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1 Introduction and motivation

Earthquake occurs due to the unstable sliding on the frictional fault surface.
The term ”unstable” corresponds to some weakening processes, that is, the
friction stress/fault strength decreases as the sliding happens. Because of
this weakening process, the accumulated pre-stress on fault keeps exceeding
the friction thus the initial sliding finally evolves into an earthquake.

Various weakening mechanisms and models have been proposed by pre-
vious studies. For example, the slip weakening model [1, 6, 7] relates the
friction to the dislocation/slip u that the friction decreases from the static
friction to kinematic friction within a critical slip DC . Later based on the
results from laboratory experiment, it is found that the friction is related to
the slip rate and some state variables [2, 4]. Therefore, the Rate-and-State
Friction (RSF) [11] has been proposed and now is widely used to explain
the interactions between different stages of earthquake cycles [8]. For the
weakening process in the coseismic period, the RSF mainly relates the fric-
tion decrease to the slip rate v and other dimensionless state variables, which
evolve with time t. Although RSF can explain most phenomenons of earth-
quake science, the physical mechanism of RSF is not well addressed until
recently, the more physical dynamic weakening mechanism (DW) has been
proposed [9, 12] and validated in the laboratory for field samples [13]. The
DW mainly includes flash heating, thermal pressurization and thermal de-
composition, and all these mechanisms are controlled by frictional heat, pore
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fluid and even chemical composition of minerals in the fault zone.
The development of fault weakening theories actually reveals a very in-

teresting trend that people are understanding fault friction with different
physics, from dynamics to thermodynamics and finally poro-thermo-chemo-
dynamics. Although there are lots of brilliant studies, either theoretically or
numerically, solving for weakening mechanisms with multiple physics, it is
still very interesting to apply the dimensional analysis to analyze this system.
With the clear understanding on the corresponding physics, the dimensional
analysis can naturally serve as a powerful tool to seek for the relation between
different physics.

In this project, I will apply dimensional analysis to analyze the Flash
Heating Weakening (FHW) processes during earthquake rupture. FHW
occurs between the contacting fault asperities in the µm scale. As the dislo-
cation of two contacting asperities occurs, frictional heating is produced and
increases the temperature on the contacting interface. At a critical temper-
ature ΘW , above which small scale (µm) fast melting occurs on the asperity
interface, the shear strength τc thus the fault friction f decreases greatly. In
this project, we only consider the case of homogeneous dry sample. There-
fore, only the dynamic and thermal diffusion processes dominates in the
system with some critical state variables. There are two main reasons to
focus on the flash heating weakening: Firstly, the FHW is the dynamic
weakening mechanism that has been confirmed by both theoretical and labo-
ratory studies. Better understanding on FHW is important for improving our
understandings on the earthquake mechanisms. As far as I know, the other
dynamic weakening mechanisms, however, have not been well observed by
laboratory experiments. Secondly and most importantly, dimensional analy-
sis is extremely powerful to deal with the problems with reasonable number of
physical governing parameters. For the thermal pressurization and thermal
decomposition mechanisms, there are just too many governing parameters in
the systems, and in such situations the dimensional analysis can hardly pro-
vide important insights before some simplifications, which may worth some
future efforts but not in the scope of this project. Lastly, I have to emphasize
that the flash heating weakening is different from another melt lubrication
weakening mechanism, in which the mineral phase change and viscosity are
probably very important. Due to the lack of pseudotachyliytes found by geo-
logical observations, the melt lubrication weakening is thought not dominant
during earthquake rupture and is not discussed here.

The goal is to find the dimensionless form for the fault strength drop ∆τc
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Figure 1: Mechanism of friction in various scales. It is measured from macro-
stresses but determined by the asperity strengths, which are material prop-
erties. The symbol µ is the shear modulus of material. Other terms are
explained in details in the text. Figure is modified based on [10].

due to FHW. I will figure out the interactions of multiple physical mecha-
nisms (dynamics and thermal diffusion) during fault weakening and try to
find some characteristic quantities for each mechanism. By comparing with
the theoretical solution from previous studies [9] as well as measurements
from lab experiments [5], I will validate my results from dimensional analysis
and discuss the differences between them.

2 Dimensional analysis on flash heating weak-

ening

2.1 Friction in the µm scale

To apply the dimensional analysis correctly, it is important to clarify the
physics of FHW. Since the FHW is a weakening process in the µm scale,
we need to consider the friction in the same scale (Fig.1). Friction in the
µm scale can be quantified by the ratio f between maximum sustainable
shear stress (τc), and normal stress (σc) that is at contact indentation of
a stronger material. In the following sections of this report, the maximum
sustainable shear and normal stress (τc and σc) are also called asperity shear
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and normal strength, respectively, to emphasize their differences from the
exterior macroscopic loading stresses. The average length scale Lc of asperity
is important because it is the size of asperity where the stresses really act.
By balancing traction from the exterior macroscopic stresses (τL and σL, L
is the average spatial wavelength of asperity distribution) acting on the fault
with length scale L, and stresses on asperity (τcLc and σcLc), we have the
following relation defining the friction coefficient during frictional sliding:

f =
τ

σ
=
τc
σc

(1)

Therefore, the observed weakening (decrease of friction coefficient ∆f) is just
from the transmission of shear strength change ∆τc:

∆f =
∆τc
σc

(2)

In the following analysis and discussion, I will focus on the ∆τc.

2.2 Governing parameters and dimensional analysis

To apply dimensional analysis, I need to first clarify the assumptions and de-
termine the governing parameters by analyzing the physics of FHW process.
I have several main assumptions listed below:

1. As mentioned in the introduction, only the dynamic and thermal
diffusion processes are considered here. Other mechanisms such as
mineral phase change (large scale melting), thermal decomposition are
ignored so I assume that the corresponding form of energy (latent heat,
chemical energy etc.) are negligible.

2. Homogeneous dry medium is assumed here. All material properties
except strength are constants and there is no need to consider viscosity.

3. I only consider the constant slip velocity v case, or more generally, the
step-varying v cases that the slip velocity stays unchanged during most
of the period.

4. Frictional heat is generated and focused at the asperity.
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Table 1: MLTK system
Variable name Symbol Dimension
velocity v LT−1

time t T
normal strength σc ML−1T−2

initial friction f0 1
asperity size Lc L
temperature rise ∆Θ = ΘW −Θ0 K
heat capacity cp L2T−2K−1

thermal conductivity cth MLT−3K−1

Furthermore, the governing parameters of this physical process have to
be addressed. We need to include the slip velocity v because the heat in
FHW is from the frictional sliding. As a dynamic process, we also need
to include some time scale t in the analysis. Since the asperity plays the
key role during FHW, the asperity size Lc, normal strength σc and shear
strength change on asperity ∆τc are also included. All these parameters are
dynamic parameters. Besides, we need to include more thermal parameters
to sufficiently describe the thermal diffusion process: ambient temperature
Θ0, weakening temperature ΘW , specific heat capacity cp, thermal conduc-
tivity cth. Because only the temperature rise really matters instead of the
absolute temperature for consideration of heat, I only consider the tempera-
ture rise ∆Θ = ΘW −Θ0 in the following analysis. Finally, the initial static
friction coefficient f0, as an important parameter that links the mechanical
and thermal processes, should be included in the analysis. In this project,
I choose the shear strength change ∆τc as the targeting parameter of my
dimensional analysis. Associating all other parameters and their dimensions,
we can have the dimensional analysis table (Table 1) in the MLTK system.
In the MLTK system, we have 8 governing parameters (v, t, σc, f0, Lc, ∆Θ,
cp, cth) and 4 variables with independent dimensions of mass, length, time
and temperature. Therefore, there will be 8 − 4 = 4 dimensionless variable
governing the FHW process based on the Buckingham Pi theorem.

By analyzing the physics of FHW, we can actually further simplify the
system. The term of temperature rise ∆Θ here is only a quantification of the
thermal energy, that is, how much heat is needed when FHW process occurs.
Therefore, we can group the ∆Θ with heat capacity (cp) and density (ρ,
which is a constant based on our homogeneous simplification of the medium)
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Table 2: MLT system
Variable name Symbol Dimension
velocity v LT−1

time t T
normal strength σc ML−1T−2

initial friction f0 1
asperity size Lc L
heat density ϕ ML−1T−2

thermal diffusivity αth M2T−1

to get the heat density term ϕ = ∆Θcpρ. Accordingly, we can use the
thermal diffusivity αth = cth

ρcp
to quantify the diffusion of thermal energy,

which is equivalent to the thermal conduction but just in term of energy
participation. With these simplification, we can update our dimensional
analysis table (Table 2). Although the number of final dimensionless variables
stays the same 4 (7 governing parameters − 3 variables with independent
dimensions of MLT = 4), the system has been transformed from MLTK to
MLT system and this simplification can help us build clearer understanding
on the FHW physics.

Here I choose the velocity v, time scale t and normal stress σc as the
variables with independent dimensions. The targeting quantity is the shear
strength drop ∆τc, which has the same dimension as the normal strength
σc (ML−1T−2) and a general functional form ∆τc = F (v, t, σc, Lc, ϕ, αth, f0).
The dimensionless initial friction coefficient f0 is naturally a governing di-
mensionless variable in the system. With simple calculation, we can easily
get the dimensionless form for the shear strength drop ∆τc:

∆τc
σc

= Φ(
Lc
vt
,
αth
v2t

,
ϕ

σc
, f0) (3)

With this choice of parameters, the shear strength drop is scaled with
normal strength Π = ∆τc

σc
, and the FHW process under my assumptions

of simplification is controlled by four dimensionless parameters: Π1 = Lc

vt
,

Π2 = αth

v2t
, Π3 = ϕ

σc
and Π4 = f0. This is the dimensionless form of the flash

heating weakening mechanism.
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2.3 Two physical timescales

The power of dimensional analysis is not only to give us a neat but vague
form of different quantities, but also to help us to find out important factors
that governs the physics. In this section, I will try to start from results of
dimensional analysis to find some interesting features of FHW.

To step further from the dimensional analysis results, we need to figure
out the physical meanings of each dimensionless Π. The first term Π1 = Lc

vt
in

Eq.(3) is very clear. It describes the kinematic process during the FHW: the
asperity size Lc scales with the product vt. Thus the Π1 term naturally gives
a characteristic timescale θ = Lc/v (I define θ as the kinematic timescale
and call it contacting lifetime), during which the two asperities on both sides
of a fault segment keep contacting and this is the necessary condition for
occurrence of FHW. The second term Π2 = αth

v2t
describes the heat diffusion

process during frictional sliding and has another timescale TW ∝ αth

v2
. TW is

defined as the flash heating weakening time, which quantifies how long the
asperity takes to get weakened. Either lower thermal diffusivity αth (heat is
hard to diffuse out) or higher slip velocity v (more frictional heat production)
can shorten the weakening time TW . Π3 = ϕ

σc
is another thermal-related term

and basically describes the thermal state of the system (heat density ϕ scaled
by the normal strength σc). The last Π4 = f0 is intrinsically a dimensionless
parameter that governs the physical process. Because the last 3 Πs are all
related to thermal dynamics, I simply group these three terms together to
”guess” the general functional form for the weakening time TW :

TW =
αth
v2
g(
ϕ

σc
, f0), (4)

where g is an unknown function with two variables. The two timescales
with different physics revealed by dimensional analysis on FHW imply that
significant transition can occur in this system:

1. If θ < TW , the weakening time is longer than contacting lifetime, the
asperity has no sufficient time to get weakened.

2. If θ > TW , the contacting lifetime is longer than weakening time, the
asperity can sufficiently get weakened and FHW can happen.

Thus we have a critical point at which the transition begins:

TW = θ =
αth
v2
g(
ϕ

σc
, f0) =

Lc
vt
, (5)
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and we have a corresponding characteristic slip velocity VW :

VW =
αth
Lc
g(
ϕ

σc
, f0) (6)

This is a generalized form of the weakening slip velocity as a function
of only material properties. Therefore, this slip velocity is determined by
material itself. FHW can occur only when the actual slip velocity v ≥ VW
(i.e., θ ≥ TW ). This neat form of solution just shows the power of dimensional
analysis, and is helpful for us to better understand the physics of FHW or
guide the design of relevant laboratory experiments. I will discuss this in the
next section.

3 Discussion

3.1 Comparison with the theoretical solution

Fortunately, we have an early theoretical study on the phenomenon of FHW
[9]. In this work, the author provides a systematical study on most of heat-
related weakening processes (flash heating, thermal pressurization and de-
composition). Here I will first compare the dimensional analysis results with
the theoretical solution. Using the equations of one-dimensional heat con-
duction for a planar heat source [3] with heat input into the solids on both
sides of the contact interface at rate τcv/2, we have the following theoretical
solutions of TW and VW from [9]:

TW =
παth
v2

(
ϕ

τc
)2 =

παth
v2

(
ϕ

σcf0

)2 (7)

VW =
παth
Lc

(
ϕ

τc
)2 =

παth
Lc

(
ϕ

σcf0

)2 (8)

Comparing Eqs.(5)-(6) with Eqs.(7)-(8), the results from dimensional
analysis have a consistent functional forms with those from theoretical solu-
tions. With correct physical analysis, this should definitely happen, as James
R. Rice said on EPS202 class, ”mother nature doesn’t know what units we
human are using.” The dimensionless quantities without units are those re-
ally governing the physical processes in nature. So it is obvious that not only
this one-dimensional solution, more complex solutions (2D, 3D) should fol-
low the dimensionless forms of Eqs.(5)-(6), if the aforementioned assumptions
still hold.
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On the other hand, for some problems with very clear physics but are
mathematically hard to solve, dimensional analysis can provide an easier way
gain physical insights. Like this FHW problem, we can directly get a gen-
eralized solution. Starting from the generalized solution, we can substitute
the generalized functional forms into the equations to simplify the problem.
Some examples of similarity that can help to convert partial derivative equa-
tions to ordinary derivative equations are shown during this class. As I will
try in the next section, we can also use the dimensional analysis results to di-
rectly analyze the real measurements and try to infer the unknown functional
form for g in Eqs.(5)-(6).

Finally, I have to mention that the dimensional analysis cannot solve ev-
ery problem completely. For the FHW case, we can never get the constant
π and know where to put the dimensionless f0 without exact solutions. Be-
sides, when I first analyze this question, I did not include the initial static
friction coefficient f0 and this incorrect choice of governing parameters gave
an inconsistent results. Furthermore, dimensional analysis can not deal with
physical process with lots of parameters. I also tried to apply dimensional
analysis to other more complex mechanisms like thermal pressurization. For
thermal pressurization, we have to consider at least two different mediums
(water and rock sample) and their relevant material properties (mechani-
cal, thermal and hydrological). There are also two different conditions of
drained and undrained that can lead to different phenomenons. Including all
those factors require more than 15 governing parameters and the dimensional
analysis can hardly give insightful solutions.

3.2 Inferring function g from the laboratory experi-
ments

In the last section, I will try to use the result of Eq.(6) to analyze the real
measurements from rock experiments [5]. In that work, the authors mea-
sure the friction coefficients varying with slip rate for 5 different types of
rock samples: quartzite, Novaculite, albite rock, granite and gabbro. In
their experiment results, the rate weakening features are very clear so as the
weakening velocity VW , where a steep decrease of friction coefficient begins
(Fig.2). Based on the previous study [9], the frictional contact spends a frac-
tion TW/θ (= VW/v) of its lifetime at the initially high strength σcf0 and the
remaining fraction at the weakened strength σcf0−∆τc = fWσc, so that the
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Figure 2: Friction coefficients varying with slip velocity in the high-speed
sliding experiments for different rocks. Green lines indicate the visual picking
of weakening velocity VW and all picked VW s are listed in the table. Figure
is modified from [5].

average contact shear strength during its lifetime is:

fσc = f0σc
TW
θ

+ fWσc(1−
TW
θ

) = (f0 − fW )σc
VW
v

+ fWσc (9)

When v ≤ VW , f = f0 and the FHW does not begin; when v > VW and
FHW occurs, we can have the functional form of friction coefficient varying
with slip velocity v by substituting Eq.(6):

f =


f0 (v ≤ VW )

(f0 − fW ) αth

Lcv
g( ϕ

σc
, f0) + fW (v > VW )

(10)

By fitting this functional form with the experiment data, we can try to
find the weakening slip velocity VW for different kinds of rocks. Once the
best-fit VW has been found, we can further apply the relation Eq.(6):

VWLc
αth

= g(
ϕ

σc
, f0), (11)
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Figure 3: Dimensionless parameter fitting in the log-log space. (a) Fitting
between ϕ

σc
and VWLc

αth
; (b) Fitting between ϕ

τc
= ϕ

σcf0
and VWLc

αth
. Circles

are from laboratory measurements and those red lines show the best linear-
regression results. Diamonds and blue line are based on theoretical solution
Eq.(8). All the material parameters are from [5] (also see the supplement
table).

to see if we can find the trend of unknown function g.
Fig.2 shows the my data-fitting (intersecting points of two green lines) and

all the visually picked weakening velocity VW s are listed in the table. Using
the same material parameters used in that paper [5], I plot all the points
( ϕ
σc
, VWLc

αth
) in the log-log space (Fig.3 (a)). The variation of ϕ

σc
and VWLc

αth
are

within the same range of 0.1 − 1. Because the initial friction coefficient f0

is also in the same range ( 0.6 − 0.8), both ϕ
σc

and f0 are not negligible for
function g. The increasing trend indicates that the function g is an increasing
function of ϕ

σc
at fixed f0. Applying the linear regression in the log-log space

gives a slope of n = 2.7, although the variation of data points from the best-
fitted line is still obvious. Moreover, I checked the experiment data using
the theoretical solution (Eq.(8)). In this theoretical solution, we know the
exact form g( ϕ

σc
, f0) = π( ϕ

σcf0
)2 = π( ϕ

τc
)2. However, the fitting result from

laboratory measurements is still not perfect (Fig.3 (b)). The linear regression
in log-log space gives an even poorer fitting with slope n = 1.1, which is far
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from the theoretical solution. In my opinion, there are several reasons for
this poor fitting:

1. for the ϕ
σc

and VWLc

αth
fitting (Fig.3 (a)), I have not included the f0

terms and this implies that f0 stays the same for all those rock types.
However, the value of f0 is very different for those rocks, varying from
0.61− 0.87 (supplement table).

2. even when I include f0 in the fitting (Fig.3 (b)), the result is still
very different from theoretical solution. This is probably because the
theoretical solution from [9] is based on one-dimension solution and
may not be applicable to the 2D or 3D cases of the real experiments.

3. besides, in this project I only focus on fitting the experiment data with
FHW mechanisms and assume FHW is the only process. But in reality
different weakening mechanisms can occur at the same time.

4. finally, as mentioned in the experiment paper [5], there are still lots of
inevitable uncertainties in the material parameters (supplement table).

Possibly with a wide coverage of material types, more information can be
obtained from this analysis. Nevertheless, this kind of dimensional analysis
still have great potential to provide us valuable information of those physical
process.

4 Conclusion

In this project, I apply the dimensional analysis to the flash heating weaken-
ing mechanisms. With certain assumptions, we can obtain a dimensionless
form for the change of asperity shear strength ∆τc. The two timescales (con-
tacting lifetime and weakening time) in this dimensionless form naturally
imply a transition can occur in this system. Equating the two timescales
can directly give us a critical weakening slip velocity as function of material
properties. I further compare the dimensional analysis result with the the-
oretical solution [9] and laboratory experiment results [5]. The dimensional
analysis result under my assumptions is consistent with theoretical solution.
However, neither can well fit the laboratory data due to certain factors listed
before, and can be improved by more laboratory experiments. In general, the
dimensional analysis is a powerful tool to deal with a wide range of physical
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problems and can help us gain special insights from a physical system, but
still has inevitable limitations.
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