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Introduction In the supplementary materials, we expand on our proposed algorithm for

earthquake early warning using source time functions (Text S1). This algorithm is illus-

trated in Movie S1. After justifying our choice of kernel for the subevent function (Text

S2), we then expand on the dynamic rupture modeling parameters (Text S3), and show

the pre-stress distribution (Figure S7) and an example of a single example of simulations

(Figure S8). We also add supplementary figures to show the cross validation against the

USGS database (Figure S1), the sensitivity to the threshold in subevent size (Figure S2),

the application of the EEW algorithm to all events in the SCARDEC database (Figure S3),

the properties of the first and the largest subevent to support the distribution of Figure S3

(Figure S4), the number of subevents and scaling of subevent moments to main event mo-

ment obtained from triangle kernels (Figure S5) and the ratio between moment obtained

from Gaussian or from Triangle functions (Figure S6).

Text S1: Earthquake early warning algorithm

In the context of a real-time application of our findings, we do not have knowledge

of the maximum value of the STF, which is known a posteriori. Thus, we modify the de-
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tection algorithm, and show one example in main manuscript Figure 4. In order to avoid

fitting residuals, we proceed as follow:

1. Detect a first peak.

(a) Compute its moment MS and duration TS = 4σ, if TS < 1 s, go back.

(b) Use the scaling relation to get M0 from MS and combine with magnitude-moment

relation: MW = 0.84log10(MS) − 8.7.

2. Detect the next peak (number i) if it has at least 0.25 times the amplitude of the

first peak, or of the median of the previous subevents peaks:

(a) Compute its moment M i
S
and duration T i

S
.

(b) Use the scaling relation to get M i
0 from M i

S
and combine with magnitude-moment

relation: M i
W = 0.84log10(M i

S
) − 8.7

(c) Take the median of the individual magnitude estimates M i
W = median(MW ).

3. Go back to step 2.

Because this algorithm necessitates a different criterion for the amplitude threshold, we

re-calculate the scaling between subevent and main event moments (Figure S3a). The co-

efficients of the regression in the scaling change slightly: log10(MS) = 0.79log10M0 + 3.12.

This is the method implemented for Figure 4 of main manuscript. We apply this to all

events in SCARDEC database. We show in Figure S3b the difference between the ground

truth magnitude and our prediction against the rupture time normalized to duration time.

In Figure S3b, each dot is a magnitude estimate at the peak time of a subevent M i
W − MW .

First estimates can come in as early as 5% of the source duration with an underprediction

of about 0.5 magnitude increment. Between 30-50%, our method overpredicts the mag-

nitude by an increment of 0.5. We show in Figure S4(c) that the small events have few

subevents (mostly a single one) and thus the time at which that subevent occurs tends to

be half way in the rupture. This is also visible in Figure 4 of the main manuscript. Biases

could be corrected for in future development of this approach.

Text S2: Kernel choice for subevent function

Our algorithm of subevent detection uses Gaussian functions. We choose their width

with a grid search for the best-fitting solution that minimizes the L2 norm of the resid-

uals of the STF that we construct from progressively stripping down from the subevent
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Gaussian functions (in a similar fashion to Kikuchi and Kanamori [1982]). The choice

of a Gaussian kernel is motivated by the observed shape of the STF, and is preferred to

other kernels because it leads to greater accuracy in the reconstructed STF and in the to-

tal moment (Figure S6a). We also try the triangular function as a choice of kernel. We

find in general that the uncertainty in the total moment from the original STF and that

reconstructed with the subevents is biased and contain greater uncertainty,(Figure S6b).

Besides these inaccuracies, the moment of the subevents scales with the moment of the

main events, as shown in Figure S5, which supports the robustness of our results.

Text S3: Dynamic rupture simulation set up Our simulations solve the equations of 2D

mode III elastodynamics coupled to a frictional fault using the spectral boundary inte-

gral methods (SBIEMLAB, code developed by Jean-Paul Ampuero, http://web.gps.

caltech.edu/~ampuero/software.html, last accessed 11/27/2018). The ingredients

for our simulations are listed below:

• Basic parameters in the simulations: Model domain is 400 km long, with 200 km

long fault domain and 200 km boundary domain, and is uniformly discretized by

4096 grid points with a grid size of ∆x = 97.7 m. Other fundamental parameters

are listed in Table S1.

• Constitutive relation: We use a linear slip weakening law to describe the friction

on the fault:

µ =

{
µd−µs
Dc
+ µs, s ≤ Dc,

µd, s > Dc,
(1)

where s is the slip, µd and µs are the dynamic and static friction coefficients, re-

spectively, Dc is the critical slip distance, which we choose to be Dc = 0.8 m in the

main text (we also tested Dc = 0.4 m and 1.2 m). The frictional parameters µd and

µs are chosen to be uniform along the fault.

• Heterogeneous pre-stress distribution: We produce a heterogeneous pre-stress

distribution with the scaled Power Spectral Density (PSD) function:

Pm(k) = C |k |−γ, (2)

where k is the wavenumber, and C is chosen such that Pm(k) is normalized to its

absolute maximum in space domain and scaled to 0.9(µs − µd)σ0. We choose

γ = 0.8. The phase of the pre-stress distribution is randomly generated from a

uniform distribution in [0, 2π]. Combining Pm(k) with the random phases, we can
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produce a large ensemble of statistically similar distributions. We pad the nega-

tive part of these distributions to zero and normalize non-negative distributions

to the range between [µdσ0, 0.9µsσ0]. We further add a random noise between

[−0.05(µs − µd)σ0, 0.05(µs − µd)σ0] to these distribution, to mimic the background

heterogeneity on the fault. Finally, we apply a Tukey-window to taper the 100 km

on either end of the 400 km pre-stress distributions to avoid the artifacts in STF

from abruptly stopping of rupture at the fault boundary in the spectral boundary in-

tegral solutions (Fig. S7 a). To make sure the series of post-processing on the pre-

stress distribution does not distort the original PSD, we also compare the spectra

of unprocessed (pure self-affine) and processed (non-negative constraint) pre-stress

distributions in the frequency domain (Fig. S8 b) to confirm that the spectral slope

is preserved.

• 2D spontaneous dynamic rupture model: To nucleate the dynamic rupture, we

randomly and artificially set an over-stressed nucleation area. We only keep the pre-

stress distributions whose pre-stress peak is within x = [−30, 30] km on the fault

and nucleate rupture at that peak pre-stress location. This setting helps to avoid the

boundary effects of pre-stress distribution and thus ensure that most of the simu-

lated events evolve on a stress condition that is statistically similar during the event.

The nucleation length is based on the relation from Uenishi and Rice [2003]:

Lc =
1.158µDc

(µs − µd)σ0
. (3)

For Dc = 0.8m, the corresponding Lc = 1626.9 m ≈ 17∆x, which also ensures the

sufficient spatial resolution of our simulations. We set the size of nucleation zone

to be 1.5Lc = 2.44 km and this is to guarantee the ending of quasi-static stage and

beginning of dynamic unstable slip, after the over-stress nucleation [Uenishi and

Rice, 2003]. For each Dc , we produce 600 pre-stress distributions that qualify the

aforementioned condition, and finally get the simulated STFs with different event

sizes.

Movie S1. Example of potential application to Earthquake Early Warning. The algorithm

follows that described in the supplementary materials (Text S1). The example is for the

Mw 7.5 2018 Palu Earthquake. Top panel: progressive subevent detection (picks in red

crosses from the peaks of the residual STF) and Gaussian fitting (shaded blue Gaussian

curves) against the evolution of the moment-rate function. Bottom panel: predicted mag-
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nitude estimates from each subevent (black circles), from the median of the previous mag-

nitude estimates (orange circles), and against the magnitude of the previously released mo-

ment (green curve).
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Parameter Value

S wave velocity Vs (km/s) 3.46

Density ρ (kg/m3) 2.670

Shear modulus µ (GPa) 32

Normal stress σ0 (MPa) 120

Dynamic friction µd 0.525

Static friction µs 0.677

Dc (m) 0.8

Power law exponent γ 0.8

Table S1. Parameters used in the simulations.
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Figure S1. Results for the 167 USGS STFs of Hayes [2017] that had detectable subevents (out of 180).

(a) Number of subevents as a function of main event moment. There is an increase of complexity with main

moment (slope of 1.7, R-value of 0.39). (b) Subevent moment MS as a function of main event moment M0 for

a peak detection with a 0.1 threshold. The green line represents the result of the regression performed over

the whole dataset in a log-log space. Red lines represent the r=1, 10, and 100 ratios of main event moment

to subevent moment. Results still show a scaling similar to the SCARDEC results: Ms ≈ M0.87
0 (R-value of

0.77). Moment magnitudes MW are labeled on the top of the plots.
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Figure S2. Results of subevent decomposition using a threhold of 0.01. (a) Number of subevents as a func-

tion of main event moment (similar to Figure 2 of main manuscript) with red dots strike slip events, blue dots

dip-slip events and linear regressions with their slope selected from the focal mechanism parameter defined in

Shearer et al. [2006]. (b) Subevent moment MS against main event M0. The green line is the linear regression

performed over the whole dataset in a log-log space. Red lines represent the r=1, 10, and 100 ratios moments.

The scaling still holds with a slope of 0.72. There are smaller subevents that could be spurious.
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Figure S3. EEW application on the entire SCARDEC data set. (a) Subevent and main event with the new

threshold criterion (blue dots), the new regression (green line), the new moment-binned median (orange

square), similar to Figure 3(a) of main manuscript. (b) Residuals between magnitudes estimated at each

subevent Mi
W

and true main event moment MW , similar to Figure 4 of the main manuscript for the entire

SCARDEC dataset. The median in each time bin and 2 standard deviation tall error bars are shown. Moment

scaling is that found in (a) Between 20% and 40% of STF duration, our algorithm overpredicts the magnitude

by 0.5 unit, we explain this because the largest subevents occurs generally early in the rupture while the first

subevent tends to be smaller (see Figure S4 a). –9–
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Figure S4. (a) Subevent moment against main event moment of the largest (red) and first (blue) subevent.

The first subevents shows are not the largest, which explains why the estimates of magnitude from the first

subevent is slightly lower. (b) Duration of the first subevent correlates with main event moment, which sug-

gests that the duration of the first subevent could be used for early magnitude estimates as well, in relation

to the results of Iio [1995]. (c) Time at which the largest subevent occurs: the small earthquakes have their

biggest subevent in about the middle of the earthquake, probably because they may only have one or two

subevents, but early on during the rupture for larger earthquakes.
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Figure S5. Analysis with triangle kernels with a similar style and notation as in Figure 2(a) and Figure 3(a)

of main manuscript. (a) Number of subevents against main event moment for strike-slip (red) and dip-slip

(blue) earthquakes. (b) Subevent–main event moments. We see: i) still a growth of the number of subevents

with main earthquake moment, ii) the fit to the largest magnitude becomes likely spurious because there

are too many subevents (probably not well separated in time and thus over fitting the STF). Corresponding

moment magnitude shown in the top axis label.
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Figure S6. Histograms of the ratios between the moments of our reconstructed STFs and the SCARDEC

moments for (a) Gaussian kernels and (b) triangle kernels. Median show no systematic bias, but the standard

deviation show greater uncertainty (and thus overall poorer fit).
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Figure S7. (a) One example of the stochastically generated pre-stress distribution. Blue line shows the pre-

stress distribution without any post-processing, while red line is the pre-stress after processing (non-negativity

constraint) and used in the dynamic simulation. Black solid and dashed lines are the uniform fault strength

and dynamic friction, respectively. (b) Comparison between the processed (red) and unprocessed (blue) pre-

stress distributions in the frequency domain. Green, purple and orange lines show the references of different γ

exponents of 0.4, 0.8 (used in this study) and 1.2, respectively.
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Figure S8. (a) Shows the space-time evolution of the on-fault slip rate, (b) the slip profile across the fault,

(c) the slip rate as a function of time, (d) the stress change on the fault, (e) the final STF, (f) the linear slip

weakening.
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