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Abstract

Causal mediation analysis concerns the pathways through which a treatment affects an outcome.

While most of the mediation literature focuses on settings with a single mediator, a flourishing

line of research has examined settings involving multiple mediators, under which path-specific

effects (PSEs) are often of interest. We consider estimation of PSEs when the treatment effect

operates through K(≥ 1) causally ordered, possibly multivariate mediators. In this setting,

the PSEs for many causal paths are not nonparametrically identified, and we focus on a set of

PSEs that are identified under Pearl’s nonparametric structural equation model. These PSEs

are defined as contrasts between the expectations of 2K+1 potential outcomes and identified via

what we call the generalized mediation functional (GMF). We introduce an array of regression-

imputation, weighting, and “hybrid” estimators, and, in particular, two K+2-robust and locally

semiparametric efficient estimators for the GMF. The latter estimators are well suited to the

use of data-adaptive methods for estimating their nuisance functions. We establish the rate

conditions required of the nuisance functions for semiparametric efficiency. We also discuss

how our framework applies to several estimands that may be of particular interest in empirical

applications. The proposed estimators are illustrated with a simulation study and an empirical

example.
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1 Introduction

Causal mediation analysis aims to disentangle the pathways through which a treatment affects

an outcome. While traditional approaches to mediation analysis have relied on linear structural

equation models, along with their stringent parametric assumptions, to define and estimate direct

and indirect effects (e.g., Baron and Kenny 1986), a large body of research has emerged within the

causal inference literature that disentangles the tasks of definition, identification, and estimation

in the study of causal mechanisms. Using the potential outcomes framework (Neyman 1923; Ru-

bin 1974), this body of research has provided model-free definitions of direct and indirect effects

(Robins and Greenland 1992; Pearl 2001), established the assumptions needed for nonparametric

identification (Robins and Greenland 1992; Pearl 2001; Robins 2003; Petersen et al. 2006; Imai et al.

2010; Hafeman and VanderWeele 2011; VanderWeele 2015), and developed an array of imputation,

weighting, and multiply robust methods for estimation (e.g., Goetgeluk et al. 2009; Albert 2012;

Tchetgen Tchetgen and Shpitser 2012; Vansteelandt et al. 2012; Zheng and van der Laan 2012;

Tchetgen Tchetgen 2013; VanderWeele 2015; Wodtke and Zhou 2020).

While the bulk of the causal mediation literature focuses on settings with a single mediator (or

a set of mediators considered as a whole), a flourishing line of research has studied settings that

involve multiple causally dependent mediators, under which a set of path-specific effects (PSEs)

are often of interest (Avin et al. 2005; Albert and Nelson 2011; Shpitser 2013; VanderWeele and

Vansteelandt 2014; VanderWeele et al. 2014; Daniel et al. 2015; Lin and VanderWeele 2017; Miles

et al. 2017; Steen et al. 2017; Vansteelandt and Daniel 2017; Miles et al. 2020). In particular,

Daniel et al. (2015) demonstrated a large number of ways in which the total effect of a treatment

can be decomposed into PSEs, established the assumptions under which a subset of these PSEs

are identified, and provided a parametric method for estimating these effects (see also Albert and

Nelson 2011). More recently, for a particular PSE in the case of two causally ordered mediators,

Miles et al. (2020) offered an in-depth discussion of alternative estimation methods, and, utilizing

the efficient influence function of its identification formula, developed a triply robust and locally

semiparametric efficient estimator. This estimator, by virtue of its multiple robustness, is well

suited to the use of data-adaptive methods for estimating its nuisance functions.

To date, most of the literature on PSEs has focused on the case of two mediators, and it
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remains underexplored how the estimation methods developed in previous studies, such as those in

VanderWeele et al. (2014) and Miles et al. (2020), generalize to the case of K(≥ 1) causally ordered

mediators. This article aims to bridge this gap. First, we observe that despite a multitude of ways in

which a PSE can be defined for each causal path from the treatment to the outcome, most of these

PSEs are not identified under Pearl’s nonparametric structural equation model. This observation

leads us to focus on the much smaller set of PSEs that can be nonparametrically identified. These

PSEs are defined as contrasts between the expectations of 2K+1 potential outcomes, which, in

turn, are identified through a formula that can be viewed as an extension of Pearl’s (2001) and

Daniel et al.’s (2015) mediation formulae to the case of K causally ordered mediators. Following

Tchetgen Tchetgen and Shpitser (2012), we refer to the identification formula for these expected

potential outcomes as the generalized mediation functional (GMF).

We then show that the GMF can be estimated via an array of regression, weighting, and

“hybrid” estimators. More important, building on its efficient influence function (EIF), we develop

two multiply robust and locally semiparametric efficient estimators for the GMF. Both of these

estimators are K + 2-robust, in the sense that they are consistent provided that one of K + 2

sets of nuisance functions is correctly specified and consistently estimated. These multiply robust

estimators are well suited to the use of data-adaptive methods for estimating the nuisance functions.

We establish rate conditions for consistency and semiparametric efficiency when data-adaptive

methods and cross-fitting (Zheng and van der Laan 2011; Chernozhukov et al. 2018) are used to

estimate the nuisance functions.

Compared with existing estimators that have been proposed for causal mediation analysis, the

methodology proposed in this article is distinct in its generality. In fact, the doubly robust estimator

for the mean of an incomplete outcome (Scharfstein et al. 1999), the triply robust estimator devel-

oped by Tchetgen Tchetgen and Shpitser (2012) for the mediation functional in the one-mediator

setting (see also Zheng and van der Laan 2012), and the estimator proposed by Miles et al. (2020)

for their particular PSE, can all be viewed as special cases of the K +2-robust estimators — when

K = 0, 1, 2, respectively. Yet, our framework also encompasses important estimands for which

semiparametric estimators have not been proposed. To demonstrate the generality of our frame-

work, we show how our multiply robust semiparametric estimators apply to several estimands that

may be of particular interest in empirical applications, including the natural direct effect (NDE),
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the natural/total indirect effect (NIE/TIE), the natural path-specific effect (nPSE), and the cu-

mulative path-specific effect (cPSE). In Supplementary Material E, we discuss how our framework

can also be employed to estimate noncausal decompositions of between-group disparities that are

widely used in social science research (Fortin et al. 2011).

Before proceeding, we note that in a separate strand of literature, the term “multiple robustness”

has been used to characterize a class of estimators for the mean of incomplete data that are

consistent if one of several working models for the propensity score or one of several working models

for the outcome is correctly specified (e.g., Han and Wang 2013; Han 2014). In this paper, we use

“V -robustness” to characterize estimators that require modeling multiple parts of the observed data

likelihood and are consistent provided that one of V sets of the corresponding models is correctly

specified, in keeping with the terminology in the causal mediation literature. This definition of

“multiple robustness” does not imply that a “K + 2-robust” estimator is necessarily more robust

than, for example, a “K + 1-robust” estimator. First, they may correspond to different estimands

that require modeling different parts of the likelihood. For example, the doubly robust estimator

of the average treatment effect only involves a propensity score model and an outcome model; it

is thus less demanding than Tchetgen Tchetgen and Shpitser’s (2012) triply robust estimator of

the mediation functional, which involves an additional model for the mediator. Second, for our

semiparametric estimators of the GMF, the “K + 2-robustness” property is not “sharp” because

it can be tightened in various special cases. As we demonstrate in Section 4 and Supplementary

Material E, such a tightening may result in a lower V (as in the case of NDE, NIE/TIE, nPSE, and

cPSE), or a higher V (as in the case of noncausal decompositions of between-group disparities).

The rest of the paper is organized as follows. In Section 2, we define the PSEs of interest,

lay out their identification assumptions, and introduce the GMF. In Section 3, we introduce a

range of regression-imputation, weighting, “hybrid,” and multiply robust estimators for the GMF,

and present several techniques that could be used to improve the finite sample performance of the

multiply robust estimators. In Section 4, we discuss how our results apply to a number of special

cases such as the NDE, NIE/TIE, nPSE, and cPSE. A simulation study and an empirical example

are given in Section 5 and Section 6 to illustrate the proposed estimators. Proofs of Theorems 1-4

are given in Supplementary Materials A, C, and D. Replication data and code for the simulation

study and the empirical example are available at https://doi.org/10.7910/DVN/5TBUM3.
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X A M2M1 Y

(a) A M2M1 Y

(c) A M2M1 Y

(b) A M2M1 Y

(d) A M2M1 Y

Figure 1: Causal relationships with two causally ordered mediators.

Note: A denotes the treatment, Y denotes the outcome of interest, X denotes a vector of pretreat-
ment covariates, and M1 and M2 denote two causally ordered mediators.

2 Notation, Definitions, and Identification

To ease exposition, we start with the case of two causally ordered mediators before moving onto

the general setting of K mediators.

2.1 The Case of Two Causally Ordered Mediators

Let A denote a binary treatment, Y an outcome of interest, and X a vector of pretreatment

covariates. In addition, let M1 and M2 denote two causally ordered mediators, and assume M1

precedes M2. We allow each of these mediators to be multivariate, in which case the causal

relationships among the component variables are left unspecified. A directed acyclic graph (DAG)

representing the relationships between these variables is given in the top panel of Figure 1. In this

DAG, four possible causal paths exist from the treatment to the outcome, as shown in the lower

panels: (a) A→ Y ; (b) A→M2 → Y ; (c) A→M1 → Y ; and (d) A→M1 →M2 → Y .

A formal definition of path-specific effects (PSEs) requires the potential-outcomes notation for

both the outcome and the mediators. Specifically, let Y (a,m1,m2) denote the potential outcome

under treatment status a and mediator values M1 = m1 and M2 = m2, M2(a,m1) the potential

value of the mediator M2 under treatment status a and mediator value M1 = m1, and M1(a) the
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potential value of the mediator M1 under treatment status a. This notation allows us to define

nested counterfactuals in the form of Y
(
a,M1(a1),M2(a2,M1(a12))

)
, where a, a1, a2, and a12 can

each take 0 or 1. For example, Y
(
1,M1(0),M2(0,M1(0))

)
represents the potential outcome in the

hypothetical scenario where the subject was treated but the mediators M1 and M2 were set to

values they would have taken if the subject had not been treated. Further, if we let Y (a) denote

the potential outcome when treatment status is set to a and the mediators M1 and M2 take on

their “natural” values under treatment status a (i.e., M1(a) and M2(a,M1(a))), we have Y (a) =

Y
(
a,M1(a),M2(a,M1(a))

)
by construction. This is sometimes referred to as the “composition”

assumption (VanderWeele 2009).

Under the above notation, for each of the causal paths shown in Figure 1, its PSE can be defined

in eight different ways, depending on the reference levels chosen for A for each of the other three

paths (Daniel et al. 2015). For example, the average direct effect of A on Y , i.e., the portion of the

treatment effect that operates through the path A→ Y , can be defined as

τA→Y (a1, a2, a12) = E[Y
(
1,M1(a1),M2(a2,M1(a12))

)
− Y

(
0,M1(a1),M2(a2,M1(a12))

)
],

where a1, a2, and a12 can each take 0 or 1. In particular, τA→Y (0, 0, 0) corresponds to the natural

direct effect (NDE; Pearl 2001) or pure direct effect (PDE; Robins and Greenland 1992) if the

mediators M1 and M2 are considered as a whole. In a similar vein, the PSEs via A → M2 → Y ,

A→M1 → Y , and A→M1 →M2 → Y can be defined as

τA→M2→Y (a, a1, a12) = E[Y
(
a,M1(a1),M2(1,M1(a12))

)
− Y

(
a,M1(a1),M2(0,M1(a12))

)
],

τA→M1→Y (a, a2, a12) = E[Y
(
a,M1(1),M2(a2,M1(a12))

)
− Y

(
a,M1(0),M2(a2,M1(a12))

)
],

τA→M1→M2→Y (a, a1, a2) = E[Y
(
a,M1(a1),M2(a2,M1(1))

)
− Y

(
a,M1(a1),M2(a2,M1(0))

)
].

In addition, if we use A → M1 ⇝ Y to denote the combination of the causal paths A → M1 → Y

and A→M1 →M2 → Y , the corresponding PSE for this “composite path” can be defined as

τA→M1⇝Y (a, a2) = E[Y
(
a,M1(1),M2(a2,M1(1))

)
− Y

(
a,M1(0),M2(a2,M1(0))

)
].

This quantity reflects the portion of the treatment effect that operates through M1, regardless of

whether it further operates through M2 or not. In particular, τA→M1⇝Y (0, 0) is often referred to as
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the natural indirect effect (NIE; Pearl 2001) or the pure indirect effect (PIE; Robins and Greenland

1992) for M1, whereas τA→M1⇝Y (1, 1) is sometimes called the total indirect effect (TIE; Robins

and Greenland 1992) for M1. Note, however, that the term NIE has also been used to denote

τA→M1⇝Y (1, 1) (e.g., Tchetgen Tchetgen and Shpitser 2012). To avoid ambiguity, we use NIE

and TIE to denote τA→M1⇝Y (0, 0) and τA→M1⇝Y (1, 1), respectively. By definition, these PSEs are

identified if the corresponding expected potential outcomes, i.e., E[Y
(
a,M1(a1),M2(a2,M1(a12))

)
],

are identified. Below, we review the assumptions under which these expected potential outcomes

are identified from observed data.

Following Pearl (2009), we use a DAG to encode a nonparametric structural equation model

(NPSEM) with mutually independent errors. In this framework, the top panel of Figure 1 implies no

unobserved confounding for any of the treatment-mediator, treatment-outcome, mediator-mediator,

and mediator-outcome relationships. Formally, we invoke the following assumptions.

Assumption 1. Consistency of A on M1, (A,M1) on M2, and (A,M1,M2) on Y : For any unit

and any a,m1,m2, M1 = M1(a) if A = a; M2 = M2(a,m1) if A = a and M1 = m1; and

Y = Y (a,m1,m2) if A = a, M1 = m1, and M2 = m2.

Assumption 2. Conditional independence among treatment and potential outcomes: for any

a, a1, a2,m1,m
∗
1,m2,

(
M1(a1),M2(a2,m1), Y (a,m1,m2)

)
⊥⊥ A|X;

(
M2(a2,m1), Y (a,m1,m2)

)
⊥⊥

M1(a1)|X,A, and Y (a,m1,m2) ⊥⊥M2(a2,m
∗
1)|X,A,M1.

Assumption 3. Positivity: pA|X(a|x) > ϵ > 0 whenever pX(x) > 0; pA|X,M1
(a|x,m1) > ϵ > 0

whenever pX,M1(x,m1) > 0, and pA|X,M1,M2
(a|x,m1,m2) > ϵ > 0 whenever pX,M,M2(x,m1,m2) >

0, where p(·) denotes a probability density/mass function.

Note that Assumption 2 involves conditional independence relationships between the so-called

cross-world counterfactuals, such as
(
M2(a2,m1), Y (a,m1,m2)

)
⊥⊥M1(a1)|X,A. This assumption

is a direct consequence of Pearl’s NPSEM with mutually independent errors. It implies, but is not

implied by, the sequential ignorability assumption that Robins (2003) invokes in interpreting causal

diagrams (see Robins and Richardson 2010 for an in-depth discussion). In addition, we note that

Assumption 2 does not rule out all forms of unobserved confounding for the causal effects of X on

its descendants. For example, unobserved variables are permitted (although not shown) in Figure

1 that affect both X and Y .
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Under Assumptions 1-3, it can be shown that E[Y
(
a,M1(a1),M2(a2,M1(a12))

)
] is identified

if and only if a12 = a1 (Avin et al. 2005; Albert and Nelson 2011; Daniel et al. 2015). Con-

sequently, none of the PSEs for the path A → M1 → Y is identified because given a12, ei-

ther E[Y
(
a,M1(1),M2(a2,M1(a12))

)
] or E[Y

(
a,M1(0),M2(a2,M1(a12))

)
] is unidentified. Similarly,

none of the PSEs for the path A → M1 → M2 → Y is identified. Interestingly, the PSEs for the

composite path A → M1 ⇝ Y are all identified, even if a ̸= a2. These results echo the recanting

witness criterion developed by Avin et al. (2005), which implies that the PSE for a (possibly com-

posite) path from A to Y when A is set to 0 (or 1) for all other paths is identified if and only if

the path of interest contains no “recanting witness” — a variable W that has an additional path

to Y that is not contained in the path of interest. Thus the PSE τA→M1→Y (0, 0, 0) is not identified

because M1 has an additional path to Y (M1 →M2 → Y ) that is not contained in A→M1 → Y ,

but the PSE τA→M1⇝Y (0, 0) is identified because all possible paths from M1 to Y is contained in

A→M1 ⇝ Y .

Because E[Y
(
a,M1(a1),M2(a2,M1(a12))

)
] is identified if and only if a1 = a12, we restrict our

attention to cases where a1 = a12 and use the following notation:

ψa1,a2,a
∆
= E

[
Y
(
a,M1(a1),M2(a2,M1(a1))

)]
.

Under Assumptions 1-3, ψa1,a2,a is identified via the following formula:

ψa1,a2,a =

∫∫∫
E[Y |x, a,m1,m2]dP (m2|x, a2,m1)dP (m1|x, a1)dP (x). (1)

For a proof of the above formula, see Daniel et al. (2015). Equation (1) can be seen as an extension

of Pearl’s (2001) mediation formula to the case of two causally ordered mediators.

It should be noted that Assumptions 1-3 constitute a sufficient set of conditions that allow us

to identify ψa1,a2,a for arbitrary combinations of a1, a2, and a. For specific combinations of a1, a2,

and a, Assumption 2 can be relaxed. For example, ψ100 is still identified via equation (1) when

unobserved confounding exists for theM2-Y relationship, and ψ010 is still identified via equation (1)

when unobserved confounding exists for the M1-Y relationship (Shpitser 2013; Miles et al. 2020).
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2.2 The Case of K(≥ 1) Causally Ordered Mediators

We now generalize the preceding results to the setting where the treatment effect of A on Y operates

through K causally ordered, possibly multivariate mediators, M1,M2, . . .MK . We assume that for

any k < k′, Mk precedes Mk′ , such that no component of Mk′ causally affects any component of

Mk. In a DAG that is consistent with this setup, a directed path from the treatment to the outcome

can pass through any combination of the K mediators, resulting in 2K possible paths. Among the

2K paths, each can be switched “on” or “off,” creating 22
K

potential outcomes. Also, for each of

the 2K paths, the corresponding PSE can be defined in 22
K−1 different ways, depending on whether

each of the other 2K −1 paths is switched “on” or “off.” For example, when K = 3, for each causal

path from A to Y , its PSE can be defined in 22
3−1 = 128 different ways.

As we will see, despite the exponential growth of possible causal paths and the double ex-

ponential growth of possible PSEs, most of these PSEs are not identified under the assumptions

associated with Pearl’s NPSEM. To fix ideas, let an overbar denote a vector of variables, so that

Mk = (M1,M2, . . .Mk), mk = (m1,m2, . . .mk), and ak = (a1, a2, . . . ak), where M l = ml = al = ∅

if l ≤ 0. In addition, let [K] denote the set {1, 2, . . .K}, and let aK+1, instead of a, denote the

treatment status set to the path A→ Y . Assumptions 1-3 can now be generalized as below.

Assumption 1∗. Consistency: For any unit, Mk = Mk(ak,mk−1) if A = ak and Mk−1 = mk−1,

∀k ∈ [K]; and Y = Y (aK+1,mK) if A = aK+1 and MK = mK .

Assumption 2∗. Conditional independence among treatment and po-

tential outcomes:
(
M1(a1),M2(a2,m1), . . . Y (aK+1,mK)

)
⊥⊥ A|X; and(

Mk+1(ak+1,mk), . . .MK(aK ,mK−1), Y (aK+1,mK)
)
⊥⊥Mk(ak,m

∗
k−1)|X,A,Mk−1, ∀k ∈ [K].

Assumption 3∗. Positivity: pA|X(a|x) > ϵ > 0 whenever pX(x) > 0; pA|X,Mk
(a|x,mk) > ϵ > 0

whenever pX,Mk
(x,mk) > 0, ∀k ∈ [K].

Before giving the identification results, we introduce the following notational shorthands:

Mk(ak)
∆
=

(
Mk−1(ak−1),Mk(ak,Mk−1(ak−1))

)
, ∀k ∈ [K],

ψa
∆
= E[Y (aK+1,Mk(ak))],

9



where Mk(ak) is defined iteratively, with the assumption that M0(a0) = ∅. For example, when

K = 3,

ψa = E
[
Y
(
a4,M1(a1),M2(a2,M1(a1)),M3(a3,M1(a1),M2(a2,M1(a1)))

)]
.

Theorem 1 states that ψa is identified under Assumptions 1*-3*.

Theorem 1. Under Assumptions 1*-3*, we have

ψa =

∫
x

∫
mK

E[Y |x, aK+1,mK ]
[ K∏
k=1

dP (mk|x, ak,mk−1)
]
dP (x). (2)

The above equation extends Pearl’s (2001) and Daniel et al.’s (2015) mediation formula to the

case ofK causally ordered mediators. Following the terminology of Tchetgen Tchetgen and Shpitser

(2012), we refer to the right-hand side of equation (1) as the generalized mediation functional

(GMF). Theorem 1 echoes Avin et al.’s (2005) recanting witness criterion: a potential outcome is

identified (in expectation) if the value that a mediator Mk takes, i.e., Mk(ak), is carried over to all

future mediators. This result leads us to focus on the set of expected potential outcomes and PSEs

that are nonparametrically identified. For example, to assess the mediating role of Mk, we focus

on the composite causal path A → Mk ⇝ Y , where, as before, the squiggle arrow encompasses all

possible causal paths from Mk to Y . An identifiable PSE for this path can be expressed as

τA→Mk⇝Y (ak−1, ·, ak+1) = ψak−1,1,ak+1
− ψak−1,0,ak+1

,

where ak+1
∆
= (ak+1, . . . aK+1). The notation ψa makes it clear that the average total effect (ATE) of

A on Y can be decomposed into K+1 identifiable PSEs corresponding to A→ Y and A→Mk ⇝ Y

(k ∈ [K]):

ATE = ψ1 − ψ0 = ψ0K ,1 − ψ0K+1︸ ︷︷ ︸
A→Y

+

K∑
k=1

(
ψ0k−1,1k

− ψ0k,1k+1

)︸ ︷︷ ︸
A→Mk⇝Y

. (3)

To be sure, equation (3) is not the only way of decomposing the ATE. Depending on the order in

which the paths A → Y and A → Mk ⇝ Y (k ∈ [K]) are considered, there are (K + 1)! different

ways of decomposing the ATE. In the above decomposition, ψ0K ,1−ψ0K+1
corresponds to the NDE

if the mediators MK are considered as a whole.
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3 Estimation

In this section, we focus on the estimation of the GMF, i.e., the right-hand side of equation (2).

When Assumptions 1*-3* hold, the GMF is equal to the causal parameter ψa, but otherwise, it is

still a well-defined statistical parameter of potential scientific interest. To distinguish it from the

causal parameter ψa, we henceforth denote the GMF by θa.

3.1 MLE, Regression-Imputation, and Weighting

Equation (2) suggests that θa can be estimated via maximum likelihood (MLE) (Miles et al.

2017). Specifically, we can fit a parametric model for each p(mk|x, ak,mk−1) (k ∈ [K]) and for

E[Y |x, aK+1,mK ], and then estimate the GMF via the following equation:

θ̂mle
a = Pn

[ ∫
mK

Ê[Y |X, aK+1,mK ]
( K∏
k=1

p̂(mk|x, ak,mk−1)dν(mk)
)]
, (4)

where Pn[·] = n−1
∑

i[·]i and ν(·) is an appropriate dominating measure. This approach works best

when the mediators M1,M2, . . .MK are all discrete and the covariates X are low-dimensional, in

which case the working models for p(mk|x, ak,mk−1) are simply models for the conditional probabil-

ities ofMk that can be reliably estimated. When some of the mediators are continuous/multivariate

or when the covariates X are high-dimensional, estimates of the corresponding conditional den-

sity/probability functions can be unstable and sensitive to model misspecification. This problem

could be mitigated by imposing highly constrained functional forms on the conditional means of

the mediators and the outcome. For example, when E[Mk|x, ak,mk−1] and E[Y |x, aK+1,mK ] are

all assumed to be linear with no higher-order or interaction terms, θ̂mle
a will reduce to a simple func-

tion of regression coefficients (e.g., Alwin and Hauser 1975). Yet, the assumptions of linearity and

additivity are unrealistic in many applications, which may lead to biased estimates of θa. Below,

we describe several imputation- and weighting-based strategies for estimating θa.

First, we observe that the GMF can be written as
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θa = EX

[
EM1|X,a1 . . .EMK |X,aK ,MK−1

E[Y |X, aK+1,MK ]︸ ︷︷ ︸
∆
=µK(X,MK)︸ ︷︷ ︸

∆
=µK−1(X,MK−1)︸ ︷︷ ︸

∆
=µ0(X)

]
. (5)

This expression suggests that θa can be estimated via an iterated regression-imputation (RI) ap-

proach (Zhou and Yamamoto 2020):

1. Estimate µK(X,MK) by fitting a parametric model for the conditional mean of Y given

(X,A,MK) and then setting A = aK+1 for all units;

2. For k = K − 1, . . . 0, estimate µk(X,Mk) by fitting a parametric model for the conditional

mean of µk+1(X,Mk+1) and then setting A = ak+1 for all units;

3. Estimate θa by averaging the fitted values µ̂0(X) among all units:

θ̂ria = Pn

[
µ̂0(X)

]
. (6)

The regression-imputation estimator can be seen as an extension of the imputation strategy pro-

posed by Vansteelandt et al. (2012) for estimating the NDE and NIE in the one-mediator setting.

Since this approach requires modeling only the conditional means of observed/imputed outcomes

given different sets of mediators, it is more flexible to use with continuous/multivariate mediators

than MLE. Nonetheless, because µk(x,mk) is estimated iteratively, correct specification of all of the

outcome models is required for θ̂ria to be consistent. Thus, in practice, when parametric models are

used to estimate µk(x,mk), care should be taken to ensure that the outcome models used to estimate

these functions are mutually compatible. For example, if µ1(X,M1) follows a linear model that

includes X and X2 as predictors, then the model used to estimate µ0(X) = E[µ1(X,M1)|X,A = a1]

should also include X and X2 in the predictor set.

The GMF can also be written as

θa = E
[I(A = aK+1)

p(aK+1|X)

( K∏
k=1

p(Mk|X, ak,Mk−1)

p(Mk|X, aK+1,Mk−1)

)
Y
]
.
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This expression suggests a weighting estimator of θa:

θ̂w-m
a = Pn

[I(A = aK+1)

p̂(aK+1|X)

( K∏
k=1

p̂(Mk|X, ak,Mk−1)

p̂(Mk|X, aK+1,Mk−1)

)
Y
]
. (7)

This estimator can be seen as an extension of the weighting estimator proposed in VanderWeele et al.

(2014) for the case of two mediators. It shares a limitation of θ̂mle
a in that it requires estimates of

the conditional densities/probabilities of the mediators, which tend to be noisy if the mediators are

continuous or multivariate. This problem, however, can be sidestepped by recasting the mediator

density ratios, via Bayes’ rule, as odds ratios in terms of the treatment variable:

p(Mk|X, ak,Mk−1)

p(Mk|X, aK+1,Mk−1)
=

p(ak|X,Mk)/p(aK+1|X,Mk)

p(ak|X,Mk−1)/p(aK+1|X,Mk−1)
.

This observation leads to an alternative weighting estimator based on estimates of the conditional

probabilities of treatment given different sets of mediators:

θ̂w-a
a = Pn

[I(A = aK+1)

p̂(a1|X)

( K∏
k=1

p̂(ak|X,Mk)

p̂(ak+1|X,Mk)

)
Y
]
. (8)

In applications where the mediators are continuous/multivariate, θ̂w-a
a should be easier to work with

than θ̂w-m
a . Yet, the parameters for p(a|x,mk) are not variationally independent across different

values of k. As in the case of the regression-imputation estimator, care should be taken to ensure

the compatibility of the models specified for p(a|x,mk) (see Miles et al. 2020 for some practical

recommendations).

The regression-imputation approach and the weighting approach can be combined to form

various “hybrid estimators” of θa. For example, in the case of K = 2, one can use regression-

imputation to estimate µ2(x,m1,m2), another regression-imputation step to estimate µ1(x,m1),

and weighting to estimate θa, yielding an “RI-RI-W” estimator:

θ̂ri-ri-wa = Pn

[I(A = a1)

p̂(a1|X)
µ̂1(X,M1)

]
. (9)

One can also use regression-imputation to estimate µ2(x,m1,m2) and then employ appropriate

weights to estimate θa, which leads to an “RI-W-W” estimator:

θ̂ri-w-w
a = Pn

[I(A = a2)

p̂(a2|X)

p̂(M1|X, a1)
p̂(M1|X, a2)

µ̂2(X,M1,M2)
]
. (10)
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In fact, with K mediators, there are 2K+1 different ways to combine regression-imputation and

weighting, each of which involves estimatingK+1 nuisance functions, which entail a choice between

p(a|x) and µ0(x) and a choice between p(mk|x, a,mk−1) and µk(x,mk) for each k ∈ [K] (see

Supplementary Material B for detailed expressions of these hybrid estimators in the case of K =

2). As with θ̂mle
a , θ̂ria , θ̂

w-m
a , and θ̂w-a

a , each of these hybrid estimators will be consistent only if

the corresponding nuisance functions are all correctly specified and consistently estimated. In

applications where the pretreatment covariates X and/or the mediators have many components,

all of the above estimators will be prone to model misspecification bias.

3.2 Multiply Robust and Semiparametric Efficient Estimation

Henceforth, let O = (X,A,MK , Y ) denote the observed data, and Pnp a nonparametric model over

O wherein all laws P satisfy the positivity assumption described in Section 2.2. In addition, define

µk(X,Mk) iteratively as in equation (5):

µK(X,MK)
∆
= E[Y |X, aK+1,MK ]

µk(X,Mk)
∆
= E[µk+1(X,Mk+1)|X, ak+1,Mk], k = K − 1, . . . , 0.

Theorem 2. The efficient influence function (EIF) of θa in Pnp is given by

φa(O) =
K+1∑
k=0

φk(O), (11)

where

φ0(O) = µ0(X)− θa,

φk(O) =
I(A = ak)

p(ak|X)

( k−1∏
j=1

p(Mj |X, aj ,M j−1)

p(Mj |X, ak,M j−1)

)(
µk(X,Mk)− µk−1(X,Mk−1)

)
, k ∈ [K],

φK+1(O) =
I(A = aK+1)

p(aK+1|X)

( K∏
j=1

p(Mj |X, aj ,M j−1)

p(Mj |X, aK+1,M j−1)

)(
Y − µK(X,MK)

)
.

The semiparametric efficiency bound for any regular and asymptotically linear estimator of θa in

Pnp is therefore E
[(
φa(O)

)2]
.

We now present two estimators of θa based on the EIF. First, consider the factorized likelihood

of O: p(O) = p(X)p(A|X)
(∏K

k=1 p(Mk|X,A,Mk−1)
)
p(Y |X,A,MK). Suppose we have estimated
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K + 2 nuisance functions, each of which corresponds to a component of p(O): π̂0(a|x) for p(a|x),

f̂k(mk|x, a,mk−1) for p(mk|x, a,mk−1), and µ̂K(x,mK) for E[Y |x, aK+1,mK ]. The GMF can now

be estimated as

θ̂eif1a =Pn

[I(A = aK+1)

π̂0(aK+1|X)

( K∏
j=1

f̂j(Mj |X, aj ,M j−1)

f̂j(Mj |X, aK+1,M j−1)

)(
Y − µ̂K(X,MK)

)
+

K∑
k=1

I(A = ak)

π̂0(ak|X)

( k−1∏
j=1

f̂j(Mj |X, aj ,M j−1)

f̂j(Mj |X, ak,M j−1)

)(
µ̂mle
k (X,Mk)− µ̂mle

k−1(X,Mk−1)
)

+ µ̂mle
0 (X)

]
, (12)

where µ̂mle
K (X,MK) = µ̂K(X,MK) and µ̂mle

k (X,Mk) is iteratively constructed as

µ̂mle
k (X,Mk) =

∫
µ̂mle
k+1(X,Mk,mk+1)f̂k+1(mk+1|X, ak+1,Mk)dν(mk+1), k = K − 1, . . . 0. (13)

When Mk+1 involves continuous components, equation (13) can be evaluated via Monte Carlo

simulation.

When some of the mediators are continuous/multivariate, it can be difficult to estimate the

conditional distributions p(mk|x, a,mk−1). In such cases, it is often preferable to estimate the

mediator density ratios using the corresponding odds ratios of the treatment variable, and estimate

the functions µk(x,mk) using the regression-imputation approach. Specifically, suppose we have

estimated 2(K + 1) nuisance functions: π̂0(a|x) for p(a|x), π̂k(a|x,mk) for p(a|x,mk) (k ∈ [K]),

and µ̂k(x,mk) for µk(x,mk) (k ∈ {0, 1, . . .K}), where for k < K, µk(x,mk) is estimated iteratively

by fitting a model for the conditional mean of µ̂k+1(X,Mk+1) given (X,A,Mk) and then setting

A = ak+1 for all units. The GMF can then be estimated as

θ̂eif2a =Pn

[I(A = aK+1)

π̂0(a1|X)

( K∏
j=1

π̂j(aj |X,M j)

π̂j(aj+1|X,M j)

)(
Y − µ̂K(X,MK)

)
+

K∑
k=1

I(A = ak)

π̂0(a1|X)

( k−1∏
j=1

π̂j(aj |X,M j)

π̂j(aj+1|X,M j)

)(
µ̂k(X,Mk)− µ̂k−1(X,Mk−1)

)
+ µ̂0(X)

]
. (14)

The multiple robustness and semiparametric efficiency of θ̂eif1a and θ̂eif2a are given below.

Theorem 3. Let η1 = {π0, f1, . . . fK , µK} denote the K + 2 nuisance functions involved in θ̂eif1a ,

and η2 = {π0, . . . πK , µ0, . . . µK} denote the 2(K + 1) nuisance functions involved in θ̂eif2a . Suppose
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that Assumption 3* (positivity) and suitable regularity conditions for estimating equations (e.g.,

Newey and McFadden 1994, p. 2148) hold. In addition, suppose that µK(x,mK) is bounded over

the support of (X,MK). Then, when the elements of η1 and η2 are estimated via parametric models,

1. θ̂eif1a is consistent and asymptotically normal (CAN) if K+1 of the K+2 nuisance functions in

η1 are correctly specified and their parameter estimates are
√
n-consistent; it is semiparametric

efficient if all of the K+2 nuisance functions in η1 are correctly specified and their parameter

estimates are
√
n-consistent.

2. θ̂eif2a is CAN if ∃k ∈ {0, . . .K+1}, the first k treatment models π0, . . . πk−1 and the last K+1−k

outcome models µk, . . . µK in η2 are correctly specified and their parameter estimates are
√
n-

consistent; it is semiparametric efficient if all of the treatment and outcome models in η2 are

correctly specified and their parameter estimates are
√
n-consistent.

Both θ̂eif1a and θ̂eif2a are K + 2-robust in the sense that they are CAN provided that one of

K + 2 sets of nuisance functions is correctly specified and the corresponding parameter estimates

are
√
n-consistent. Several special cases are worth noting. First, in the degenerate case where

K = 0, it is clear that both θ̂eif1a and θ̂eif2a reduce to the standard doubly robust estimator for

E[Y (a)] (Scharfstein et al. 1999). Second, when K = 1, θ̂eif101 coincides with Tchetgen Tchetgen and

Shpitser’s (2012) triply robust estimator for E[Y
(
1,M(0)

)
]. Finally, when K = 2, θ̂eif1010 is identical

to Miles et al.’s (2020) estimator for θ010. For this case, however, Miles et al. provide a slightly

weaker condition than that implied by Theorem 3 for θ̂eif1010 to be CAN. Specifically, they showed

that θ̂eif1010 remains CAN even if both f1 and µ2 are misspecified. In Section 4, we show that the

conditions for θ̂eif2a to be CAN can also be relaxed for several particular types of PSEs, including

the natural path-specific effect (nPSE), of which ψ010 − ψ000 is a special case. For the K = 2 case,

Miles et al. also noted that the mediator density ratios in θ̂eif1010 can be indirectly estimated through

models for π1 and π2. Clearly, this approach will result in θ̂eif2010 if the µk(x,mk) functions are in

the meanwhile estimated through regression-imputation. The K + 2-robustness of θ̂eif1a and θ̂eif2a ,

interestingly, resembles the multiple robustness of the Bang-Robins (2005) estimator for the mean

of a potential outcome with time-varying treatments and time-varying confounders (Luedtke et al.

2017; Molina et al. 2017; Rotnitzky et al. 2017).

To gain some intuition as to why θ̂eif1a is K+2-robust, consider cases in which only one nuisance
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function in η1 is misspecified. When only π0 is misspecified, all terms inside Pn[·] but µ̂mle
0 (X) will

have a zero mean (asymptotically), leaving only Pn[µ̂
mle
0 (X)] (i.e., the MLE estimator (4)), which is

consistent because the corresponding nuisance functions {f1, . . . fK , µK} are all correctly specified.

When only µK is misspecified, all terms involving µ̂K(X,MK) and µ̂mle
k (X,Mk) (k = 0, 1, . . .K−1)

inside Pn[·] will have a zero mean (asymptotically), leaving only a weighted average of Y (i.e.,

the weighting estimator (7)), which is consistent because the corresponding nuisance functions

{π0, f1, . . . fK} are all correctly specified. Finally, when only fk′ is misspecified (for some k′ ∈ [K]),

it can be shown that all terms involving f̂k′ and µ̂
mle
k (X,Mk) (∀k < k′) inside Pn[·] will have a zero

mean (asymptotically), leaving only a weighted average of µ̂mle
k′ (X,Mk′). The latter constitutes a

“hybrid” estimator similar to those mentioned in the previous section, and it is consistent in this

case because its nuisance functions {π0, f1, . . . fk′−1, fk′+1, . . . fK , µK} are all correctly specified.

The K + 2-robustness of θ̂eif2a is due to a similar logic to that of θ̂eif1a . Yet, different from

θ̂eif1a , θ̂eif2a involves estimating 2(K + 1) nuisance functions, K + 1 for the conditional probabilities

of treatment and K + 1 for the conditional means of observed/imputed outcomes. Also, unlike

θ̂eif1a , the treatment models involved in θ̂eif2a are not variationally independent; neither are the

outcome models. For example, when MK ⊥⊥ A|X,MK−1, πK(A|X,MK) should be identical to

πK−1(A|X,MK−1); similarly, when MK ⊥⊥ Y |X,A,MK−1, µK(X,MK) should be identical to

µK−1(X,MK−1). Thus, in practice, both the treatment and outcome models should be specified

in a mutually compatible way, otherwise some of the conditions in Theorem 3 may fail by design.

The local efficiency of θ̂eif1a and θ̂eif2a is due to the fact that both of the EIF-based estimating

equations (12) and (14) have a zero derivative with respect to the nuisance functions at the truth.

This property, referred to as “Neyman orthogonality” by Chernozhukov et al. (2018), implies that

first step estimation of the nuisance functions has no first order effect on the influence functions

of θ̂eif1a and θ̂eif2a . This property suggests that the nuisance functions can be estimated using data-

adaptive/machine learning methods or their ensembles. In this case, these estimators will still be

consistent as long as the nuisance functions associated with one of the K+2 conditions in Theorem

3 are consistently estimated. For θ̂eif2a , an added advantage of employing data-adaptive methods to

estimate the nuisance functions is that, by exploring a larger space within Pnp, the risk of model

incompatibility is reduced.

When data-adaptive/machine learning methods are used to estimate the nuisance functions, it
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is advisable to use sample splitting to render the empirical process term asymptotically negligible

(Zheng and van der Laan 2011; Chernozhukov et al. 2018; Newey and Robins 2018). For example,

Chernozhukov et al. (2018) suggest the method of “cross-fitting,” which involves the following steps:

(a) randomly partition the sample S into J folds: S1, S2 . . . SJ ; (b) for each j, obtain a fold-specific

estimate of the target parameter using only data from Sj (“main sample”), but with nuisance

functions learned from the remainder of the sample (i.e., S\Sj ; “auxiliary sample”); (c) average

these fold-specific estimates to form a final estimate of the target parameter.

When cross-fitting is used, θ̂eif1a and θ̂eif2a will be semiparametric efficient if the corresponding

nuisance function estimates are all consistent and converge at sufficiently fast rates. For example,

a sufficient (but not necessary) condition for θ̂eif1a and θ̂eif2a to attain the semiparametric efficiency

bound is when all of the nuisance function estimates converge at faster-than-n−1/4 rates. More

precise conditions are given in Theorem 4.

Theorem 4. Let η̂1 = {π̂0, f̂1, . . . f̂K , µ̂K} and η̂2 = {π̂0, . . . π̂K , µ̂0, . . . µ̂K} denote estimates of

the nuisance functions involved in θ̂eif1a and θ̂eif2a , respectively. Let rn(·) denote a mapping from a

nuisance function estimator to its L2(P ) convergence rate where P represents the true distribution

of O = (X,A,MK , Y ). Suppose that Assumption 3* (positivity) holds for both the true distribution

P and its estimates implied by η̂1 and η̂2, and that all other assumptions required for Theorem 3

hold. Then, when the nuisance functions are estimated via data-adaptive methods and cross-fitting,

1. θ̂eif1a is consistent if K + 1 of the K + 2 elements in η̂1 are consistent in the L2-norm; it is

CAN and semiparametric efficient if all elements in η̂1 are consistent in the L2-norm and∑
u,v∈η̂1;u̸=v

rn(u)rn(v) = o(n−1/2);

2. θ̂eif2a is consistent if ∃k ∈ {0, . . .K + 1}, π̂0, . . . π̂k−1, µ̂k, . . . µ̂K are all consistent in the L2-

norm; it is CAN and semiparametric efficient if all elements in η̂2 are consistent in the

L2-norm and
K∑
j=0

rn(π̂j)rn(µ̂j) = o(n−1/2).

The multiple robustness result for θ̂eif1a echoes Theorem 3. Moreover, the first part of Theorem

4 states that θ̂eif1a is CAN and semiparametric efficient if all nuisance functions in η1 are consis-

tently estimated and, for every two nuisance functions in η1, the product of their convergence rates

is o(n−1/2). Thus θ̂eif1a is CAN and semiparametric efficient if all of the K + 2 nuisance function
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estimates are consistent and converge at faster-than-n−1/4 rates, but it will also attain semipara-

metric efficiency under alternative conditions. For example, when estimates of the treatment and

mediator models {π̂0, f̂1, . . . f̂K} all converge to the truth at a rate of n−1/3 and estimates of the

outcome model µ̂K converge to the truth at a rate of n−1/5, the product of the convergence rates of

any two elements in η̂1 is either O(n−1/3)O(n−1/3) = O(n−2/3) or O(n−1/3)O(n−1/5) = O(n−8/15),

both faster than O(n−1/2).

The second part of Theorem 4 states that θ̂eif2a is consistent if there exists a k such that the

first k treatment models and the last K + 1− k outcome models in η2 are consistently estimated,

echoing Theorem 3. As with θ̂eif1a , θ̂eif2a will be CAN and semiparametric efficient if all of the

required nuisance functions are consistently estimated and converge at faster-than-n−1/4 rates.

The rate condition
K∑
j=0

rn(π̂j)rn(µ̂j) = o(n−1/2) appears to be weaker than that for θ̂eif1a as it

involves the sum of only K + 1, rather than
(
K+2
2

)
, product terms. Because the outcome models

are estimated iteratively, the convergence rate of µ̂k will in general depend on the convergence

rates of {µ̂k+1, . . . µ̂K}. That is, if rn(µ̂k+1) = O(nδ), rn(µ̂k) is unlikely to be faster than O(nδ).

Nonetheless, θ̂eif2a will be CAN and semiparametric efficient under relatively weak conditions —

for example, when estimates of the treatment models all converge to the truth at a rate of n−1/3

and estimates of the outcome models all converge to the truth at a rate of n−1/5, in which case
K∑
j=0

rn(π̂j)rn(µ̂j) =
K∑
j=0

O(n−8/15) = o(n−1/2).

For inference on θ̂eif1a and θ̂eif2a , a simple variance estimator can be constructed from the empirical

analog of the EIF, i.e., Pn[φ̂
2
a(O)]/n. However, unlike θ̂eif1a and θ̂eif2a , this variance estimator is not

multiply robust — it will be consistent only if the conditions for semiparametric efficiency in

Theorem 3 or Theorem 4 are satisfied. Thus, when the nuisance functions are estimated using

parametric models, the variance estimator constructed from the empirical EIF may be inconsistent

even when the corresponding estimator for θa is CAN — for example, when only K + 1 of the

K + 2 nuisance functions involved in θ̂eif1a are correctly specified. In this case, the nonparametric

bootstrap is a convenient approach to more robust inference. When the nuisance functions are

estimated using data-adaptive/machine learning methods, however, the nonparametric bootstrap

is not theoretically justified, and the EIF-based variance estimator may still be preferred.
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3.3 Multiply Robust Regression-Imputation Estimators

Both of the multiply robust estimators described above involve inverse probability weights. When

the positivity assumption is nearly violated, the inverse probability weights tend to be highly

variable, which may lead to poor finite sample performance (Kang and Schafer 2007; Petersen

et al. 2012). A variety of methods have been proposed to reduce the influence of highly variable

weights on doubly robust and multiply robust estimators in similar settings (e.g., Robins et al. 2007;

Tchetgen Tchetgen and Shpitser 2012; Seaman and Vansteelandt 2018). Among them, a common

strategy is to tailor the estimating equation of the outcome model(s) such that the terms involving

inverse probability weights will equal zero, leaving only a regression-imputation or “substitution”

estimator that typically resides in the parameter space of the estimand. Below, we briefly describe

how this approach can be adapted to θ̂eif1a and θ̂eif2a .

Let us start with θ̂eif2a , which can be written as

θ̂eif2a =Pn

[
ŵK(X,A,MK)

(
Y − µ̂K(X,MK)

)
+

K∑
k=1

ŵk−1(X,A,Mk−1)
(
µ̂k(X,Mk)− µ̂k−1(X,Mk−1)

)
+ µ̂0(X)

]
, (15)

where ŵk(A,X,Mk) (0 ≤ k ≤ K) are estimates of the corresponding inverse probability weights

as displayed in equation (14). Note that the nuisance functions µ̂k(X,Mk) (0 ≤ k ≤ K) here are

all estimated via the regression-imputation approach. When the corresponding outcome models

are fitted via generalized linear models (GLM) with canonical links, one can either (a) fit weighted

GLMs (with an intercept term) for µ̂k(X,Mk) using ŵk(A,X,Mk) as weights, or (b) add the

corresponding inverse probability weight as an additional covariate in these regressions (Robins

et al. 2007). Either way, the score equations for GLMs will ensure that all terms inside Pn[·] but

µ̂0(X) have a sample mean of zero, leaving only Pn[µ̂0(X)], which will reside in the parameter space

of θa if the latter equals the range of the GLM specified for µ0(x).

Alternatively, one can use the method of targeted maximum likelihood estimation (TMLE; van

Der Laan and Rubin 2006; Zheng and van der Laan 2012), which, by fitting each of the outcome

models in two steps, will also ensure a zero sample mean for all terms inside Pn[·] but µ̂0(X). This
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approach does not require the first-step models to be GLM and thus can be used with a wider

range of outcome models. In our case, it involves the following steps:

1. For k = K, . . . 0

(a) Using µ̂tmle
k+1 (X,Mk+1) (or, in the case k = K, the observed outcome Y ) as the response

variable, obtain a first-step regression-imputation estimate of µk(X,Mk);

(b) Fit a one-parameter GLM for the conditional mean of µ̂tmle
k+1 (X,Mk+1) (or, in the case k =

K, the observed outcome Y ), using g(µ̂k(X,Mk)) as an offset term and ŵk(A,X,Mk)

as the only covariate (without an intercept term), and obtain an updated estimate

µ̂tmle
k (X,Mk) = g−1

(
g(µ̂k(X,Mk)) + β̂kŵk(A,X,Mk)

)
, where g(·) is the link function

for the GLM and β̂k is the estimated coefficient on ŵk(A,X,Mk);

2. Obtain the final estimate θ̂tmle
a = Pn[µ̂

tmle
0 (X)].

In the one-mediator case, the above estimator is similar to the TMLE estimator proposed by Zheng

and van der Laan (2012) for the NDE, i.e., ψ01 −ψ00. Since Zheng and van der Laan’s estimand is

the NDE instead of the mediation functional, their TMLE procedure involves fitting a model for the

“mediated mean outcome difference” (p. 6), i.e., E[E[Y |X,A = 1,M ]−E[Y |X,A = 0,M ]|X,A = 0],

instead of the conditional mean of the imputed outcome itself, i.e., µ0(X).

As with the GLM-based adjustments, the TMLE approach also yields a regression-imputation

estimator that resides in the parameter space of θa if the latter equals the range of the model

specified for µ0(x). It should be noted that when data-adaptive methods are used to obtain first-

step estimates of the nuisance functions, sample splitting should be employed so that steps 1(a)

and steps 1(b) are implemented on different subsamples. In cross-fitting, for example, steps 1(a)

should be implemented in the auxiliary sample (S\Sj) and steps 1(b) implemented in the main

sample Sj . The method of TMLE can also be used to adjust θ̂eif1a , in which case the first step

estimates of µk(X,Mk) (0 ≤ k ≤ K−1) are based on equation (13), and the weights ŵk(A,X,Mk)

(0 ≤ k ≤ K) reflect the corresponding terms in equation (12).
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4 Special Cases

We have so far considered θa for the unconstrained case where a1, . . . aK+1 can each take 0 or 1.

In many applications, the researcher may be interested in particular causal estimands such as the

natural direct effect (NDE), the natural/total indirect effect (NIE/TIE), and natural path-specific

effects (nPSE; Daniel et al. 2015). Below, we discuss how the multiply robust semiparametric

estimators of θa apply to these estimands. In addition, we discuss a set of cumulative path-specific

effects (cPSEs) that together compose the ATE. In Supplementary Material E, we connect these

cPSEs to noncausal decompositions of between-group disparities that are widely used in the social

sciences. For illustrative purposes, we focus on estimators based on θ̂eif2a , although similar results

hold for those based on θ̂eif1a . Throughout this section, we maintain Assumptions 1*-3* so that

θa = ψa.

4.1 Natural Direct Effect (NDE)

The NDE measures the effect of switching treatment status from 0 to 1 in a hypothetical world

where the mediators (M1, . . .MK) were all set to values they would have “naturally” taken for

each unit under treatment status A = 0. It is thus given by ψ0K ,1 − ψ0K+1
. The first row of

Figure 2 illustrates the baseline and comparison interventions associated with the NDE for the

case of K = 2, where the black solid and dashed arrows for A → M1, A → M2, and A → Y

denote activated (A = 1) and unactivated (A = 0) paths, respectively. A semiparametric efficient

estimator for the NDE can be constructed as

N̂DE
eif2

= θ̂eif2
0K ,1

− θ̂eif2
0K+1

. (16)

If we treat MK = (M1, . . .MK) as a whole, ψ0K ,1 − ψ0K+1
coincides with the NDE defined in the

single mediator setting. In fact, N̂DE
eif2

is akin to the semiparametric estimator of the NDE given

in Zheng and van der Laan (2012). By contrast, if we use θ̂eif1a instead of θ̂eif2a in equation (16), we

obtain Tchetgen Tchetgen and Shpitser’s (2012) estimator of the NDE.

Setting a1 = . . . aK+1 = 0 in equation (14), we have

θ̂eif2
0K+1

= Pn

[I(A = 0)

π̂0(0|X)

(
Y − µ̂0(X)

)
+ µ̂0(X)

]
, (17)
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Baseline

NDE: A M2M1 Y

NIEM1 : A M2M1 Y

TIEM1 : A M2M1 Y

nPSEM2 : A M2M1 Y

cPSEM2 : A M2M1 Y

Comparison

A M2M1 Y

A M2M1 Y

A M2M1 Y

A M2M1 Y

A M2M1 Y

Figure 2: Illustrations of NDE, NIE, TIE, nPSE, and cPSE in the case of two mediators.

Note: A denotes the treatment, Y denotes the outcome of interest, and M1 and M2 denote two
causally ordered mediators. Solid and dashed arrows for A → M1, A → M2, and A → Y denote
activated (A = 1) and unactivated (A = 0) paths, respectively. Gray arrows M1 → M2, M1 → Y ,
and M2 → Y signify that the mediators M1 and M2 are not under direct intervention.

where µ0(X) = E[Y |X,A = 0]. Not surprisingly, θ̂eif2
0K+1

is the standard doubly robust estimator

for E[Y (0)], which is consistent if either π̂0(0|X) or µ̂0(X) is consistent. Similarly, by setting

a1 = . . . aK = 0 and aK+1 = 1 in equation (14), we have

θ̂eif2
0K ,1

= Pn

[I(A = 1)

π̂0(0|X)

π̂K(0|X,MK)

π̂K(1|X,MK)

(
Y−µ̂K(X,MK)

)
+
I(A = 0)

π̂0(0|X)

(
µ̂K(X,MK)−µ̂0,K(X)

)
+µ̂0,K(X)

]
.

In contrast to the general case where aK is unconstrained, θ̂eif2
0K ,1

involves estimating only four nui-

sance functions: π0(a|x), πK(a|x,mK), µ0,K(x), and µK(x,mK), where µK(x,mK) = E[Y |x,A =

1,mK ] and µ0,K(x) = E[µK(X,MK)|x,A = 0]. Hence µ0,K(x) can be estimated by fitting a model

for the conditional mean of µ̂K(X,MK) given (X,A) and then setting A = 0 for all units. It

follows from Theorem 3 that θ̂eif2
0K ,1

is triply robust in that it is consistent if one of the following
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three conditions holds: (a) π̂0 and π̂K are consistent; (b) π̂0 and µ̂K are consistent; and (c) µ̂0,K

and µ̂K are consistent. In the meantime, we know that θ̂eif2
0K+1

is consistent if either π̂0 or µ̂0 is

consistent. By taking the intersection of the multiple robustness conditions for θ̂eif2
0K ,1

and θ̂eif2
0K+1

, we

deduce that N̂DE
eif2

is also triply robust, as detailed in Corollary 1.

Corollary 1. Suppose all assumptions required for Theorem 4 hold. When the nuisance func-

tions are estimated via parametric models, N̂DE
eif2

is CAN provided that one of the follow-

ing three sets of nuisance functions is correctly specified and its parameter estimates are
√
n-

consistent: {π0, πK}, {π0, µK}, {µ0, µ0,K , µK}. N̂DE
eif2

is semiparametric efficient if all of

the above nuisance functions are correctly specified and their parameter estimates
√
n-consistent.

When the nuisance functions are estimated via data-adaptive methods and cross-fitting, N̂DE
eif2

is

CAN and semiparametric efficient if all of the nuisance functions are consistently estimated and

rn(π̂0)rn(µ̂0,K) + rn(π̂K)rn(µ̂K) + rn(π̂0)rn(µ̂0) = o(n−1/2).

4.2 Natural and Total Indirect Effects for M1

In Section 2.1, we noted that ψ100 − ψ000 and ψ111 − ψ011 correspond to the NIE and TIE for

the first mediator M1 (illustrated in the second and third rows of Figure 2). This correspondence

extends naturally to the case of K mediators, where the NIE and TIE for M1 are given by

NIEM1 = ψ1,02 − ψ0K+1
, TIEM1 = ψ1K+1

− ψ0,12 ,

where 02 = (0, . . . 0) and 12 = (1, . . . 1) are vectors of length K representing the fact that a2 =

. . . = aK+1 = 0 in NIEM1 and a2 = . . . = aK+1 = 1 in TIEM1 . Since TIEM1 can be obtained by

switching the 0s and 1s in NIEM1 and then flipping the sign, we focus on NIEM1 below, noting that

analogous results hold for TIEM1 .

A semiparametric efficient estimator of NIEM1 can be constructed as

N̂IE
eif2
M1

= θ̂eif21,02
− θ̂eif2

0K+1
.

As shown previously, θ̂eif2
0K+1

is given by the doubly robust estimator (17). Setting a1 = 1 and

a2 = . . . aK+1 = 0 in equation (14), we obtain

θ̂eif21,02
=Pn

[I(A = 0)

π̂0(1|X)

π̂1(1|X,M1)

π̂1(0|X,M1)

(
Y − µ̂1(X,M1)

)
+

I(A = 1)

π̂0(1|X)

(
µ̂1(X,M1)− µ̂0,1(X)

)
+ µ̂0,1(X)

]
.
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Like θ̂eif2
0K ,1

, θ̂eif21,02
also involves estimating four nuisance functions: π0(a|x), π1(a|x,m1), µ0,1(x), and

µ1(x,m1), where µ1(x,m1) = E[Y |x,A = 0,m1] and µ0,1(x) = E[µ1(X,M1)|x,A = 1]. It follows

from Theorem 3 that θ̂eif21,02
is triply robust in that it is consistent if one of the following three

conditions holds: (a) π̂0 and π̂1 are consistent; (b) π̂0 and µ̂1 are consistent; and (c) µ̂0,1 and µ̂1

are consistent. By taking the intersection of the multiple robustness conditions for θ̂eif21,02
and θ̂eif2

0K+1
,

we deduce that N̂IE
eif2
M1

is also triply robust, as detailed in Corollary 2.

Corollary 2. Suppose all assumptions required for Theorem 4 hold. When the nuisance functions

are estimated via parametric models, N̂IE
eif2
M1

is CAN provided that one of the following three sets

of nuisance functions is correctly specified and its parameter estimates are
√
n-consistent: {π0, π1},

{π0, µ1}, {µ0, µ0,1, µ1}. N̂IE
eif2
M1

is semiparametric efficient if all of the above nuisance functions are

correctly specified and their parameter estimates
√
n-consistent. When the nuisance functions are

estimated via data-adaptive methods and cross-fitting, N̂IE
eif2
M1

is semiparametric efficient if all of the

nuisance functions are consistently estimated and rn(π̂0)rn(µ̂0,1) + rn(π̂1)rn(µ̂1) + rn(π̂0)rn(µ̂0) =

o(n−1/2).

4.3 Natural Path-Specific Effects (nPSE) for Mk (k ≥ 2)

In the same spirit of the NIE for M1, the natural path-specific effect (nPSE; Daniel et al. 2015) for

mediator Mk (k ≥ 2) is defined as

nPSEMk
= ψ0k−1,1,0k+1

− ψ0K+1
.

It can be interpreted as the effect of activating the path A→Mk ⇝ Y while all other causal paths

are “switched off,” as shown in the fourth row of Figure 2. A semiparametric efficient estimator of

nPSEMk
can be constructed as

n̂PSE
eif2
Mk

= θ̂eif2
0k−1,1,0k+1

− θ̂eif2
0K+1

.

If, instead, we use θ̂eif1a in the above equation, the resulting estimator n̂PSE
eif1
Mk

can be seen as Miles

et al.’s (2020) estimator of θ010 − θ000 applied to M̃1 = (M1,M2, . . .Mk−1) and M̃2 =Mk.

Again, θ̂eif2
0K+1

is given by the doubly robust estimator (17). Setting a1 = . . . ak−1 = ak+1 =
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. . . aK+1 = 0 and ak = 1 in equation (14), we obtain

θ̂eif2
0k−1,1,0k+1

=Pn

[I(A = 0)

π̂0(0|X)

π̂k−1(0|X,Mk−1)

π̂k−1(1|X,Mk−1)

π̂k(1|X,Mk)

π̂k(0|X,Mk)

(
Y − µ̂k(X,Mk)

)
.

+
I(A = 1)

π̂0(0|X)

π̂k−1(0|X,Mk−1)

π̂k−1(1|X,Mk−1)

(
µ̂k(X,Mk)− µ̂k−1,k(X,Mk−1)

)
+

I(A = 0)

π̂0(0|X)

(
µ̂k−1,k(X,Mk−1)− µ̂0,k−1,k(X)

)
+ µ̂0,k−1,k(X)

]
.

We can see that θ̂eif2
0k−1,1,0k+1

involves estimating six nuisance functions: π0(a|x), πk−1(a|x,mk−1),

πk(a|x,mk), µ0,k−1,k(x), µk−1,k(x,mk−1), and µk(x,mk), where µk(X,Mk) = E[Y |X,A = 0,Mk],

µk−1,k(X,Mk−1) = E[µk(X,Mk)|X,A = 1,Mk−1], and µ0,k−1,k(X) = E[µk−1,k(X,Mk−1)|X,A =

0]. Hence µk−1,k(x) can be estimated by fitting a model for the conditional mean of µ̂k(X,Mk)

given (X,A,Mk−1) and then setting A = 1 for all units, and µ0,k−1,k(x) can be estimated by fitting

a model for the conditional mean of µ̂k−1,k(X,Mk−1) given (X,A) and then setting A = 0 for all

units. It follows from Theorem 3 that θ̂eif2
0k−1,1,0k+1

is quadruply robust in that it is consistent if one

of the following four conditions holds: (a) π̂0, π̂k−1, and π̂k are consistent; (b) π̂0, π̂k−1, and µ̂k are

consistent; (c) π̂0, µ̂k−1,k, and µ̂k are consistent; and (d) µ̂0,k−1,k, µ̂k−1,k, and µ̂k are consistent. By

taking the intersection of the multiple robustness conditions for θ̂eif21,02
and θ̂eif2

0K+1
, we deduce that

n̂PSE
eif2
Mk

is also quadruply robust, as detailed in Corollary 3.

Corollary 3. Suppose all assumptions required for Theorem 4 hold. When the nuisance func-

tions are estimated via parametric models, n̂PSE
eif2
Mk

is CAN provided that one of the following

four sets of nuisance functions is correctly specified and its parameter estimates are
√
n-consistent:

{π0, πk−1, πk}, {π0, πk−1, µk}, {π0, µk−1,k, µk}, {µ0, µ0,k−1,k, µk−1,k, µk}. n̂PSE
eif2
Mk

is semiparamet-

ric efficient if all of the above nuisance functions are correctly specified and their parameter esti-

mates
√
n-consistent. When the nuisance functions are estimated via data-adaptive methods and

cross-fitting, n̂PSE
eif2
Mk

is semiparametric efficient if all of the nuisance functions are consistently

estimated and rn(π̂0)rn(µ̂0,k−1,k) + rn(π̂k−1)rn(µ̂k−1,k) + rn(π̂k)rn(µ̂k) + rn(π̂0)rn(µ̂0) = o(n−1/2).

4.4 Cumulative Path-Specific Effects (cPSE) for Mk (k ≥ 2)

The NDE, NIE, and nPSE are all defined as the effect of activating one causal path while keeping

all other causal paths “switched off.” By contrast, in equation (3), the ATE is decomposed into

K +1 components, each of which reflects the cumulative contribution of a specific mediator to the
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ATE. Specifically, the component ψ0K ,1 −ψ0K+1
equals the NDE, the component ψ11 −ψ0,12 equals

TIEM1 , and the component ψ0k−1,1k
−ψ0k,1k+1

gauges the additional contribution of the causal path

A → Mk ⇝ Y after the causal paths A → Mk+1 ⇝ Y, . . . A → MK ⇝ Y,A → Y are “switched

on.” Such a decomposition will be useful in applications where the investigator aims to partition

the ATE into its path-specific components.

We define the cumulative path-specific effect (cPSE) for mediator Mk (k ≥ 2) as

cPSEMk
= ψ0k−1,1k

− ψ0k,1k+1
.

The last row of Figure 2 gives the baseline and comparison interventions associated with cPSEM2

in the case of K = 2. A semiparametric efficient estimator for cPSEMk
can be constructed as

ĉPSE
eif2
Mk

= θ̂eif2
0k−1,1k

− θ̂eif2
0k,1k+1

.

Setting a1 = . . . ak = 0 and ak+1 = . . . = aK+1 = 1 in equation (14), we obtain

θ̂eif2
0k,1k+1

= Pn

[I(A = 1)

π̂0(0|X)

π̂k(0|X,Mk)

π̂k(1|X,Mk)

(
Y − µ̂k(X,Mk)

)
+

I(A = 0)

π̂0(0|X)

(
µ̂k(X,Mk)− µ̂0,k(X)

)
+ µ̂0,k(X)

]
,

(18)

where µk(X,Mk) = E[Y |X,A = 1,Mk] and µ0,k(X) = E[µk(X,Mk)|X,A = 0]. It follows from

Theorem 3 that θ̂eif2
0k,1k+1

is triply robust in that it is consistent if one of the following three con-

ditions holds: (a) π̂0 and π̂k are consistent; (b) π̂0 and µ̂k are consistent; and (c) µ̂0,k and µ̂k are

consistent. By replacing k with k − 1 in equation (18), we obtain a similar expression for θ̂eif2
0k−1,1k

,

which is also triply robust in that it is consistent if one of the following three conditions holds: (a)

π̂0 and π̂k−1 are consistent; (b) π̂0 and µ̂k−1 are consistent; and (c) µ̂0,k−1 and µ̂k−1 are consis-

tent. As a result, ĉPSE
eif2
Mk

involves fitting seven working models — for π0(a|x), πk−1(a|x,mk−1),

πk(a|x,mk), µk−1(x,mk−1), µ0,k−1(x), µk(x,mk), and µ0,k(x). By taking the intersection of the

multiple robustness conditions for θ̂eif2
1k,0k+1

and θ̂eif2
1k−1,0k

, we deduce that ĉPSE
eif2
Mk

is quintuply robust

in that it is consistent if one of five sets of nuisance functions is correctly specified and consistently

estimated, as detailed in Corollary 4.

Corollary 4. Suppose all assumptions required for Theorem 4 hold. When the nuisance func-

tions are estimated via parametric models, ĉPSE
eif2
Mk

is CAN provided that one of the fol-

27



lowing five sets of nuisance functions is correctly specified and its parameter estimates are

√
n-consistent: {π0, πk−1, πk};{π0, πk−1, µk};{π0, µk−1, πk};{π0, µk−1, µk};{µ0,k−1, µ0,k, µk−1, µk}.

ĉPSE
eif2
Mk

is semiparametric efficient if all of the above nuisance functions are correctly specified

and their parameter estimates
√
n-consistent. When the nuisance functions are estimated via

data-adaptive methods and cross-fitting, ĉPSE
eif2
Mk

is semiparametric efficient if all of the nuisance

functions are consistently estimated and rn(π̂0)rn(µ̂0,k−1) + rn(π̂0)rn(µ̂0,k) + rn(π̂k−1)rn(µ̂k−1) +

rn(π̂k)rn(µ̂k) = o(n−1/2).

5 A Simulation Study

In this section, we conduct a simulation study to demonstrate the robustness of various estima-

tors under different forms of model misspecification. Specifically, we consider a binary treatment

A, a continuous outcome Y , two causally ordered mediators M1 and M2, and four pretreatment

covariates X1, X2, X3, X4 generated from the following model:

(U1, U2, U3, UXY ) ∼ N(0, I4),

Xj ∼ N((U1, U2, U3, UXY )βXj , 1), j = 1, 2, 3, 4,

A ∼ Bernoulli
(
logit−1[(1, X1, X2, X3, X4)βA]

)
,

M1 ∼ N
(
(1, X1, X2, X3, X4, A)βM1 , 1

)
,

M2 ∼ N
(
(1, X1, X2, X3, X4, A,M1)βM2 , 1

)
,

Y ∼ N
(
(1, UXY , X1, X2, X3, X4, A,M1,M2)βY , 1

)
.

The coefficients βXj (1≤ j ≤ 4), βA, βM1 , βM2 , βY are produced from a set of uniform distributions

(see Supplementary Material F for more details). Given the coefficients, we generate 1,000 Monte

Carlo samples of size 2,000. Note that in the above model, the unobserved variable UXY confounds

the X-Y relationship but does not pose an identification threat for ψa and the associated PSEs

(i.e., Assumption 2 still holds).

Without loss of generality, we focus on the estimand cPSEM2 , which we estimate by θ̂011− θ̂001.

To highlight the general results stated in Theorem 3, we use only estimators for the generic θa

(i.e., those described in Section 3). First, we consider the weighting estimator θ̂w-a
a , the regression-
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imputation estimator θ̂ria , and the hybrid estimators θ̂ri-w-w
a and θ̂ri-ri-wa , where the mediator density

ratio involved in θ̂ri-w-w
a is estimated via the corresponding odds ratio of the treatment variable.

We then consider four EIF-based estimators θ̂
par,eif2
a , θ̂

par2,eif2
a , θ̂

np,eif2
a , and θ̂

tmle,eif2
a . For θ̂

par,eif2
a

and θ̂
par2,eif2
a , the nuisance functions are estimated via GLMs. θ̂

par2,eif2
a differs from θ̂

par,eif2
a in that

the outcome models µ2(x,m1,m2), µ1(x,m1), and µ0(x) are fitted using a set of weighted GLMs

such that in equation (15), all terms inside Pn[·] but µ̂0(X) have a zero sample mean, yielding a

regression-imputation estimator that may perform better in finite samples.

All of the above estimators are constructed using estimates of six nuisance functions: π0(a|x),

π1(a|x,m1), π2(a|x,m1,m2), µ0(x), µ1(x,m1), and µ2(x,m1,m2). To demonstrate the conse-

quences of model misspecification and the multiple robustness of θ̂
par,eif2
a and θ̂

par2,eif2
a , we generate

a set of “false covariates” Z =
(
X1, e

X2/2, (X3/X1)
1/3, X4/(e

X1/2 + 1)
)
and use them to fit a mis-

specified GLM for each of the nuisance functions (with only the main effects of Z1, Z2, Z3, Z4).

We evaluate each of the parametric estimators under five different cases: (a) only π0, π1, π2 are

correctly specified; (b) only π0, π1, µ2 are correctly specified; (c) only π0, µ1, µ2 are correctly

specified; (d) only µ0, µ1, µ2 are correctly specified; and (e) all of the six nuisance functions are

misspecified. In theory, θ̂w-a
a is consistent in case (a), θ̂ri-w-w

a is consistent in case (b), θ̂ri-ri-wa is

consistent in case (c), θ̂ria is consistent in case (d), and θ̂
par,eif2
a and θ̂

par2,eif2
a are consistent in cases

(a)-(d). The corresponding estimators of cPSEM2 should follow the same properties.

For the two nonparametric estimators, θ̂
np,eif2
a is based on estimating equation (14), and θ̂

tmle,eif2
a

is based on the method of TMLE. Like θ̂
par2,eif2
a , θ̂

tmle,eif2
a is a regression-imputation estimator, which

may have better finite-sample performance than θ̂
np,eif2
a . For both θ̂

np,eif2
a and θ̂

tmle,eif2
a , the nuisance

functions are estimated via a super learner (van der Laan et al. 2007) composed of Lasso and random

forest, where the feature matrix consists of first-order, second-order, and interaction terms of the

false covariates Z. The super learner is more flexible than a misspecified GLM consisting of only the

main effects of Z, but it remains agnostic about the true nuisance functions, which are either logit

or linear models that depend on X = (Z1, 2 log(Z2), Z1Z
3
3 , (1+e

Z1/2)Z4). We obtain nonparametric

estimates of cPSEM2 using both five-fold cross-fitting and no cross-fitting.

Results from the simulation study are shown in Figure 3, where each panel corresponds to an

estimator, and the y axis is recentered at the true value of cPSEM2 . The shaded box plots highlight

cases under which a given estimator should be consistent, and the box plots with a lighter shade
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Figure 3: Sampling distributions of eight different estimators for n = 2, 000. Cases (a)-(e) are
described in the main text. The symbols y and n denote whether cross-fitting is used to implement
the nonparametric estimators (y = yes, n = no).

in the last two panels denote nonparametric estimators obtained without cross-fitting. From the

first four panels, we can see that the weighting, regression-imputation, and hybrid estimators all

behave as expected. They center around the true value if the requisite nuisance functions are all

correctly specified, and deviate from the truth in most other cases. The next four panels show the

box plots of the EIF-based estimators. As expected, both of the parametric EIF-based estimators

are quadruply robust, as their sampling distributions roughly concentrate around the true value

in all of the four cases from (a) to (d). Moreover, it is reassuring to see that when all of the

nuisance functions are misspecified (case (e)), the multiply robust estimators do not show a larger

amount of bias than those of the other parametric estimators. Finally, both of the nonparametric

EIF-based estimators perform reasonably well. When cross-fitting is used, the estimating equation

estimator ĉPSE
np,eif2
M2

appears to have a smaller bias than the TMLE estimator ĉPSE
tmle,eif2
M2

, but

it occasionally gives rise to extreme estimates. Their 95% Wald confidence intervals, constructed

using the estimated variance Ê
[(
φ̂011−φ̂001

)2]
/n, have close-to-nominal coverage rates — 95.5% for
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ĉPSE
np,eif2
M2

and 90.9% for ĉPSE
tmle,eif2
M2

. Without cross-fitting, the point estimates exhibit similar

distributions, but the coverage rates of the corresponding 95% confidence intervals are somewhat

lower — 87.3% for ĉPSE
np,eif2
M2

and 85.8% for ĉPSE
tmle,eif2
M2

.

6 An Empirical Application

In this section, we illustrate semiparametric estimation of PSEs by analyzing the causal pathways

through which higher education affects political participation. Prior research suggests that college

attendance has a substantial positive effect on political participation in the United States (e.g.,

Dee 2004; Milligan et al. 2004). Yet, the mechanisms underlying this causal link remain unclear.

The effect of college on political participation may operate through the development of civic and

political interest (e.g., Hillygus 2005), through an increase in economic status (e.g., Kingston et al.

2003), or through other pathways such as social and occupational networks (e.g., Rolfe 2012). To

examine these direct and indirect effects, we consider a causal structure akin to the top panel of

Figure 1, where A denotes college attendance, Y denotes political participation, and M1 and M2

denote two causally ordered mediators that reflect (a) economic status, and (b) civic and political

interest, respectively.

In this model, economic status is allowed to affect civic and political interest but not vice

versa, which we consider to be a reasonable approximation to reality. Nonetheless, the conditional

independence assumption (Assumption 2) is still strong in this context, as it rules out unobserved

confounding for any of the pairwise relationships between college attendance, economic status, civic

and political interest, and political participation. Thus, the following analyses should be viewed

as an illustration of the proposed methodology rather than a definitive assessment of the PSEs of

interest.

We use data from n = 2, 969 individuals in the National Longitudinal Survey of Youth 1997

(NLSY97) who were age 15-17 in 1997 and had completed high school by age 20. The treatment

A is a binary indicator for whether the individual had attended a two-year or four-year college by

age 20. The outcome Y is a binary indicator for whether the individual voted in the 2010 general

election. We measure economic status (M1) using the respondent’s average annual earnings from

2006 to 2009. To gauge civic and political interest (M2), we use a set of variables that reflect the
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respondent’s interest in government and public affairs and involvement in volunteering, donation,

community group activities between 2007 and 2010. The overlap of the periods in which M1 and

M2 were measured is a limitation of this analysis, and it makes our earlier assumption that M2

does not affect M1 essential for identifying the direct and path-specific effects.

To minimize potential bias due to unobserved confounding, we include a rich set of pre-college

individual and contextual characteristics in the vector of pretreatment covariates X. They include

gender, race, ethnicity, age at 1997, parental education, parental income, parental assets, presence

of a father figure, co-residence with both biological parents, percentile score on the Armed Services

Vocational Aptitude Battery (ASVAB), high school GPA, an index of substance use (ranging from

0 to 3), an index of delinquency (ranging from 0 to 10), whether the respondent had any children

by age 18, college expectation among the respondent’s peers, and a number of school-level char-

acteristics. Descriptive statistics on these pre-college characteristics as well as the mediators and

the outcome are given in Supplementary Material G. Some components of X, M1, and M2 contain

a small fraction of missing values. They are imputed via a random-forest-based multiple imputa-

tion procedure (with ten imputed data sets). The standard errors of our parameter estimates are

adjusted using Rubin’s (1987) method.

Under Assumptions 1-3 given in Section 2.1, a set of PSEs reflecting the causal paths A → Y ,

A → M1 ⇝ Y , and A → M2 → Y are identified. For illustrative purposes, we focus on the

cumulative PSEs (cPSEs) defined in Section 4.4:

ATE = ψ001 − ψ000︸ ︷︷ ︸
A→Y

+ψ011 − ψ001︸ ︷︷ ︸
A→M2→Y

+ψ111 − ψ011︸ ︷︷ ︸
A→M1⇝Y

. (19)

Here, the first component is the NDE of college attendance, and the second and third components

reflect the amounts of treatment effect that are additionally mediated by civic/political interest

and economic status, respectively. Since M2 is multivariate, it would be difficult to model its

conditional distributions directly. We thus estimate the PSEs using the estimator θ̂eif2a1,a2,a. Each of

the nuisance functions is estimated using a super learner composed with Lasso and random forest.

For computational reasons, the feature matrix supplied to the super learner consists of only first-

order terms of the corresponding variables. As in our simulation study, we implement two versions

of this EIF-based estimator, one based on the original estimating equation (θ̂
np,eif2
a ), and one based
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Table 1: Estimates of total and path-specific effects of college attendance on voting.

Estimating equation (θ̂
np,eif2
a ) TMLE (θ̂

tmle,eif2
a )

Average total effect 0.152 (0.022) 0.156 (0.023)

Through economic status (A→M1 ⇝ Y ) 0.007 (0.005) 0.002 (0.005)

Through civic/political interest (A→M2 → Y ) 0.042 (0.008) 0.049 (0.008)

Direct effect (A→ Y ) 0.103 (0.021) 0.105 (0.021)

Note: Numbers in parentheses are estimated standard errors, which are constructed using sample
variances of the estimated efficient influence functions and adjusted for multiple imputation via
Rubin’s (1987) method.

on the method of TMLE (θ̂
tmle,eif2
a ). Five-fold cross-fitting is used to obtain the final estimates.

The results are shown in Table 1. We can see that the two estimators yield similar estimates

of the total and path-specific effects. By θ̂
np,eif2
a , for example, the estimated total effect of college

attendance on voting is 0.152, meaning that, on average, college attendance increases the likelihood

of voting in 2010 by about 15 percentage points. The estimated PSE viaM2 is 0.042, suggesting that

a small fraction of the college effect operates through the development of civic and political interest.

By contrast, the estimated PSE via economic status is substantively negligible and statistically

insignificant. A large portion of the college effect appears to be “direct,” i.e., operating neither

through increased economic status nor through increased civic and political interest.

7 Concluding Remarks

By considering the general case of K(≥ 1) causally ordered mediators, this paper offers several new

insights into the identification and estimation of PSEs. First, under the assumptions associated

with Pearl’s NPSEM with mutually independent errors, we have defined a set of PSEs as contrasts

between the expectations of 2K+1 potential outcomes, which are identified via what we call the

generalized mediation functional (GMF). Second, building on its efficient influence function, we

have developed two K + 2-robust and semiparametric efficient estimators for the GMF. By virtue

of their multiple robustness, these estimators are well suited to the use of data-adaptive methods

for estimating their nuisance functions. For such cases, we have established the rate conditions

required of the nuisance functions for consistency and semiparametric efficiency.
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As we have seen, our proposed methodology is general in that the GMF encompasses a variety of

causal estimands such as the NDE, NIE/TIE, nPSE, cPSE. Nonetheless, it does not accommodate

PSEs that are not identified under Pearl’s NPSEM, some of which may be scientifically important.

For example, social and biomedical scientists are often interested in testing hypotheses about “serial

mediation,” i.e., the degree to which the effect of a treatment operates through multiple mediators

sequentially, such as that reflected in the causal path A→M1 →M2 → Y (e.g., Jones et al. 2015).

Given that the corresponding PSEs are not nonparametrically identified under Pearl’s NPSEM,

previous research has proposed strategies that involve either additional assumptions (Albert and

Nelson 2011) or alternative estimands (Lin and VanderWeele 2017). We consider semiparametric

estimation and inference for these alternative approaches a promising direction for future research.
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Supplementary Materials

A Proof of Theorem 1

Assumption 2* implies that for any k ∈ {2, . . .K} and any j ∈ {1, . . . k − 1},

(
Mk(ak,mk−1), . . .MK(aK ,mK−1), Y (aK+1,mK)

)
⊥⊥Mk−j(ak−j ,m

∗
k−j−1)|X,A,Mk−j−1

⇒
(
Mk(ak,mk−1), . . .MK(aK ,mK−1), Y (aK+1,mK)

)
⊥⊥Mk−j(ak−j ,m

∗
k−j−1)|X,A = ak−j ,Mk−j−1 = m∗

k−j−1

⇒
(
Mk(ak,mk−1), . . .MK(aK ,mK−1), Y (aK+1,mK)

)
⊥⊥Mk−j |X,A = ak−j ,Mk−j−1 = m∗

k−j−1

⇒
(
Mk(ak,mk−1), . . .MK(aK ,mK−1), Y (aK+1,mK)

)
⊥⊥Mk−j |X,A,Mk−j−1. (20)

Setting m∗
k−1 = mk−1, Assumption 2* also implies that for any k ∈ [K],

(
Mk+1(ak+1,mk), . . .MK(aK ,mK−1), Y (aK+1,mK)

)
⊥⊥Mk(ak,mk−1)|X,A,Mk−1. (21)

Now suppose that for some j ∈ {1, . . . k − 1},

(
Mk+1(ak+1,mk), . . .MK(aK ,mK−1), Y (aK+1,mK)

)
⊥⊥Mk(ak,mk−1)|X,A,Mk−j . (22)

By the contraction rule of conditional independence, the relationships (20) and (22) imply

(
Mk+1(ak+1,mk), . . .MK(aK ,mK−1), Y (aK+1,mK)

)
⊥⊥Mk(ak,mk−1)|X,A,Mk−j−1.

Hence, by the initial relationship (21) and mathematical induction, we have

(
Mk+1(ak+1,mk), . . .MK(aK ,mK−1), Y (aK+1,mK)

)
⊥⊥Mk(ak,mk−1)|X,A, ∀k ∈ [K]. (23)

In the meantime, because
(
Mk+1(ak+1,mk), . . .MK(aK ,mK−1), Y (aK+1,mK)

)
⊥⊥ A|X, we have

(by the contraction rule)

(
Mk+1(ak+1,mk), . . .MK(aK ,mK−1), Y (aK+1,mK)

)
⊥⊥

(
A,Mk(ak,mk−1)

)
|X, ∀k ∈ [K].

Thus the components in
(
A,M1(a1), . . .MK(aK ,mK−1), Y (aK+1,mK)

)
are mutually independent

given X. Therefore,

ψa = E[Y (aK+1,MK(aK))]

=

∫
x

∫
mK

E[Y (aK+1,mK)|X = x,A = aK+1,M1(a1) = m1, . . .MK(aK ,mK−1) = mK ]

( K∏
k=1

dPMk(ak,mk−1)|X,A,M1(a1),...Mk−1(ak−1,mk−2)(mk|x, aK+1,mk−1)
)
dPX(x)
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=

∫
x

∫
mK

E[Y (aK+1,mK)|X = x,A = aK+1]
( K∏
k=1

dPMk(ak,mk−1)|X(mk|x)
)
dPX(x)

=

∫
x

∫
mK

E[Y (aK+1,mK)|x, aK+1,MK = mK ]
( K∏
k=1

dPMk(ak,mk−1)|X,A,Mk−1
(mk|x, ak,mk−1)

)
dPX(x)

=

∫
x

∫
mK

E[Y |x, aK+1,mK ]
( K∏
k=1

dPMk|X,A,Mk−1
(mk|x, ak,mk−1)

)
dPX(x).

B Hybrid Estimators of θa1,a2,a

For notational brevity, let us use the following shorthands:

λj0(A|X)
∆
=

I(A = aj)

p(aj |X)

λj1(M1|X)
∆
=
p(M1|X, a1)
p(M1|X, aj)

λj2(M2|X,M1)
∆
=
p(M2|X, a2,M1)

p(M2|X, aj ,M1)
,

In addition, define λ0(A|X) = I(A = a)/p(a|X), λ1(M1|X) = p(M1|X, a1)/p(M1|X, a) and

λ2(M2|X,M1) = p(M2|X, a2,M1)/p(M2|X, a,M1). With the above notation, the iterated con-

ditional means µ1(X,M1), µ0(X), and θa1,a2,a can each be written in several different forms:

µ1(X,M1) =

E[µ2(X,M1,M2)|X, a2,M1]

E[λ2(M2|X,M1)Y |X, a,M1]

µ0(X) =


E[µ1(X,M1)|X, a1] =

E
[
E[µ2(X,M1,M2)|X, a2,M1]|X, a1

]
E
[
E[λ2(M2|X,M1)Y |X, a,M1]|X, a1

]
E[λ21(M1|X)µ2(X,M1,M2)|X, a2]

E[λ1(M1|X)λ2(X,M1,M2)Y |X, a]

θa1,a2,a =



E[µ0(X)] =



E
[
E
[
E[µ2(X,M1,M2)|X, a2,M1]|X, a1

]]
(RI-RI-RI)

E
[
E
[
E[λ2(M2|X,M1)Y |X, a,M1]|X, a1

]]
(W-RI-RI)

E
[
E[λ21(M1|X)µ2(X,M1,M2)|X, a2]

]
(RI-W-RI)

E
[
E[λ1(M1|X)λ2(X,M1,M2)Y |X, a]

]
(W-W-RI)

E[λ10(A|X)µ1(X,M1)] =

E
[
λ10(A|X)E[µ2(X,M1,M2)|X, a2,M1]

]
(RI-RI-W)

E
[
λ10(A|X)E[λ2(M2|X,M1)Y |X, a,M1]

]
(W-RI-W)

E[λ20(A|X)λ21(M1|X)µ2(X,M1,M2)] (RI-W-W)

E[λ0(A|X)λ1(M1|X)λ2(M2|X,M1)Y ] (W-W-W)
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The first set of equations suggest two different ways of estimating µ1(x,m1): (a) fit a model for

the conditional mean of µ̂2(X,M1,M2) given X, A, M1 and then set A = a2 for all units; (b) fit a

model for the conditional mean of λ̂2(M2|X,M1)Y given X, A, and M1 and then set A = a for all

units. Similarly, the second set of equations suggest four different ways of estimating µ0(x), and

the last set of equations point to eight different ways of estimating θa1,a2,a. Each of these eight

estimators corresponds to a unique combination of regression-imputation and weighting.

C Proof of Theorem 2

To show that equation (11) is the EIF of θa in Pnp, it suffices to show

∂θa(t)

∂t

∣∣∣∣
t=0

= E[φa(O)S0(O)], (24)

where S0(O) is the score function for any one-dimensional submodel Pt(O) evaluated at t = 0. We

first note that St(O) can be written as St(O) = St(X) + St(A|X) +
∑K

k=1 St(Mk|X,A,Mk−1) +

St(Y |X,A,MK), where St(u|v) = ∂ log pt(u|v)/∂t and pt(u|v) is the conditional probability den-

sity/mass function of U given V . Using equation (2) and the product rule, the left-hand side of

equation (24) can be written as

∂θa(t)

∂t

∣∣∣∣
t=0

=
∂
∫∫∫

ydPt(y|x, aK+1,mK)
[∏K

k=1 dPt(mk|x, ak,mk−1)
]
dPt(x)

∂t

∣∣∣∣
t=0

=

∫∫∫
yS0(x)dP0(y|x, aK+1,mK)

[ K∏
k=1

dP0(mk|x, ak,mk−1)
]
dP0(x)︸ ︷︷ ︸

=:ϕ0

+

K∑
k=1

∫∫∫
yS0(mk|x, ak,mk−1)dP0(y|x, aK+1,mK)

[ K∏
k=1

dP0(mk|x, ak,mk−1)
]
dP0(x)︸ ︷︷ ︸

=:ϕk

+

∫∫∫
yS0(y|x, aK+1,mK)dP0(y|x, aK+1,mK)

[ K∏
k=1

dP0(mk|x, ak,mk−1)
]
dP0(x)︸ ︷︷ ︸

=:ϕK+1

=

K+1∑
k=0

ϕk

where the second equality follows from the fact that ∂dPt(u|v)/∂t = St(u|v)dPt(u|v). Below, we
verify that ϕk = E[φk(O)S0(O)] for all k ∈ {0, . . .K + 1}, where φk(O) is defined in Theorem 2.

First,

E[φ0(O)S0(O)]

=E[
(
µ0(X)− θa

)
S0(O)]

41



=E[µ0(X)S0(O)]

=E
[
µ0(X)

(
S0(X) + S0(A|X) +

K∑
k=1

S0(Mk|X,A,Mk−1) + S0(Y |X,A,MK)
)]

=E
[
µ0(X)S0(X)

]
+ E

[
µ0(X)E

[
S0(A|X)|X

]︸ ︷︷ ︸
=0

]
+

K∑
k=1

E
[
µ0(X)E

[
S0(Mk|X,A,Mk−1)|X,A,Mk−1

]︸ ︷︷ ︸
=0

]
+ E

[
µ0(X)E

[
S0(Y |X,A,MK)|X,A,MK

]︸ ︷︷ ︸
=0

]
=

∫
µ0(x)S0(x)dP0(x)

=

∫∫∫
yS0(x)dP0(y|x, aK+1,mK)

[ K∏
k=1

dP0(mk|x, ak,mk−1)
]
dP0(x)

=ϕ0.

Second, for k ∈ [K],

E[φk(O)S0(O)]

=E
[
φk(O)

(
S0(X) + S0(A|X) +

K∑
j=1

S0(Mj |X,A,M j−1) + S0(Y |X,A,MK)
)]

=E
[
E
[
φk(O)

(
S0(X) + S0(A|X) +

k−1∑
j=1

S0(Mj |X,A,M j−1)
)
|X,A,Mk−1

]]
+ E

[
φk(O)S0(Mk|X,A,Mk−1)

)]
+

K∑
j=k+1

E
[
φk(O)E

[
S0(Mj |X,A,M j−1)|X,A,M j−1

]︸ ︷︷ ︸
=0

]
+ E

[
φk(O)E

[
S0(Y |X,A,MK)|X,A,MK

]︸ ︷︷ ︸
=0

]

=E
[(
S0(X) + S0(A|X) +

k−1∑
j=1

S0(Mj |X,A,M j−1)
)
E
[
φk(O)|X,A,Mk−1

]︸ ︷︷ ︸
=0

]
+ E

[
φk(O)S0(Mk|X,A,Mk−1)

)]
=E

[
φk(O)S0(Mk|X,A,Mk−1)

)]
=E

[
E
[I(A = ak)

p(ak|X)

( k−1∏
j=1

p(Mj |X, aj ,M j−1)

p(Mj |X, ak,M j−1)

)(
µk(X,Mk)− µk−1(X,Mk−1)

)
S0(Mk|X,A,Mk−1)

)∣∣X,A,Mk−1

]]

=E
[I(A = ak)

p(ak|X)

( k−1∏
j=1

p(Mj |X, aj ,M j−1)

p(Mj |X, ak,M j−1)

)
µk(X,Mk)S0(Mk|X,A,Mk−1)

)]
=EXE

[( k−1∏
j=1

p(Mj |X, aj ,M j−1)

p(Mj |X, ak,M j−1)

)
µk(X,Mk)S0(Mk|X,A,Mk−1)

)
|X,A = ak

]
=

∫∫∫
S0(mk|x, ak,mk−1)

(∫
y

∫
mK

ydP0(y|x, aK+1,mK)
K∏

j=k+1

dP0(mj |x, aj ,mj−1)
)

42



·dP0(mk|x, ak,mk−1)
( k−1∏

j=1

p(mj |x, aj ,mj−1)

p(mj |x, ak,mj−1)

)( k−1∏
j=1

dP0(mj |x, ak,mj−1)
)
dP0(x)

=

∫∫∫
yS0(mk|x, ak,mk−1)dP0(y|x, aK+1,mK)

( K∏
j=1

dP0(mj |x, aj ,mj−1)
)
dP0(x)

=ϕk,

where the fourth equality is due to the fact that

E
[
φk(O)|X,A,Mk−1

]
=E

[I(A = ak)

p(ak|X)

( k−1∏
j=1

p(Mj |X, aj ,M j−1)

p(Mj |X, ak,M j−1)

)(
µk(X,Mk)− µk−1(X,Mk−1)

)
|X,A,Mk−1

]
=E

[( k−1∏
j=1

p(Mj |X, aj ,M j−1)

p(Mj |X, ak,M j−1)

)(
µk(X,Mk)− µk−1(X,Mk−1)

)
|X,A = ak,Mk−1

]
=
( k−1∏

j=1

p(Mj |X, aj ,M j−1)

p(Mj |X, ak,M j−1)

)
E
[
µk(X,Mk)− µk−1(X,Mk−1)|X,A = ak,Mk−1

]︸ ︷︷ ︸
=0

=0.

Finally,

E[φK+1(O)S0(O)]

=E
[
φK+1(O)

(
S0(X) + S0(A|X) +

K∑
j=1

S0(Mj |X,A,M j−1) + S0(Y |X,A,MK)
)]

=E
[
E
[
φK+1(O)

(
S0(X) + S0(A|X) +

K∑
j=1

S0(Mj |X,A,M j−1)
)
|X,A,MK

]]
+ E

[
φK+1(O)S0(Y |X,A,MK)

)]
=E

[(
S0(X) + S0(A|X) +

K∑
j=1

S0(Mj |X,A,M j−1)
)
E
[
φK+1(O)|X,A,MK

]︸ ︷︷ ︸
=0

]
+ E

[
φK+1(O)S0(Y |X,A,MK)

)]
=E

[
φK+1(O)S0(Y |X,A,MK)

)]
=E

[
E
[I(A = aK+1)

p(aK+1|X)

( K∏
j=1

p(Mj |X, aj ,M j−1)

p(Mj |X, aK+1,M j−1)

)(
Y − µK(X,MK)

)
S0(Y |X,A,MK)

)∣∣X,A,MK

]]

=E
[
E
[I(A = aK+1)

p(aK+1|X)

( K∏
j=1

p(Mj |X, aj ,M j−1)

p(Mj |X, aK+1,M j−1)

)
Y S0(Y |X,A,MK)

)∣∣X,A,MK

]]

=E
[
E
[I(A = aK+1)

p(aK+1|X)

( K∏
j=1

p(Mj |X, aj ,M j−1)

p(Mj |X, aK+1,M j−1)

)
Y S0(Y |X,A,MK)

)∣∣X,A]]
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=EX

[
E
[( K∏

j=1

p(Mj |X, aj ,M j−1)

p(Mj |X, aK+1,M j−1)

)
Y S0(Y |X,A,MK)

)∣∣X,A = aK+1

]]

=

∫∫∫
yS0(y|x, aK+1,mK)dP0(y|x, aK+1,mK)

( K∏
j=1

p(mj |x, aj ,mj−1)

p(mj |x, aK+1,mj−1)

)( K∏
j=1

dP0(mj |x, aK+1,mj−1)
)
dP0(x)

=

∫∫∫
yS0(y|x, aK+1,mK)dP0(y|x, aK+1,mK)

( K∏
j=1

dP0(mj |x, aj ,mj−1)
)
dP0(x)

=ϕK+1,

where the third equality is due to the fact that

E
[
φK+1(O)|X,A,MK

]
=E

[I(A = aK+1)

p(aK+1|X)

( K∏
j=1

p(Mj |X, aj ,M j−1)

p(Mj |X, aK+1,M j−1)

)(
Y − µK(X,MK)

)
|X,A,MK

]
=
p(aK+1|X,MK)

p(aK+1|X)

( K∏
j=1

p(Mj |X, aj ,M j−1)

p(Mj |X, aK+1,M j−1)

)
E
[
Y − µK(X,MK)|X,A = aK+1,MK

]︸ ︷︷ ︸
=0

=0.

Since ϕk = E[φk(O)S0(O)] for all k ∈ {0, . . .K + 1}, we have

∂θa(t)

∂t

∣∣∣∣
t=0

=
K+1∑
k=0

ϕk = E
[(K+1∑

k=0

φk(O)
)
S0(O)

]
= E

[
φa(O)S0(O)

]
.

D Proof of Theorems 3 and 4

D.1 Parametric Estimation of Nuisance Parameters

In this subsection, we prove the multiple robustness of θ̂eif1a and θ̂eif2a for the case where parametric

models are used to estimate the corresponding nuisance functions. The local efficiency of these

estimators is implied by our proof in Section D.2, which considers the case where data-adaptive

methods and cross-fitting are used to estimate the nuisance functions.

Let us start with θ̂eif1a = Pn[m1(O; η̂1)], where m1(O; η̂1) denotes the quantity inside Pn[·] in
equation (12), and η̂1 = (π̂0, f̂1, . . . f̂K , µ̂K). In the meantime, let η1 = (π0, f1, . . . fK , µK) denote

the truth and η∗1 = (π∗0, f
∗
1 , . . . f

∗
K , µ

∗
K) the probability limit of η̂1. A first-order Taylor expansion

of θ̂eif1a yields

θ̂eif1a = Pn

[
m1(O; η∗1)

]
+ op(1).

Hence it suffices to show E[m1(O; η∗1)] = θa whenever all but one elements in η∗1 equal the truth.

Consistency follows from the law of large numbers. By treating θ̂eif1a = Pn[m1(O; η̂1)] as a two-
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stage M-estimator, asymptotic normality follows from standard regularity conditions for estimating

equations (e.g., Newey and McFadden 1994, p. 2148).

First, if η∗1 = (π∗0, f1, . . . fK , µK), the MLE of µk (0 ≤ k ≤ K − 1) will also be consistent. Thus,

E[m1(O; η∗1)]

=E
[I(A = aK+1)

π∗0(aK+1|X)

( K∏
j=1

fj(Mj |X, aj ,M j−1)

fj(Mj |X, aK+1,M j−1)

)(
Y − µK(X,MK)

)
+

K∑
k=1

I(A = ak)

π∗0(ak|X)

( k−1∏
j=1

fj(Mj |X, aj ,M j−1)

fj(Mj |X, ak,M j−1)

)(
µk(X,Mk)− µk−1(X,Mk−1)

)
+ µ0(X)

]
=E

[π0(aK+1|X,MK)

π∗0(aK+1|X)

( K∏
j=1

fj(Mj |X, aj ,M j−1)

fj(Mj |X, aK+1,M j−1)

)
E
[
Y − µK(X,MK)

∣∣X,A = aK+1,MK

]︸ ︷︷ ︸
=0

+
K∑
k=1

π0(ak|X,Mk−1)

π∗0(ak|X)

( k−1∏
j=1

fj(Mj |X, aj ,M j−1)

fj(Mj |X, ak,M j−1)

)
E
[
µk(X,Mk)− µk−1(X,Mk−1)

∣∣X,A = ak,Mk−1

]︸ ︷︷ ︸
=0

+ µ0(X)
]

=E[µ0(X)]

=θa.

Second, if η∗1 = (π0, f1, . . . fk′−1, f
∗
k′ , fk′+1, . . . fK , µK), the MLE of µk for any k ≥ k′ will also be

consistent. Thus,

E[m1(O; η∗1)]

=E
[I(A = aK+1)

π0(aK+1|X)

( K∏
j=1

f∗j (Mj |X, aj ,M j−1)

f∗j (Mj |X, aK+1,M j−1)

)(
Y − µK(X,MK)

)
+

K∑
k=k′+1

I(A = ak)

π0(ak|X)

( k−1∏
j=1

f∗j (Mj |X, aj ,M j−1)

f∗j (Mj |X, ak,M j−1)

)(
µk(X,Mk)− µk−1(X,Mk−1)

)
+

I(A = ak′)

π0(ak′ |X)

( k′−1∏
j=1

fj(Mj |X, aj ,M j−1)

fj(Mj |X, ak′ ,M j−1)

)(
µk′(X,Mk′)− µ∗k′−1(X,Mk′−1)

)
+

k′−1∑
k=1

I(A = ak)

π0(ak|X)

( k−1∏
j=1

fj(Mj |X, aj ,M j−1)

fj(Mj |X, ak,M j−1)

)(
µ∗k(X,Mk)− µ∗k−1(X,Mk−1)

)
+ µ∗0(X)

]
=E

[π0(aK+1|X,MK)

π0(aK+1|X)

( K∏
j=1

f∗j (Mj |X, aj ,M j−1)

f∗j (Mj |X, aK+1,M j−1)

)
E
[
Y − µK(X,MK)

∣∣X,A = aK+1,MK

]︸ ︷︷ ︸
=0
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+
K∑

k=k′+1

π0(ak|X,Mk−1)

π0(ak|X)

( k−1∏
j=1

f∗j (Mj |X, aj ,M j−1)

f∗j (Mj |X, ak,M j−1)

)
E
[
µk(X,Mk)− µk−1(X,Mk−1)

∣∣X,A = ak,Mk−1

]︸ ︷︷ ︸
=0

+
I(A = ak′)

π0(ak′ |X)

( k′−1∏
j=1

fj(Mj |X, aj ,M j−1)

fj(Mj |X, ak′ ,M j−1)

)
µk′(X,Mk′)

+
k′−1∑
k=1

µ∗k(X,Mk)E
[(I(A = ak)

π0(ak|X)

k−1∏
j=1

fj(Mj |X, aj ,M j−1)

fj(Mj |X, ak,M j−1)
− I(A = ak+1)

π0(ak+1|X)

k∏
j=1

fj(Mj |X, aj ,M j−1)

fj(Mj |X, ak+1,M j−1)

)
|X,Mk

]
+ µ∗0(X)E

[
1− I(A = a1)

π0(a1|X)
|X

]
︸ ︷︷ ︸

=0

]

=E
[I(A = ak′)

π0(ak′ |X)

( k′−1∏
j=1

fj(Mj |X, aj ,M j−1)

fj(Mj |X, ak′ ,M j−1)

)
µk′(X,Mk′)

]

+ E
[ k′−1∑

k=1

µ∗k(X,Mk)
(πk(ak|X,Mk)

π0(ak|X)

k−1∏
j=1

fj(Mj |X, aj ,M j−1)

fj(Mj |X, ak,M j−1)
− πk(ak+1|X,Mk)

π0(ak+1|X)

k∏
j=1

fj(Mj |X, aj ,M j−1)

fj(Mj |X, ak+1,M j−1)

)]

=E
[I(A = ak′)

π0(ak′ |X)

( k′−1∏
j=1

fj(Mj |X, aj ,M j−1)

fj(Mj |X, ak′ ,M j−1)

)
µk′(X,Mk′)

]
︸ ︷︷ ︸

=θa

+ E
[ k′−1∑

k=1

µ∗k(X,Mk)
( k∏

j=1

πj(aj |X,M j)

πj−1(aj |X,M j−1)
−

k∏
j=1

πj(aj |X,M j)

πj−1(aj |X,M j−1)

)
︸ ︷︷ ︸

=0

]

=θa,

where the penultimate equality is due to the fact that

πk(ak|X,Mk)

π0(ak|X)

k−1∏
j=1

fj(Mj |X, aj ,M j−1)

fj(Mj |X, ak,M j−1)

=
πk(ak|X,Mk)

π0(ak|X)

k−1∏
j=1

(πj(aj |X,M j)

πj(ak|X,M j)
· πj−1(ak|X,M j−1)

πj−1(aj |X,M j−1)

)

=
πk(ak|X,Mk)

π0(ak|X)

k−1∏
j=1

(πj−1(ak|X,M j−1)

πj(ak|X,M j)

) k−1∏
j=1

( πj(aj |X,M j)

πj−1(aj |X,M j−1)

)

=
πk(ak|X,Mk)

πk−1(ak|X,Mk−1)

k−1∏
j=1

( πj(aj |X,M j)

πj−1(aj |X,M j−1)

)

=
k∏

j=1

πj(aj |X,M j)

πj−1(aj |X,M j−1)
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and that

πk(ak+1|X,Mk)

π0(ak+1|X)

k∏
j=1

fj(Mj |X, aj ,M j−1)

fj(Mj |X, ak+1,M j−1)

=
πk(ak+1|X,Mk)

π0(ak+1|X)

k∏
j=1

( πj(aj |X,M j)

πj(ak+1|X,M j)
· πj−1(ak+1|X,M j−1)

πj−1(aj |X,M j−1)

)

=
πk(ak+1|X,Mk)

π0(ak+1|X)

k∏
j=1

(πj−1(ak+1|X,M j−1)

πj(ak+1|X,M j)

) k∏
j=1

( πj(aj |X,M j)

πj−1(aj |X,M j−1)

)

=
k∏

j=1

πj(aj |X,M j)

πj−1(aj |X,M j−1)
.

Finally, if η∗1 = (π0, f1, . . . fK , µ
∗
K), we have

E[m1(O; η∗1)]

=E
[I(A = aK+1)

π0(aK+1|X)

( K∏
j=1

fj(Mj |X, aj ,M j−1)

fj(Mj |X, aK+1,M j−1)

)(
Y − µ∗K(X,MK)

)
+

K∑
k=1

I(A = ak)

π0(ak|X)

( k∏
j=1

fj(Mj |X, aj ,M j−1)

fj(Mj |X, ak,M j−1)

)(
µ∗k(X,Mk)− µ∗k−1(X,Mk−1)

)
+ µ∗0(X)

]
=E

[I(A = aK+1)

π0(aK+1|X)

( K∏
j=1

fj(Mj |X, aj ,M j−1)

fj(Mj |X, aK+1,M j−1)

)
Y

+
K∑
k=1

µ∗k(X,Mk)E
[(I(A = ak)

π0(ak|X)

k−1∏
j=1

fj(Mj |X, aj ,M j−1)

fj(Mj |X, ak,M j−1)
− I(A = ak+1)

π0(ak+1|X)

k∏
j=1

fj(Mj |X, aj ,M j−1)

fj(Mj |X, ak+1,M j−1)

)
|X,Mk

]
︸ ︷︷ ︸

=0 (same as the previous case)

+ µ∗0(X)E
[
1− I(A = a1)

π0(a1|X)
||X

]
︸ ︷︷ ︸

=0

]

=E
[I(A = aK+1)

π0(aK+1|X)

( K∏
j=1

fj(Mj |X, aj ,M j−1)

fj(Mj |X, aK+1,M j−1)

)
Y
]

=θa.

Now consider θ̂eif2a = Pn[m2(O; η̂2)], where m2(O; η̂2) denotes the quantity inside Pn[·] in equation

(14), and η̂2 = (π̂0, . . . π̂K , µ̂0, . . . µ̂K). In the meantime, let η2 = (π0, . . . πK , µ0, . . . µK) denote

the truth and η∗2 = (π∗0, . . . π
∗
K , µ

∗
0, . . . µ

∗
K) denote the probability limit of η̂2. A first-order Taylor

expansion of θ̂eif2a yields

θ̂eif2a = Pn

[
m2(O; η∗2)

]
+ op(1).
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Hence it suffices to show E[m2(O; η∗2)] = θa if

η∗2 = (π0, . . . πk′−1, π
∗
k′ , . . . π

∗
K , µ

∗
0, . . . µ

∗
k′−1, µk′ , . . . µK)

for every k′ ∈ {0, . . .K + 1}.
First, if k′ = 0, then all the outcome models are correctly specified, which implies

E[m2(O; η∗2)]

=E
[I(A = aK+1)

π∗0(a1|X)

( K∏
j=1

π∗j (aj |X,M j)

π∗j (aj+1|X,M j)

)(
Y − µK(X,MK)

)
+

K∑
k=1

I(A = ak)

π∗0(a1|X)

( k−1∏
j=1

π∗j (aj |X,M j)

π∗j (aj+1|X,M j)

)(
µk(X,Mk)− µk−1(X,Mk−1)

)
+ µ0(X)

]
=E

[I(A = aK+1)

π∗0(a1|X)

( K∏
j=1

π∗j (aj |X,M j)

π∗j (aj+1|X,M j)

)
E
[
Y − µK(X,MK)

∣∣X,A = aK+1,MK

]︸ ︷︷ ︸
=0

+

K∑
k=1

I(A = ak)

π∗0(a1|X)

( k−1∏
j=1

π∗j (aj |X,M j)

π∗j (aj+1|X,M j)

)
E
[
µk(X,Mk)− µk−1(X,Mk−1)

∣∣X,A = ak,Mk−1

]︸ ︷︷ ︸
=0

+ µ0(X)
]

=E[µ0(X)]

=θa.

Second, if k′ ∈ {1, . . .K − 1}, we have

E[m2(O; η∗2)]

=E
[I(A = aK+1)

π∗0(a1|X)

( K∏
j=1

π∗j (aj |X,M j)

π∗j (aj+1|X,M j)

)(
Y − µK(X,MK)

)
+

K∑
k=k′+1

I(A = ak)

π∗0(a1|X)

( k−1∏
j=1

π∗j (aj |X,M j)

π∗j (aj+1|X,M j)

)(
µk(X,Mk)− µk−1(X,Mk−1)

)
+

I(A = ak′)

π0(a1|X)

( k′−1∏
j=1

πj(aj |X,M j)

πj(aj+1|X,M j)

)(
µk′(X,Mk′)− µ∗k′−1(X,Mk′−1)

)
+

k′−1∑
k=1

I(A = ak)

π0(a1|X)

( k−1∏
j=1

πj(aj |X,M j)

πj(aj+1|X,M j)

)(
µ∗k(X,Mk)− µ∗k−1(X,Mk−1)

)
+ µ∗0(X)

]
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=E
[I(A = aK+1)

π∗0(a1|X)

( K∏
j=1

π∗j (aj |X,M j)

π∗j (aj+1|X,M j)

)
E
[
Y − µK(X,MK)

∣∣X,A = aK+1,MK

]︸ ︷︷ ︸
=0

+

K∑
k=k′+1

I(A = ak)

π∗0(a1|X)

( k−1∏
j=1

π∗j (aj |X,M j)

π∗j (aj+1|X,M j)

)
E
[
µk(X,Mk)− µk−1(X,Mk−1)

∣∣X,A = ak,Mk−1

]︸ ︷︷ ︸
=0

+
I(A = ak′)

π0(a1|X)

( k′−1∏
j=1

πj(aj |X,M j)

πj(aj+1|X,M j)

)
µk′(X,Mk′)

+

k′−1∑
k=1

µ∗k(X,Mk)E
[I(A = ak)

π0(a1|X)

( k−1∏
j=1

πj(aj |X,M j)

πj(aj+1|X,M j)

)
− I(A = ak+1)

π0(a1|X)

( k∏
j=1

πj(aj |X,M j)

πj(aj+1|X,M j)

)
|X,Mk

]
+ µ∗0(X)E

[
1− I(A = a1)

π0(a1|X)
|X

]
︸ ︷︷ ︸

=0

]

=E
[I(A = ak′)

π0(a1|X)

( k′−1∏
j=1

πj(aj |X,M j)

πj(aj+1|X,M j)

)
µk′(X,Mk′)

]

+ E
[ k′−1∑

k=1

µ∗k(X,Mk)
(πk(ak|X,Mk)

π0(a1|X)

k−1∏
j=1

πj(aj |X,M j)

πj(aj+1|X,M j)
− πk(ak+1|X,Mk)

π0(a1|X)

k∏
j=1

πj(aj |X,M j)

πj(aj+1|X,M j)

)]

=E
[I(A = ak′)

π0(a1|X)

( k′−1∏
j=1

πj(aj |X,M j)

πj(aj+1|X,M j)

)
µk′(X,Mk′)

]
︸ ︷︷ ︸

=θa

+ E
[ k′−1∑

k=1

µ∗k(X,Mk)
( k∏

j=1

πj(aj |X,M j)

πj−1(aj |X,M j−1)
−

k∏
j=1

πj(aj |X,M j)

πj−1(aj |X,M j−1)

)
︸ ︷︷ ︸

=0

]

=θa.

Finally, if k′ = K, we have

E[m2(O; η∗2)]

=E
[I(A = aK+1)

π0(a1|X)

( K∏
j=1

πj(aj |X,M j)

πj(aj+1|X,M j)

)(
Y − µ∗K(X,MK)

)
+

K∑
k=1

I(A = ak)

π0(a1|X)

( k−1∏
j=1

πj(aj |X,M j)

πj(aj+1|X,M j)

)(
µ∗k(X,Mk)− µ∗k−1(X,Mk−1)

)
+ µ∗0(X)

]
=E

[I(A = aK+1)

π0(a1|X)

( K∏
j=1

πj(aj |X,M j)

πj(aj+1|X,M j)

)
Y
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+
K∑
k=1

µ∗k(X,Mk)E
[(I(A = ak)

π0(a1|X)

k−1∏
j=1

πj(aj |X,M j)

πj(aj+1|X,M j)
− I(A = ak+1)

π0(a1|X)

( k+1∏
j=1

πj(aj |X,M j)

πj(aj+1|X,M j)

)
|X,Mk

]
︸ ︷︷ ︸

=0 (same as the previous case)

+ µ∗0(X)E
[
1− I(A = a1)

π0(a1|X)
||X

]
︸ ︷︷ ︸

=0

]

=E
[I(A = aK+1)

π0(a1|X)

( K∏
j=1

πj(aj |X,M j)

πj(aj+1|X,M j)

)
Y
]

=θa.

D.2 Data-Adaptive Estimation of Nuisance Parameters

Let us start with θ̂eif2a = Pn[m2(O; η̂2)]. Let η̃2 = (π̂0, . . . π̂K , µ0, . . . µK) denote a combination of

estimated treatment models π̂j and true outcome models µj (0 ≤ j ≤ K + 1), and let Pg =
∫
gdP

denote the expectation of a function g of observed data O at the true model P . As before, denote

by η∗2 the probability limit of η̂2. θ̂
eif2
a can now be written as

θ̂eif2a − θa

=Pn[m2(O; η̂2)]− P [m2(O; η2)]

=(Pn − P )m2(O; η∗2) + P [m2(O; η̂2)−m2(O; η2)] + (Pn − P )[m2(O; η̂2)−m2(O; η∗2)] (25)

=(Pn − P ) [m2(O; η∗2)− θa]︸ ︷︷ ︸
∆
=φa(O;η∗2)

+P [m2(O; η̂2)−m2(O; η2)] + (Pn − P )[m2(O; η̂2)−m2(O; η∗2)] (26)

=Pnφa(O; η∗2)− Pφa(O; η∗2) + P [m2(O; η̂2)−m2(O; η2)]︸ ︷︷ ︸
∆
=R2(η̂2)

+(Pn − P )[m2(O; η̂2)−m2(O; η∗2)] (27)

In equation (27), the last term is an empirical process term that will be op(n
−1/2) either when

parametric models are used to estimate the nuisance functions or when cross-fitting is used to

induce independence between η̂2 and O (Chernozhukov et al. 2018). Thus it remains to analyze

the first three terms: Pnφa(O; η∗2), Pφa(O; η∗2), and R2(η̂2) = P [m2(O; η̂2)−m2(O; η2)].

First, from our proofs in Section D.1, we know that when η∗2 =

(π0, . . . πk′−1, π
∗
k′ , . . . π

∗
K , µ

∗
0, . . . µ

∗
k′−1, µk′ , . . . µK) for some k′, i.e., when the first k′ treat-

ment models and the last K − k′ + 1 outcome models are consistently estimated, Pφa(O; η∗2) = 0.

Because in this case, Pnφa(O; η∗2)
p→ Pφa(O; η∗2) = 0 by the law of large numbers, it suffices to

show R2(η̂2) = op(1) to establish the consistency of θ̂eif2a . Second, in the case where η∗2 = η2, i.e.,

when all of the 2(K + 1) nuisance functions are consistently estimated, the first two terms in

equation (27) reduces to Pnφa(O; η2), i.e., the sample average of the efficient influence function,

which has an asymptotic variance of E[
(
φa(O)

)2
]. Thus, in this case, θ̂eif2a will be asymptotically

normal and semiparametric efficient as long as R2(η̂2) = op(n
−1/2).
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To analyze R2(η̂2), we first observe that

P [m2(O; η̃2)] = P
[I(A = aK+1)

π̂0(a1|X)

( K∏
j=1

π̂j(aj |X,M j)

π̂j(aj+1|X,M j)

)(
Y − µK(X,MK)

)
+

K∑
k=1

I(A = ak)

π̂0(a1|X)

( k−1∏
j=1

π̂j(aj |X,M j)

π̂j(aj+1|X,M j)

)(
µk(X,Mk)− µk−1(X,Mk−1)

)
+ µ0(X)

]
= P

[π0(aK+1|X,MK)

π̂0(a1|X)

( K∏
j=1

π̂j(aj |X,M j)

π̂j(aj+1|X,M j)

)
E
[
Y − µK(X,MK)

∣∣X,A = aK+1,MK

]︸ ︷︷ ︸
=0

+

K∑
k=1

π0(ak|X,Mk−1)

π̂0(a1|X)

( k−1∏
j=1

π̂j(aj |X,M j)

π̂j(aj+1|X,M j)

)
E
[
µk(X,Mk)− µk−1(X,Mk−1)

∣∣X,A = ak,Mk−1

]︸ ︷︷ ︸
=0

+ µ0(X)
]

= P [µ0(X)]

= P [m2(O; η2)].

Then, by substituting m2(O; η̃2) for m2(O; η2) in R2(η̂2), rearranging terms, and applying the

Cauchy-Schwartz inequality, we obtain

R2(η̂2) = P [m2(O; η̂2)−m2(O; η̃2)]

= P
[(π̂0(a1|X)− π0(a1|X)

)(
µ̂0(X)− µ0(X)

)
π̂0(a1|X)

]
+

K∑
k=1

P
[( k∏

j=1

π̂j(aj |X,M j)

π̂j(aj+1|X,M j)

)(π̂k(ak+1|X,Mk)− πk(ak+1|X,Mk)
)(
µ̂k(X,Mk)− µk(X,Mk)

)
π̂0(a1|X)

]

−
K∑
k=1

P
[( k−1∏

j=1

π̂j(aj |X,M j)

π̂j(aj+1|X,M j)

)(π̂k(ak|X,Mk)− πk(ak|X,Mk)
)(
µ̂k(X,Mk)− µk(X,Mk)

)
π̂0(a1|X)

]

=

K∑
k=0

Op

(
∥π̂k(ak+1|X,Mk)− πk(ak+1|X,Mk)∥ · ∥µ̂k(X,Mk)− µk(X,Mk)∥

)
+

K∑
k=1

Op

(
∥π̂k(ak|X,Mk)− πk(ak|X,Mk)∥ · ∥µ̂k(X,Mk)− µk(X,Mk)∥

)
(28)

where ∥g∥ = (
∫
gT gdP )1/2. The last equality uses the positivity assumption that π̂k(a|X,Mk) is

bounded away from zero for all k and a. Thus, assuming that the empirical process term is on the

order of op(n
−1/2) (e.g., via cross-fitting), we can write equation (27) as

θ̂eif2a − θa = Pnφa(O; η∗2)− Pφa(O; η∗2) +
K∑
k=0

Op(∥π̂k − πk∥) ·Op(∥µ̂k − µk∥) + op(n
−1/2),
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where πk = (πk(0|X,Mk), πk(1|X,Mk))
T . Clearly, when there exists a k′ such that the first k′

treatment models and the lastK−k′+1 outcome models are consistently estimated,
∑K

k=0Op(∥π̂k−
πk∥) ·Op(∥µ̂k − µk∥) = op(1). In this case, since Pnφa(O; η∗2)− Pφa(O; η∗2) = Pnφa(O; η∗2) = op(1),

θ̂eif2a is consistent. When η∗2 = η2 and
∑K

k=0Op(∥π̂k − πk∥) · Op(∥µ̂k − µk∥) = op(n
−1/2), we have

θ̂eif2a − θa = Pnφa(O; η2) + op(n
−1/2), implying that θ̂eif2a is CAN and semiparametric efficient. If

the nuisance functions are estimated via parametric models and their parameter estimates are all
√
n-consistent,

∑K
k=0Op(∥π̂k − πk∥) · Op(∥µ̂k − µk∥) =

∑K
k=0Op(n

−1/2) · Op(n
−1/2) = op(n

−1/2),

hence the second part of Theorem 3.

Now let us consider θ̂eif1a . In a similar vein, we can write θ̂eif1a − θa as

θ̂eif1a − θa = Pnφa(O; η∗1)− Pφa(O; η∗1) +

K∑
k=0

Op(∥π̌k − πk∥) ·Op(∥µ̌k − µk∥)︸ ︷︷ ︸
∆
=R2(η̂1)

+op(n
−1/2),

where π̌k and µ̌k are estimates of πk and µk constructed from η̂1 = {π̂0, f̂1, . . . f̂K , µ̂K}. First,

from our proofs in Section D.1, we know that when K + 1 of the K + 2 nuisance functions in η1

are consistently estimated, Pφa(O; η∗1) = 0. Since in this case Pnφa(O; η∗1)
p→ Pφa(O; η∗1) = 0,

it suffices to show R2(η̂1) = op(1) to establish the consistency of θ̂eif1a . Second, in the case where

η∗1 = η1, i.e., when all of the K+2 nuisance functions are consistently estimated, the first two terms

in equation (27) reduces to Pnφa(O; η1), i.e., the sample average of the efficient influence function,

which has an asymptotic variance of E[
(
φa(O)

)2
]. Thus, in this case, θ̂eif1a will be asymptotically

normal and semiparametric efficient as long as R2(η̂1) = op(n
−1/2).

We first note that for any a, π̌k(a|X,Mk)− πk(a|X,Mk) can be decomposed as

π̌k(a|X,Mk)− πk(a|X,Mk)

=
p̂(Mk|X, a)π̂0(a|X)∑
a′ p̂(Mk|X, a′)π̂0(a′|X)

− p(Mk|X, a)π0(a|X)∑
a′ p(Mk|X, a′)π0(a′|X)

=
p̂(Mk|X, a)

(
π̂0(a|X)− π0(a|X)

)∑
a′ p̂(Mk|X, a′)π̂0(a′|X)︸ ︷︷ ︸

∆
=∆1

π

+

(
p̂(Mk|X, a)− p(Mk|X, a)

)
π0(a|X)∑

a′ p̂(Mk|X, a′)π̂0(a′|X)︸ ︷︷ ︸
∆
=∆2

π

+

p(Mk|X, a)π0(a|X)
∑

a′
(
p(Mk|X, a′)π0(a′|X)− p̂(Mk|X, a′)π̂0(a′|X)

)∑
a′ p̂(Mk|X, a′)π̂0(a′|X)

∑
a′ p(Mk|X, a′)π0(a′|X)︸ ︷︷ ︸

∆
=∆3

π

.

By the positivity assumption, we have ∥∆1
π∥ = Op(∥π̂0−π0∥). Using the factorization p(Mk|X, a) =∏k

j=1 p(Mj |X, a,M j−1), ∥∆2
π∥ can be expressed as

∥∆2
π∥ =

∥∥∥π0(a|X)
(∏k

j=1 f̂j(Mj |X, a,M j−1)−
∏k

j=1 fj(Mj |X, a,M j−1)
)∑

a′ p̂(Mk|X, a′)π̂0(a′|X)

∥∥∥
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=
∥∥∥ π0(a|X)∑

a′ p̂(Mk|X, a′)π̂0(a′|X)
·

k∑
l=1

( l−1∏
j=1

f̂j(Mj |X, a,M j−1)

k∏
j=l+1

fj(Mj |X, a,M j−1)
)(
f̂l(Ml|X, a,M l−1)− fl(Ml|X, a,M l−1)

)∥∥∥
=

k∑
l=1

Op(∥f̂l − fl∥),

where fl = (fl(Ml|X, 0,M l−1), fl(Ml|X, 1,M l−1))
T . By a similar logic, ∥∆3

π∥ can be written as

∥∆3
π∥ = Op(∥π̂0 − π0∥) +

k∑
l=1

Op(∥f̂l − fl∥).

In sum, we have

∥π̌k − πk∥ = Op(∥π̂0 − π0∥) +
k∑

l=1

Op(∥f̂l − fl∥). (29)

Now consider ∥µ̌k − µk∥. Using the fact that

µk(x,mk) =

∫
µK(x,mk)

( K∏
j=k+1

p(mj |x, aj ,mj−1)dmj

)
,

we can decompose µ̌k(x,mk)− µk(x,mk) into

µ̌k(x,mk)− µk(x,mk)

=

∫ (
µ̂K(x,mK)− µK(x,mK)

)( K∏
j=k+1

f̂j(mj |x, aj ,mj−1)dmj

)
+

K∑
l=k+1

∫
µK(x,mK)

((
f̂l(ml|x, al,ml−1)− fl(ml|x, al,ml−1)

)
dml

)
·

( l−1∏
j=k+1

f̂j(mj |x, aj ,mj−1)dmj

)( K∏
j=l+1

fj(mj |x, aj ,mj−1)dmj

)
=

∫ (
µ̂K(x,mK)− µK(x,mK)

) (∏K
j=k+1 f̂j(mj |x, aj ,mj−1)∏K
j=k+1 fj(mj |x,mj−1)

)
︸ ︷︷ ︸

∆
=g(x,mK)

( K∏
j=k+1

fj(mj |x,mj−1)dmj

)

+
K∑

l=k+1

∫ (
f̂l(ml|x, al,ml−1)− fl(ml|x, al,ml−1)

)
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µK(x,mK)
(∏l−1

j=k+1 f̂j(mj |x, aj ,mj−1)
)(∏K

j=l+1 fj(mj |x, aj ,mj−1)
)∏K

j=k+1 fj(mj |x,mj−1)︸ ︷︷ ︸
∆
=hl(x,mK)

( K∏
j=k+1

fj(mj |x,mj−1)dmj

)

Using the notation dP2 =
∏K

j=k+1 fj(mj |x,mj−1)dmj and dP1 = dPX(x)·
∏k

j=1 fj(mj |x,mj−1)dmj ,

we have

∥µ̌k − µk∥

=
∥∥∫ (µ̂K − µK)gdP2 +

K∑
l=k+1

∫
(f̂l − fl)hldP2

∥∥
P1

≤
∥∥∫ (µ̂K − µK)gdP2

∥∥
P1

+
K∑

l=k+1

∥∥∫ (f̂l − fl)hldP2

∥∥
P1

=
[ ∫ ( ∫

(µ̂K − µK)gdP2

)2
dP1

]1/2
+

K∑
l=k+1

[ ∫ ( ∫
(f̂l − fl)hldP2

)2
dP1

]1/2
≤
[ ∫ ( ∫

(µ̂K − µK)2dP2

)( ∫
g2dP2

)
dP1

]1/2
+

K∑
l=k+1

[ ∫ ( ∫
(f̂l − fl)

2dP2

)( ∫
h2l dP2

)
dP1

]1/2
(Cauchy-Schwartz)

≤
[ ∫

(µ̂K − µK)2dP2dP1 · ∥
∫
g2dP2∥P1,∞

]1/2
+

K∑
l=k+1

[ ∫
(f̂l − fl)

2dP2dP1 · ∥
∫
h2l dP2∥P1,∞

]1/2
=Op(∥µ̂K − µK∥) +

K∑
l=k+1

Op(∥f̂l − fl∥). (30)

The last equality uses the assumption that µK(X,MK) (and hence
∫
h2l dP2) is bounded.

From equations (29)-(30), we have

R2(η̂1) =

K∑
k=0

Op(∥π̌k − πk∥) ·Op(∥µ̌k − µk∥)

=
K∑
k=0

(
Op(∥π̂0 − π0∥) +

k∑
l=1

Op(∥f̂l − fl∥)
)(
Op(∥µ̂K − µK∥) +

K∑
l=k+1

Op(∥f̂l − fl∥)
)

(31)

Clearly, whenK+1 of theK+2 nuisance functions in η1 are consistently estimated, R2(η̂1) = op(1).

In this case, since Pnφa(O; η∗1) − Pφa(O; η∗1) = Pnφa(O; η∗1) = op(1), θ̂
eif1
a is consistent. Moreover,

equation (31) suggests that R2(η̂1) = op(n
−1/2) if

∑
u,v∈η̂1;u̸=v

rn(u)rn(v) = o(n−1/2). If the nuisance

functions are estimated via parametric models and their parameter estimates are all
√
n-consistent,

R2(η̂1) =
∑K

k=0Op(n
−1/2) ·Op(n

−1/2) = op(n
−1/2), hence the first part of Theorem 3.
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E Multiply Robust Decomposition of Between-group Disparities

The multiply robust semiparametric estimators can also be used to estimate noncausal decomposi-

tions of between-group disparities (Fortin et al. 2011). For example, social scientists in the United

States have a long-standing interest in decomposing the black-white income gap into components

that are attributable to racial differences in various ascriptive and achieved characteristics. Using

linear structural equation models, Duncan (1968) decomposed the total black-white income gap into

components that reflect black-white differences in family background, academic performance (net of

family background), educational attainment (net of family background and academic performance),

occupational attainment (net of family background, academic performance, and educational attain-

ment), and a “residual” component that cannot be explained by the above characteristics. Although

proposed prior to Blinder (1973) and Oaxaca (1973), Duncan’s decomposition can be viewed as a

generalization of the Blinder-Oaxaca decomposition widely used in labor economics.

Duncan’s decomposition is similar in form to equation (3), but it is defined in terms of the

statistical parameters θa rather than the causal parameters ψa. Moreover, the left-hand side is now

the black-white income gap rather than the average causal effect of a manipulable intervention,

and, therefore, there are no pretreatment confounders. It should be noted that this decomposition

is different from causal mediation analysis for a randomized trial, in which case pretreatment

covariates may still be needed to adjust for potential confounding of the mediator-mediator and

mediator-outcome relationships. The components associated with Duncan’s decomposition, by

contrast, are purely statistical parameters and should not be interpreted causally.

Consequently, in the context of decomposing between-group disparities, the functional

θ0k,1k+1
can be estimated as

θ̂eif2
0k,1k+1

= Pn

[I(A = 1)

π̂0(0)

π̂k(0|Mk)

π̂k(1|Mk)

(
Y − µ̂k(Mk)

)
+

I(A = 0)

π̂0(0)

(
µ̂k(Mk)− µ̂0,k

)
+ µ̂0,k

]
, (32)

where π0(0) = Pr[A = 0], µk(Mk) = E[Y |A = 1,Mk], and µ0,k = E[µk(Mk)|A = 0]. Since π̂0(0)

can be estimated by the sample average of 1 − A and µ0,k the sample average of µ̂k(Mk) among

units with A = 0, equation (32) involves estimating only two nuisance functions: π̂k(a|mk) and

µ̂k(mk). It follows from Theorem 3 that θ̂eif2
0k,1k+1

is now doubly robust — it is consistent if either

π̂k(a|mk) or µ̂k(mk) is consistent.

To implement the full decomposition, we need to estimate θ0k,1k+1
for each k ∈ 0, 1, . . .K + 1,

i.e., estimate the vector-valued parameter θdecomp = (θ11,θ0,12 , . . . θ0K ,1, θ0K+1
). Since θ11 and θ0K+1

can be estimated by the sample analogs of E[Y |A = 1] and E[Y |A = 0] and θ̂eif2
0k,1k+1

is doubly robust

with respect to π̂k and µ̂k, the semiparametric estimator θ̂eif2
decomp = (θ̂eif211

, θ̂eif20,12
, . . . θ̂eif2

0K ,1
, θ̂eif2

0K+1
) is

2K-robust: it is consistent if for each k ∈ [K], either π̂k or µ̂k is consistent. Note that in this case,

the functions µk(Mk) = E[Y |A = 1,Mk] are not estimated iteratively, but separately for each k.

Corollary 5. Define θ̂eif2
decomp = (θ̂eif211

, θ̂eif20,12
, . . . θ̂eif2

0K ,1
, θ̂eif2

0K+1
). Suppose X = ∅, and that all assump-
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tions required for Theorem 4 hold. When the nuisance functions (π̂1, . . . π̂K , µ̂1, . . . µ̂K) are estimated

via parametric models, θ̂eif2
decomp is CAN if for each k ∈ [K], either π̂k or µ̂k is correctly specified and

its estimates are
√
n-consistent. θ̂eif2

decomp is semiparametric efficient if all of the nuisance functions

are correctly specified and their parameter estimates
√
n-consistent. When the nuisance functions

are estimated via data-adaptive methods and cross-fitting, θ̂eif2
decomp is semiparametric efficient if all

of the nuisance functions are consistently estimated and
∑K

k=1 rn(π̂k)rn(µ̂k) = o(n−1/2).

F Additional Details of the Simulation Study

The variables X1, X2, X3, X4, A,M1,M2, Y in the simulation study are generated via the following

model:

(U1, U2, U3, UXY ) ∼ N(0, I4),

Xj ∼ N((U1, U2, U3, UXY )βXj , 1), j = 1, 2, 3, 4,

A ∼ Bernoulli
(
logit−1[(1, X1, X2, X3, X4)βA]

)
,

M1 ∼ N
(
(1, X1, X2, X3, X4, A)βM1 , 1

)
,

M2 ∼ N
(
(1, X1, X2, X3, X4, A,M1)βM2 , 1

)
,

Y ∼ N
(
(1, UXY , X1, X2, X3, X4, A,M1,M2)βY , 1

)
.

The coefficients βXj (1≤ j ≤ 4) and βY are drawn from Uniform[−1, 1], the coefficients βA are

drawn from Uniform[−0.5, 0.5], and the coefficients βM1 and βM2 are drawn from Uniform[0, 0.5].

Specifically,

βX1 = (0.77,−0.86, 0.35, 0.88),

βX2 = (−0.99,−0.72,−0.1, 0.54),

βX3 = (−0.74, 0.1, 0.91, 0.46),

βX4 = (−0.21,−0.43,−0.21,−0.7),

βA = (−0.36,−0.08,−0.06, 0.4,−0.14),

βM1 = (0, 0.3, 0.42, 0.48, 0.28, 0.41),

βM2 = (0.04, 0.2, 0.09, 0.12, 0.39, 0.34, 0.24),

βY = (−0.27,−0.1, 0.25, 0.2,−0.08, 0.78, 0.76,−0.4, 0.96).

It can be shown that under the above model, the six nuisance functions π0(a|x), π1(a|x,m1),

π2(a|x,m1,m2), µ0(x), µ1(x,m1), and µ2(x,m1,m2) for any θa1,a2,a can be consistently estimated

via the following GLMs:

π0(1|X) = logit−1[(1, X1, X2, X3, X4)γ0],

π1(1|X,M1) = logit−1[(1, X1, X2, X3, X4,M1)γ1],
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π2(1|X,M1,M2) = logit−1[(1, X1, X2, X3, X4,M1,M2)γ2],

E[Y |X,A,M1,M2] = (1, X1, X2, X3, X4, A,M1,M2)α2, µ2(X,M1,M2) = E[Y |X,A = a,M1,M2],

E[µ2(X,M1,M2)|X,A,M1] = (1, X1, X2, X3, X4, A,M1)α1, µ1(X,M1) = E[µ2(X,M1,M2)|X,A = a2,M1],

E[µ1(X,M1)|X,A] = (1, X1, X2, X3, X4, A)α0, µ0(X) = E[µ1(X,M1)|X,A = a1].

To demonstrate the multiple robustness of the EIF-based estimators, we use a set of “false co-

variates” Z =
(
X1, e

X2/2, (X3/X1)
1/3, X4/(e

X1/2 + 1)
)
to fit a misspecified model for each of the

nuisance functions:

π0(1|Z) = logit−1[(1, Z1, Z2, Z3, Z4)γ̃0],

π1(1|Z,M1) = logit−1[(1, Z1, Z2, Z3, Z4,M1)γ̃1],

π2(1|Z,M1,M2) = logit−1[(1, Z1, Z2, Z3, Z4,M1,M2)γ̃2],

E[Y |Z,A,M1,M2] = (1, Z1, Z2, Z3, Z4, A,M1,M2)α̃2, µ2(Z,M1,M2) = E[Y |Z,A = a,M1,M2],

E[µ2(Z,M1,M2)|Z,A,M1] = (1, Z1, Z2, Z3, Z4, A,M1)α̃1, µ1(Z,M1) = E[µ2(Z,M1,M2)|Z,A = a2,M1],

E[µ1(Z,M1)|Z,A] = (1, Z1, Z2, Z3, Z4, A)α̃0, µ0(Z) = E[µ1(Z,M1)|Z,A = a1].

Each of the five cases described in Section 5 reflects a combination of estimated nuisance functions

from these correctly and incorrectly specified models. For example, in case (a), all parametric

estimators of cPSEM2 use correctly specified models for π0(1|x), π1(1|x,m1), π2(1|x,m1,m2) and

incorrectly specified models for µ0(x), µ1(x,m1), and µ2(x,m1,m2).

G Additional Details of the NLSY97 Data

The data source for the empirical example comes from the National Longitudinal Survey of Youth,

1997 cohort (NLSY97). The NLSY97 began with a nationally representative sample of 8,984 men

and women residing in the United States at ages 12-17 in 1997. These individuals were interviewed

annually through 2011 and biennially thereafter. Table G1 reports the sample means of the pretreat-

ment covariates X, the mediatorsM1 andM2, and the outcome Y described in the main text, both

overall and separately for treated and untreated units (i.e., college goers and non-college-goers).

Parental education is measured using mother’s years of schooling; when mother’s years of school-

ing is unavailable, it is measured using father’s years of schooling. Parental income is measured

as the average annual parental income from 1997 to 2001. The mediator M2, which gauges civic

and political interest, includes four components: volunteerism, community participation, donation

activity, and political interest. Volunteerism represents the respondent’s self-reported frequency of

volunteering work over the past 12 months (1: None; 2: 1 - 4 times; 3: 5 - 11 times; 4: 12 times or

more). Community participation represents the respondent’s self-reported frequency of attending

a meeting or event for a political, environmental, or community group (1: None; 2: 1 - 4 times; 3:

5 - 11 times; 4: 12 times or more). Donation activity is a dichotomous variable indicating whether
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the respondent donated money to a political, environmental, or community cause over the past 12

months. Political interest represents the respondent’s self-reported frequency of following govern-

ment and public affairs (1: hardly at all; 2: only now and then; 3: some of the time; 4: most of the

time). Volunteerism, community participation, and donation activity were measured in 2007, and

political interest was measured in both 2008 and 2010. For simplicity, we use the average of the

2008 and 2010 measures of political interest in our analyses (Treating them as separate variables

leads to almost identical results).

To gain a basic understanding of the treatment-mediator and mediator-outcome relationships

in this dataset, we fit a linear regression model for each component of the mediators and for the

outcome given their antecedent variables (including the pretreatment covariates). These models,

if correctly specified, will identify the causal effects of A on M1, (A,M1) on M2, and (A,M1,M2)

on Y under the conditional independence assumptions described in Section 2.1. The coefficients of

these regression models are shown in Table G2. The first column indicates a substantively strong

and statistically significant effect of college attendance on log earnings: adjusting for pretreatment

covariates, attending college by age 20 is associated with a 44.3 percent increase (e0.367−1 = 0.443)

in estimated earnings from 2006 to 2009. The next four columns suggest that the direct effects of

college attendance on volunteerism, community participation, and donation activity (i.e., A→M2)

are relatively small and not statistically significant. The estimated direct effect of college attendance

on political interest, by contrast, is much larger and statistically significant. The last column shows

statistically significant effects of volunteerism, community participation, and political interest on

voting (at the p < 0.05 level). The estimated effect of political interest is particularly strong: a one

unit increase in the four-point scale of political interest is associated with a 14.8 percentage point

increase in the estimated probability of voting. The coefficient of college attendance in the last

model can be interpreted as the direct effect of college on voting (i.e., A→ Y ), i.e., the effect that

operates neither through economic status nor through civic and political interest. The estimate,

11.7 percentage points, is comparable to our semiparametric estimates reported in the main text.
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Table G1: Overall and group-specific means in pretreatment covariates, mediators, and outcome.

Overall Non-College-Goers College Goers

Pretreatment
Covariates
(X)

Age at 1997 15.98 16.02 15.96

Female 0.5 0.42 0.55

Black 0.16 0.22 0.13

Hispanic 0.12 0.15 0.1

Parental Education 13.08 12.05 13.71

Parental Income 86,520 60,706 102,568

Parental Assets 119,242 62,573 154,550

Lived with Both Biological Parents 0.53 0.39 0.62

Presence of a Father Figure 0.76 0.68 0.8

Lived in Rural Area 0.27 0.29 0.26

Lived in the South 0.37 0.39 0.35

ASVAB Percentile Score 53.4 37.26 62.72

High School GPA 2.9 2.5 3.16

Substance Use Index 1.36 1.56 1.23

Delinquency Index 1.54 2.06 1.22

Had Children by Age 18 0.06 0.11 0.02

75%+ of Peers Expected College 0.56 0.41 0.66

90%+ of Peers Expected College 0.19 0.12 0.24

Property Ever Stolen at School 0.24 0.27 0.22

Ever Threatened at School 0.19 0.27 0.14

Ever in a Fight at School 0.12 0.18 0.08

Mediator M1 Average Earnings in 2006-2009 33,600 25,082 38,899

Mediator M2

Volunteerism 1.57 1.46 1.64

Community Participation 1.26 1.17 1.32

Donation Activity 0.3 0.22 0.35

Political Interest 2.63 2.34 2.81

Outcome (Y ) Voted in the 2010 General Election 0.45 0.3 0.54

Sample Size 2,976 1,240 1,736

Note: All statistics are calculated using NLSY97 sampling weights.
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Table G2: Regression models for the mediators and the outcome.

M1 M2 Y

Log
Earnings

Volunteerism
Community
Participation

Donation
Activity

Political
Interest

Voting

College
Attendance

0.367
(0.055)

0.038
(0.046)

0.039
(0.028)

0.036
(0.023)

0.259
(0.046)

0.117
(0.023)

Log
Earnings

0.001
(0.017)

0.008
(0.011)

0.036
(0.009)

0.050
(0.016)

0.016
(0.009)

Volunteerism
0.028
(0.013)

Community
Participa-
tion

0.041
(0.019)

Donation
Activity

-0.007
(0.024)

Political
Interest

0.148
(0.010)

Note: Regression coefficients for the pretreatment covariates are omitted. Numbers in
parentheses are heteroskedasticity-robust standard errors, which are adjusted for multiple
imputation via Rubin’s (1987) method.
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