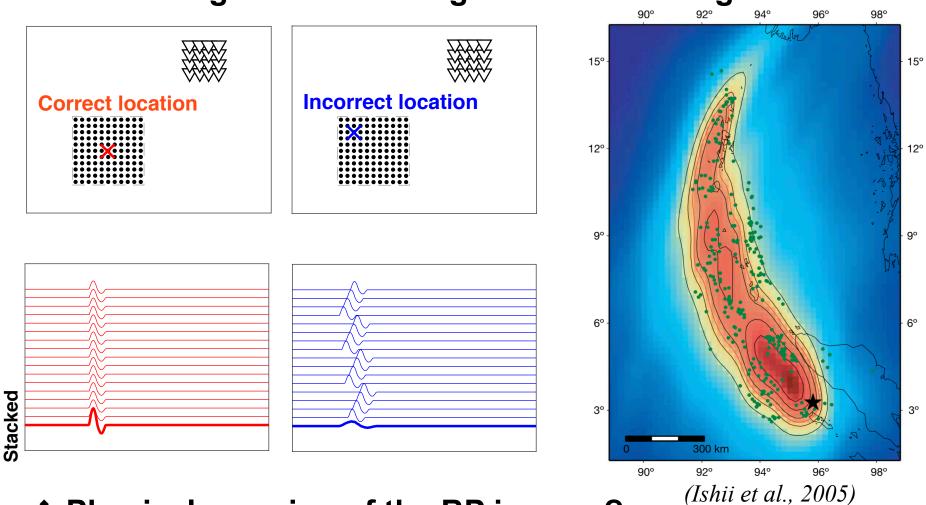

Resolvability of linear BackProjection (BP) method for earthquake kinematics

- 1. Physical meaning of BP image
- 2. Generalized way to quantify the BP resolution


Jiuxun Yin* Marine A. Denolle

Department of Earth and Planetary Sciences, Harvard University

Backprojection (BP) of seismograms

Two ingredients: Realignment + Stacking

Physical meaning of the BP images?

Theoretical Formulation of linear BP (I)

Displacement seismograms (Representation theorem):

Radiation pattern

$$d_k(t) = \sum_{n=1}^{N} \frac{R_{kn}^P}{4\pi\rho\alpha^3} \frac{\mu\Delta S}{r_{kn}} \dot{u}_n(t - t_{kn})$$
 Slip rate function with travel time delay

Geometrical spreading

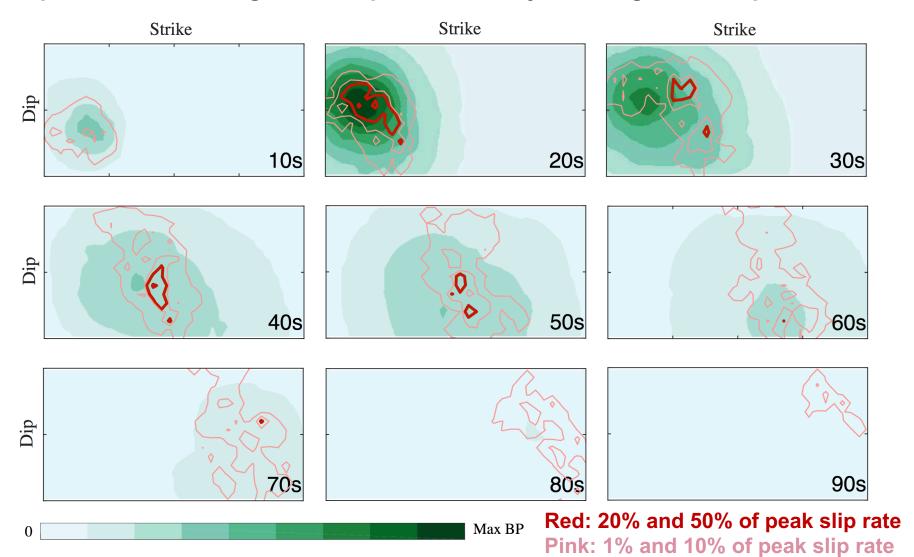
In matrix form for the entire array:

$$\begin{bmatrix} D_{1}(\omega) \\ D_{2}(\omega) \\ \vdots \\ D_{K}(\omega) \end{bmatrix} = \frac{\mu \Delta S}{4\pi \rho \alpha^{3}} \begin{bmatrix} \frac{R_{11}^{P}}{r_{11}} e^{-i\omega t_{11}} & \frac{R_{12}^{P}}{r_{12}} e^{-i\omega t_{12}} & \cdots & \frac{R_{1N}^{P}}{r_{1N}} e^{-i\omega t_{1N}} \\ \frac{R_{21}^{P}}{r_{21}} e^{-i\omega t_{21}} & \frac{R_{22}^{P}}{r_{22}} e^{-i\omega t_{22}} & \cdots & \frac{R_{2N}^{P}}{r_{2N}} e^{-i\omega t_{2N}} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \frac{R_{K1}^{P}}{r_{K1}} e^{-i\omega t_{K1}} & \frac{R_{K2}^{P}}{r_{K2}} e^{-i\omega t_{K2}} & \cdots & \frac{R_{KN}^{P}}{r_{KN}} e^{-i\omega t_{KN}} \end{bmatrix}_{K \times N} \begin{bmatrix} \dot{U}_{1}(\omega) \\ \dot{U}_{2}(\omega) \\ \vdots \\ \dot{U}_{N}(\omega) \end{bmatrix}$$

Theoretical Formulation of linear BP (II)

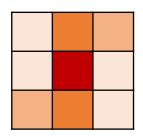
Linear BP is to multiply a phase shift matrix $\widetilde{A}(\omega)$ to the array data $D(\omega)$:

$$\tilde{\mathbf{A}}(\omega) = \begin{bmatrix} e^{i\omega t_{11}} & e^{i\omega t_{21}} & \dots & e^{i\omega t_{K1}} \\ e^{i\omega t_{12}} & e^{i\omega t_{22}} & \dots & e^{i\omega t_{K2}} \\ \vdots & \ddots & \ddots & \vdots \\ e^{i\omega t_{1N}} & e^{i\omega t_{2N}} & \dots & e^{i\omega t_{KN}} \end{bmatrix}_{N\times K}$$


$$\mathbf{D}^{BP}(\omega) = \tilde{\mathbf{A}}(\omega)\mathbf{D}(\omega) = \tilde{\mathbf{A}}(\omega)\mathbf{A}(\omega)\dot{\mathbf{U}}(\omega) = \mathbf{F}(\omega)\dot{\mathbf{U}}(\omega)$$

 $\mathbf{D}^{BP}(\omega) = \tilde{\mathbf{A}}(\omega)\mathbf{D}(\omega) = \tilde{\mathbf{A}}(\omega)\mathbf{A}(\omega)\dot{\mathbf{U}}(\omega) = \mathbf{F}(\omega)\dot{\mathbf{U}}(\omega)$ BP Image = Resolution Matrix × Slip Rate distribution

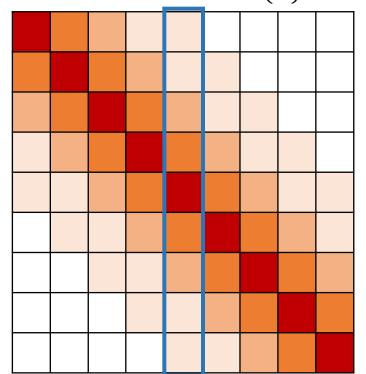
 \clubsuit Linear BP results (D^{BP}(ω)) are proportional to the images of slip motion $\dot{\mathbf{U}}(\omega)$, through a resolution matrix $\mathbf{F}(\omega)$


Validation with kinematic source

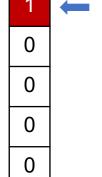
Displacement seismogram → slip rate; Velocity seismogram → slip acceleration

Resolution matrix $F(\omega)$

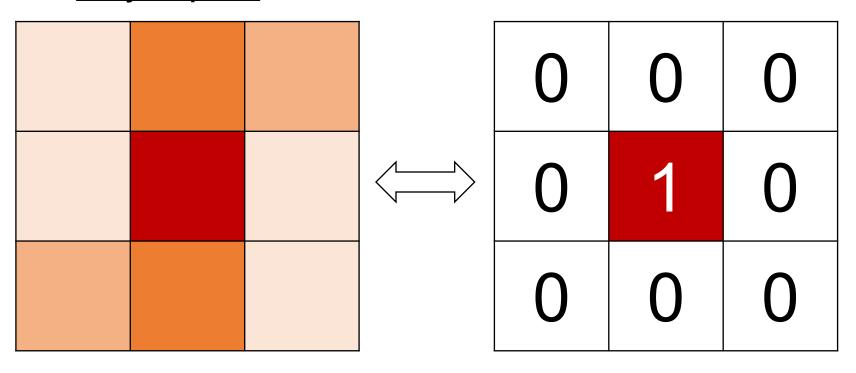
$$\mathbf{D}^{BP}(\omega) = \mathbf{F}(\omega)\dot{\mathbf{U}}(\omega)$$


Impulsive source $\dot{\mathbf{U}}(\omega)$

0	0	0
0	1	0
0	0	0

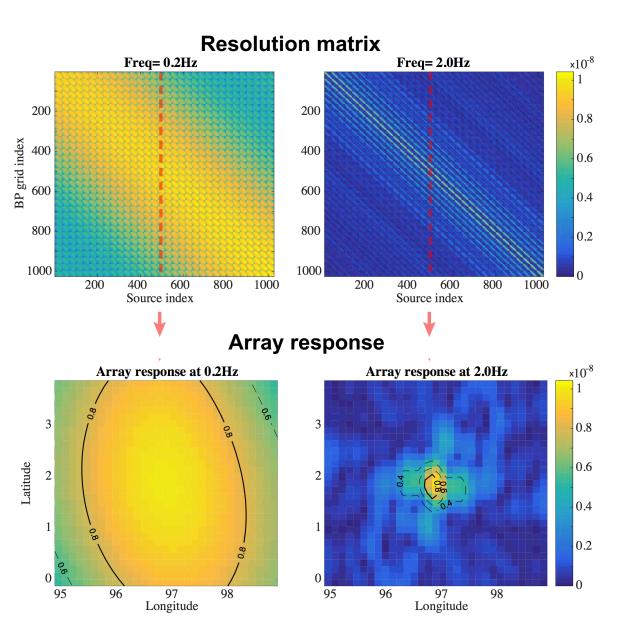


0



Resolution matrix $F(\omega)$

$$\mathbf{D}^{BP}(\omega) = \mathbf{F}(\omega)\mathbf{\dot{U}}(\omega)$$


Recovered BP $D^{BP}(\omega)$ **Array Response**

Impulsive source $\dot{\mathbf{U}}(\omega)$

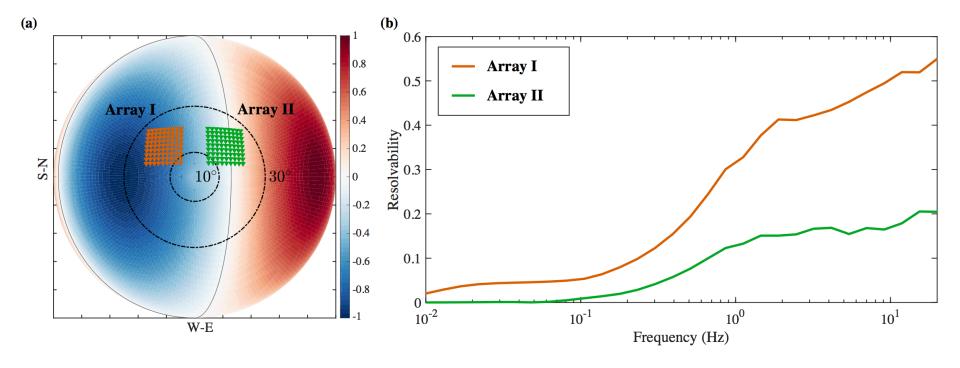
***** Resolution matrix $F(\omega)$ contains the information of BP spatial resolution

Quantifying BP resolution using $F(\omega)$

1. BP Resolvability

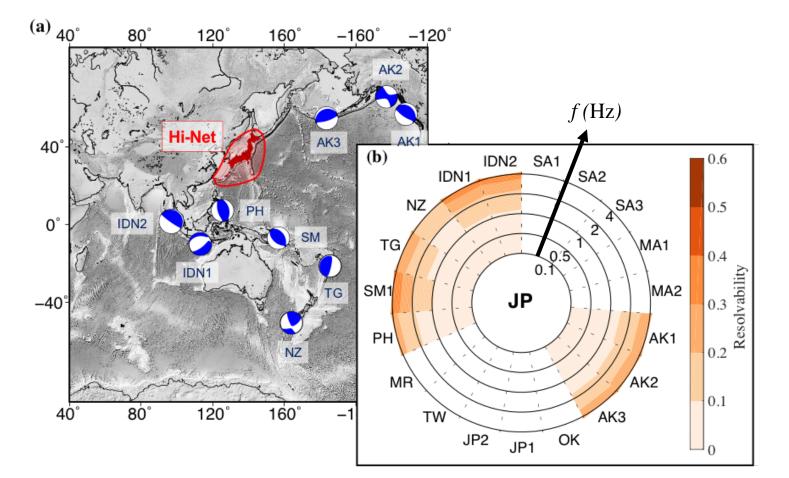
$$\epsilon_I(\omega) = |corr2(\mathbf{F}, \mathbf{I})|$$

- 2D image correlation coefficient
- Similarity between F and identity matrix
- Dimensionless parameter varying from 0 – 1

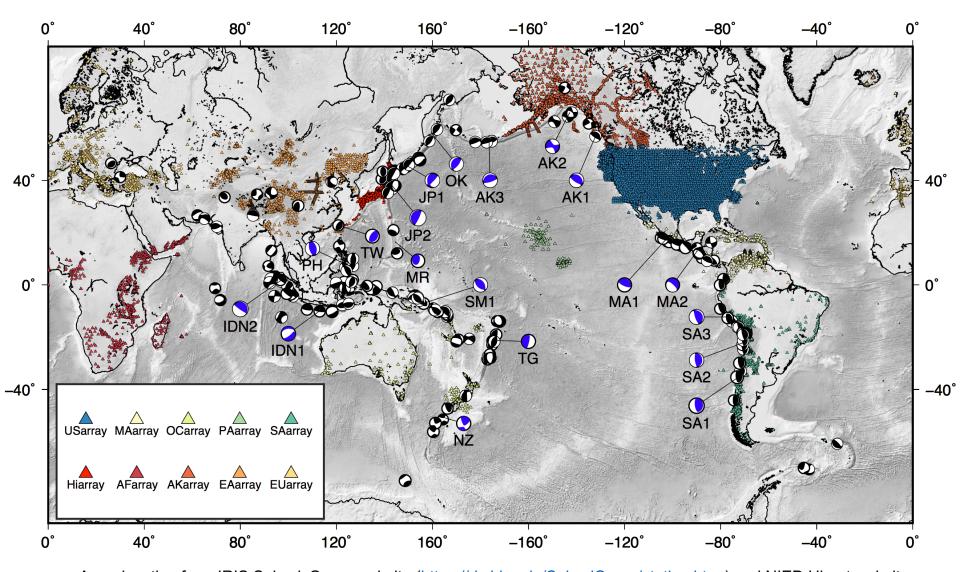

2. Resolvable area

- Area with array response function > 80% of its maximum
- Physical quantity that can be related to frequency

BP resolvability


$$\mathbf{F}(\omega) = \tilde{\mathbf{A}}(\omega)\mathbf{A}(\omega) = \begin{bmatrix} e^{i\omega t_{11}} & e^{i\omega t_{21}} & \dots & e^{i\omega t_{K1}} \\ e^{i\omega t_{12}} & e^{i\omega t_{22}} & \dots & e^{i\omega t_{K2}} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ e^{i\omega t_{1N}} & e^{i\omega t_{2N}} & \dots & e^{i\omega t_{KN}} \end{bmatrix} \begin{bmatrix} \frac{R_{11}^P}{r_{11}} e^{-i\omega t_{11}} & \frac{R_{12}^P}{r_{12}} e^{-i\omega t_{12}} & \dots & \frac{R_{1N}^P}{r_{1N}} e^{-i\omega t_{1N}} \\ \frac{R_{21}^P}{r_{21}} e^{-i\omega t_{21}} & \frac{R_{22}^P}{r_{22}} e^{-i\omega t_{22}} & \dots & \frac{R_{2N}^P}{r_{2N}} e^{-i\omega t_{2N}} \\ \vdots & \ddots & \ddots & \vdots \\ \frac{R_{K1}^P}{r_{K1}} e^{-i\omega t_{K1}} & \frac{R_{K2}^P}{r_{K2}} e^{-i\omega t_{K2}} & \dots & \frac{R_{KN}^P}{r_{KN}} e^{-i\omega t_{KN}} \end{bmatrix}$$

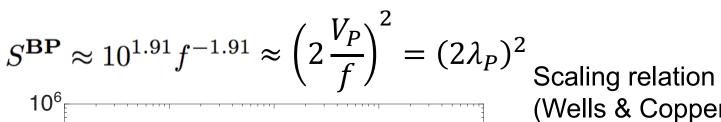
❖ Focal mechanism (radiation pattern R_{KN}^P), source-array location and velocity model (geometrical spreading r_{KN} and travel time t_{KN}) are required

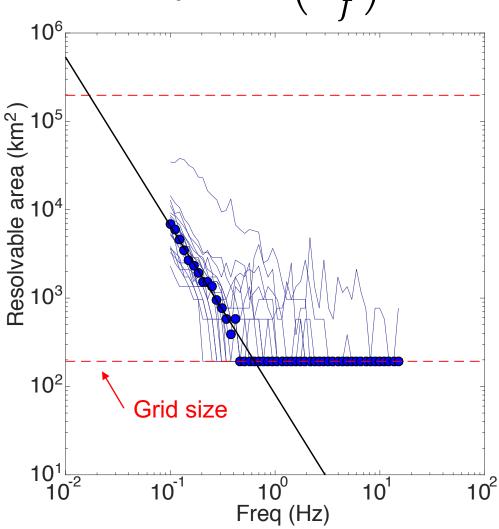


Resolvability for real source and array

- Radiation pattern R_{KN}^{P} from GCMT historical large events
- Geometrical spreading r_{KN} and travel time t_{KN} from IASP91 velocity model

Global BP resolvability


Array location from IRIS SeismicQuery website (https://ds.iris.edu/SeismiQuery/station.htm) and NIED Hi-net websites (http://www.hinet.bosai.go.jp/). Historical event focal mechanisms from GCMT (https://www.globalcmt.org/)


JP1

JP1

JP1

Frequency resolution of BP

(Wells & Coppersmith, 1994):

$$S \approx 10^{(-3.42 + 0.9M_w)}$$

• Require $S^{\mathbf{BP}} \leq S/10$ to resolve the rupture propagation from BP

Lowest BP frequency:

$$f_{min}^{BP} \approx 10^{(3.31 - 0.47M_w)}$$

- Mw 8 \sim 0.35 Hz
- Mw 7 \sim 1.02 Hz
- Mw 6 \sim 3.02 Hz

- Linear BP image corresponds to the coseismic slip motion, smoothed by a resolution matrix $F(\omega)$.
- F(ω) helps to quantify the spatial resolution of BP method:
 - 1. Resolvability $\epsilon_I(\omega)$
 - 2. Resolvable area
- Lowest BP frequency $f_{min}^{BP} \approx 10^{(3.31-0.47M_w)}$

Thanks for you attention!

- Linear BP image corresponds to the coseismic slip motion, smoothed by a resolution matrix $F(\omega)$.
- F(ω) helps to quantify the spatial resolution of BP method:
 - 1. Resolvability $\epsilon_I(\omega)$
 - 2. Resolvable area
- Lowest BP frequency $f_{min}^{BP} \approx 10^{(3.31-0.47M_w)}$