earnings, but illuminates and quantifies the equalizing and stratifying roles

of college. Moreover, under the assumption of sequential ignorability, I have introduced a robust and

efficientmethod for estimating all quantities of interest, alongwith a set of bias formulas for assessing

the sensitivity of estimates to unobserved confounding.

Applying the proposed framework and methodology to data from the NLSY97, I find evidence

of both equalizing and stratifying roles of higher education. In particular, the estimated direct effect

of college attendance is markedly larger among individuals from the lowest propensity score quintile

than among their more advantaged peers. Yet, this equalizing effect is offset by the stratifying effects

associatedwith unequal likelihoods of completing college (given attendance) and unequal covariances

between BA completion and its net effect on earnings. The latter component is especially intriguing,

as it reflects not an inequality in BA attainment or earnings returns per se, but an inequality in sort-

ing: whereas more advantaged college-goers may be well informed about their idiosyncratic payoffs

to a BA degree and poised to act on such information, their less advantaged peers may lack such

information or the capacity to act on it, leading to a pattern of “negative selection among the least

advantaged.” As a result of these stratifying forces, the estimated total effect of attending a four-year

college for the least advantaged youth is no larger than that for their more advantaged peers.

Methodologically, the causal decomposition and the associatedmethods for estimation and sensi-

tivity analysis constitute a new framework for analyzing the effects of higher education on earnings.

Unlike the conventional practice of dichotomizing postsecondary attainment as either “college go-

ers” versus “high school graduates” or “college graduates” versus “non-graduates,” the new framework

treats BA completion as a mediator that transmits the effect of college attendance on earnings. This
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approach not only maps more closely onto the sequential process by which people make educational

transitions (Mare 1980), but enables us, for the first time, to isolate the equalizing and stratifying roles

of higher education. Moreover, it opens up new possibilities for future research on the nexus between

education and earnings inequality. For example, while the present paper has focused on the effects of

college attendance and BA completion, themethodological framework can be generalized to incorpo-

rate more educational transitions, such as high school attendance→high school graduation→college

attendance→ college graduation→postgraduate attendance→postgraduate degree, where the effect

of each transitionmay show a distinct pattern of heterogeneity (Torche 2011). Moreover, evenwithin

the journey from college enrollment to BA completion, the same approach can be applied to assess

the roles of important milestones, such as persistence through the first year, and the extent to which

they differ between more and less advantaged students. Future research can also adapt the proposed

effect decomposition to unpack the economic payoff to attending a two-year college, which com-

prises not only a direct effect of attendance and an indirect effect via potential attainment of an AA

degree, but also an indirect effect via potential transfer to a four-year institution and the associated

prospect of attaining a BA degree. Given that two-year colleges currently enroll more than a third

of all undergraduate students and that nearly half of all students completing a BA degree had some

experience within a two-year institution (Ma and Baum 2016), the relationships between two-year

college attendance, eventual educational attainment, and earnings inequality constitute an important

avenue for future research.

Author’s Note

Replication materials are available in Open Science Framework: https://osf.io/psr3j/.
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Supplementary Materials for Attendance, Completion, and

Heterogeneous Returns to College: A Causal Mediation Approach

Xiang Zhou

A Neyman Orthogonal Signals for DML Estimation

For each of our target parameters in equations (4)-(8), I construct a Neyman-orthogonal signal using

its efficient influence function in the nonparametricmodel over observed dataO = (X,A,Z,M, Y ).

Specifically, these signals are

M∗(1) = Ê[M |X,A = 1] +
A

π̂(X)

(
M − Ê[M |X,A = 1]

)
, (15)

Y ∗(0, 0) = Ê[Y |X,A = 0] +
1− A

1− π̂(X)

(
Y − Ê[Y |X,A = 0]

)
, (16)

Y ∗(1,M(1)) = Ê[Y |X,A = 1] +
A

π̂(X)

(
Y − Ê[Y |X,A = 1]

)
, (17)

Y ∗(1, 0) = ν̂10(X) +
A

π̂(X)

(
µ̂10(X,Z)− ν̂10(X)

)
+

A(1−M)

π̂(X)
(
1− γ̂(X,Z)

)(Y − µ̂10(X,Z)
)
,

(18)

Y ∗(1, 1) = ν̂11(X) +
A

π̂(X)

(
µ̂11(X,Z)− ν̂11(X)

)
+

AM

π̂(X)γ̂(X,Z)

(
Y − µ̂11(X,Z)

)
, (19)

where

π(X) := Pr[A = 1|X],

γ(X,Z) := Pr[M = 1|X,A = 1, Z],

µam(X,Z) := E[Y |X,A = a, Z,M = m],

νam(X) := E[µam(X,Z)|X,A = a].
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The Neyman orthogonality of the signals (15)-(17) is given in Chernozhukov et al. (2018). For a

proof of the Neyman orthogonality of the signals (18)-(19), see Zhou (2020). In the above equations,

Ê[M |X,A = 1], Ê[Y |X,A = 0], Ê[Y |X,A = 1], π̂(X), γ̂(X,Z), µ̂am(X,Z), ν̂am(X) are all

nuisance functions estimated from the “training sample” I\Ij in each cross-fitting iteration. The

signals (15)-(19) are then used to construct the corresponding signals for ∆tot, ∆att, πcomp, ∆comp.

For example, the signal for ∆tot is given by Y ∗
(
1,M(1)

)
− Y ∗(0, 0), the signal for ∆att is given by

Y ∗(1, 0)− Y ∗(0, 0), and so on.
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B Inference for the Covariance Components ∆cov and ∆cov(s)

As noted in the main text, the covariance component ∆cov is estimated using the plug-in estimator

∆̂cov = ∆̂tot − ∆̂att − π̂comp∆̂comp, where ∆̂tot, ∆̂att, π̂comp, and ∆̂comp are estimated by the sample

means of their corresponding Neyman-orthogonal signals. For each of these components, we can

decompose its asymptotic error in a way akin to equation (11). For example, for ∆̂tot, we have

√
n(∆̂tot −∆tot) =

√
n(Pn − P)[ϕtot(O;µ, π)]︸ ︷︷ ︸

A

+
√
nP[ϕtot(O; µ̂, π̂)− ϕtot(O;µ, π)]︸ ︷︷ ︸

B

+
√
n(Pn − P)[ϕtot(O; µ̂, π̂)− ϕtot(O;µ, π)]︸ ︷︷ ︸

C

, (20)

where ϕtot(O;µ, π) = Y ∗
(
1,M(1)

)
− Y ∗(0, 0) is the Neyman-orthogonal signal for ∆tot. Since

terms B and C are assumed to be asymptotically negligible, the above expression implies that ∆̂tot

is asymptotically linear with influence function φtot(O) = ϕtot(O;µ, π) − Pϕtot(O;µ, π) (i.e., the

demeaned Neyman-orthogonal signal). That is,

∆̂tot = ∆tot + Pnφtot(O) + op(n
−1/2),

where Pn[·] = n−1
∑n

i=1[·], and “µ” and “π” are omitted from φtot(O) to simplify notation. The

influence function φtot(O) is essential because its variance captures the asymptotic variance of ∆̂tot:

√
n(∆̂tot −∆tot) =

√
n
(
Pnφcov(O) + op(n

−1/2)
)

=
√
nPnφcov(O) + op(1)

d→ N(0,Var(φcov(O))),

where the last line is due to the central limit theorem and Slutsky’s theorem. Similarly, we can show

that ∆̂att, π̂comp, and ∆̂comp are all asymptotically linear with the corresponding influence functions

given by their demeaned Neyman-orthogonal signals. Denoting these influence functions by φatt(O),

3



φπ(O), and φcomp(O), we have

∆̂cov =∆̂tot − ∆̂att − π̂comp∆̂comp

=
(
∆tot + Pnφtot(O) + op(n

−1/2)
)
−
(
∆att + Pnφatt(O) + op(n

−1/2)
)

−
(
πcomp + Pnφπ(O) + op(n

−1/2)
)(

∆comp + Pnφcomp(O) + op(n
−1/2)

)
= ∆tot −∆att − πcomp∆comp︸ ︷︷ ︸

=∆cov

+Pn[φtot(O)− φatt(O)− φπ(O)∆comp − φcomp(O)πcomp︸ ︷︷ ︸
:=φcov(O)

] + op(n
−1/2).

(21)

Hence, ∆̂cov is also asymptotically linear with influence function φcov(O). The asymptotic variance

of ∆̂cov is thus Var[φcov(O)], which can be estimated by its empirical analog V̂ar[φ̂cov(O)].

The group-level covariance component ∆cov(s) is estimated using the plug-in estimator

∆̂cov(s) = ∆̂tot(s) − ∆̂att(s) − π̂comp(s)∆̂comp(s). Here, ∆̂tot(s), ∆̂att(s), π̂comp(s), and ∆̂comp(s)

are the predicted values of their corresponding regression models. As shown in Semenova and Cher-

nozhukov (2021), these predicted values are also asymptotically linear with influence functions in

the form of sTE[SST ]Sε, where S is a column vector of regressors and ε is the error term of the

regression model. Hence, we have a group-level counterpart of equation (21). The standard error of

∆̂cov(s) can then be estimated through the empirical variance of its influence function.
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C Bias Formulas for Sensitivity Analysis

First, let us consider a binary unobserved confounder U that affects both college attendance (A) and

earnings (Y ) and make the following simplifying assumptions: (A1) E[Y |x, U = 1, a]−E[Y |x, U =

0, a] does not depend on x and a; (A2) Pr[U = 1|x,A = 1]− Pr[U = 1|x,A = 0] does not depend

on x (VanderWeele and Arah 2011). For any a ∈ {0, 1}, we have

E[Y (a)] =

∫
E[Y |x, u, a]dP (x, u)

=

∫ (
E[Y |x, U = 1, a] Pr[U = 1|x] + E[Y |x, U = 0, a] Pr[U = 0|x]

)
dP (x),

where Y (a) := Y (a,M(a)). Without adjusting for U , our estimator for E[Y (a)] will converge to

E∗[Y (a)] =

∫
E[Y |x, a]dP (x)

=

∫ (
E[Y |x, U = 1, a] Pr[U = 1|x, a] + E[Y |x, U = 0, a] Pr[U = 0|x, a]

)
dP (x).

Taking the difference between E∗[Y (a)] and E[Y (a)] yields

bias
[
E[Y (a)]

]
=

∫ (
E[Y |x, U = 1, a]−E[Y |x, U = 0, a]

)(
Pr[U = 1|x, a]−Pr[U = 1|x]

)
dP (x).

(22)

Substituting a = 0, 1 into equation (22), taking the difference between bias
[
E[Y (1)]

]
and

bias
[
E[Y (0)]

]
, and applying assumptions A1 and A2, we obtain

bias[∆tot] =
(

Pr[U = 1|x,A = 1]− Pr[U = 1|x,A = 0]
)︸ ︷︷ ︸

:=αtot

(
E[Y |x, U = 1, a]− E[Y |x, U = 0, a]

)︸ ︷︷ ︸
:=βtot

= αtotβtot.

Next, consider a binary unobserved confounder U that affects both BA completion (M ) and

earnings (Y ) and make the following simplifying assumptions (B1) E[Y |x, a, z, U = 1,m] −
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E[Y |x, a, z, U = 0,m] does not depend on x, a, z,m; (B2)Pr[U = 1|x,A = 1, z,M = 1]−Pr[U =

1|x,A = 1, z,M = 0] does not depend on x and z. For any (a,m) ∈ {(0, 0), (1, 0), (1, 1)}, we have

E[Y (a,m)] =

∫
E[Y |x, a, z, u,m]dP (z, u|x, a)dP (x)

=

∫ (
E[Y |x, a, z, U = 1,m] Pr[U = 1|x, a, z]+

E[Y |x, a, z, U = 0,m] Pr[U = 0|x, a, z]
)
dP (z|a, x)dP (x).

Without adjusting for U , our estimator for E[Y (a,m)] will converge to

E∗[Y (a,m)] =

∫
E[Y |x, a, z,m]dP (z|x, a)dP (x)

=

∫ (
E[Y |x, a, z, U = 1,m] Pr[U = 1|x, a, z,m]

+ E[Y |x, a, z, U = 0,m] Pr[U = 0|x, a, z,m]
)
dP (z|a, x)dP (x).

Taking the difference between E∗[Y (a,m)] and E[Y (a,m)] yields

bias
[
E[Y (a,m)]

]
=

∫ (
E[Y |x, a, z, U = 1,m]− E[Y |x, a, z, U = 0,m]

)
·
(

Pr[U = 1|x, a, z,m]− Pr[U = 1|x, a, z]
)
dP (z|a, x)dP (x). (23)

SinceM = 0 when A = 0, Pr[U = 1|x,A = 0, z,M = 0] = Pr[U = 1|x,A = 0, z]. Therefore,

bias
[
E[Y (0, 0)]

]
= 0. Substituting a = 1 andm = 0 into equation (23) and applying assumptions

B1 and B2, we obtain

bias[∆att] =−
(

Pr[U = 1|x,A = 1, z,M = 1]− Pr[U = 1|x,A = 1, z,M = 0]
)︸ ︷︷ ︸

:=αcomp

·
(
E[Y |x, a, z, U = 1,m]− E[Y |x, a, z, U = 0,m]

)︸ ︷︷ ︸
:=βnet

∫
Pr[M = 1|x,A = 1, z]dP (z|A = 1, x)dP (x)

=− αcompβnet

∫
Pr[M = 1|x,A = 1]dP (x)

6



=− πcompαcompβnet.

Substituting a = 1 andm = 0, 1 into equation (23), taking the difference between bias
[
E[Y (1, 1)]

]
and bias

[
E[Y (1, 0)]

]
, and applying assumptions B1 and B2, we obtain

bias[∆comp] =
(

Pr[U = 1|x,A = 1, z,M = 1]− Pr[U = 1|x,A = 1, z,M = 0]
)︸ ︷︷ ︸

:=αcomp

·
(
E[Y |x, a, z, U = 1,m]− E[Y |x, a, z, U = 0,m]

)︸ ︷︷ ︸
:=βnet

=αcompβnet.
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D Results on Percentile Ranks of Earnings

Table D1 and Figure D1 report results when the outcome is measured by the percentile rank of earn-

ings, paralleling Table 1 and Figure 3 in the main text. We can see that the two sets of results are

highly consistent.

Table D1: Decomposition of the Average Total Effect (ATE) of College Attendance on Earnings Rank.

Total Effect
(∆tot)

Direct Effect
(∆att)

Indirect
Effect (∆ind)

Completion
Prob. (πcomp)

Completion
Effect (∆comp)

Covariance
Term (∆cov)

9.79 (0.95) 4.01 (1.04) 5.78 (0.62) 0.57 (0.01) 10.51 (1.03) -0.20 (0.37)

Note: Numbers in parentheses are estimates of standard errors, which are constructed using the
empirical variances of the corresponding influence functions and adjusted for multiple imputation
via Rubin’s (1987) method.

Figure D1: Estimates of the Total Effect and Its Components by Propensity Score Quintile.
Note: Line ranges represent 95% confidence intervals.
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