
Generative Model for Human Pose Transferring between Videos

Shuang Li
CSAIL

MIT
lishuang@mit.edu

Wangzhi Dai
CSAIL

MIT
wzhdai@mit.edu

Zishen Wan
CSAIL

MIT
zishenwa@mit.edu

Abstract

In this project, we performed a human pose trans-
ferring between two videos by using generative mod-
els. To accelerate the training process of the gen-
erative model, we used the low resolution images as
input and output and utilize a coarse-to-fine training
process to improve the generated results. Quantita-
tive comparison based on Intersection over Union be-
tween the generated pose and extracted pose showed
this coarse to fine process improve the performance
by 10%. We further proposed a face transfer method
from the ground truth images to the generated images,
which solved the detail loss in the generated face.

1. Introduction

Generative models have many important applica-
tions in real-world scenarios. In this project, we pro-
pose to use generative models to generate motions of
movie characters and achieve motion transfer between
human subjects in different videos. For example, we
can use person in a target video as templates and ask
the movie characters in the source video to copy the
template’s actions.

We need to learn a mapping between images of the
two individuals in order to transfer motion between
two video subjects in a frame-by-frame manner. And
observing that keypoint-based pose, which inherently
encodes body position can serve as an intermediate
representation between any two object, we design our
intermediate representation to be pose stick figures. In
order to achieve better transfer effect on face, we pro-
pose an face transfer method to directly transfer the
face from target person to source person without pose

extraction procedure. Furthermore, we cast our video-
to-video synthesis part as a distribution matching prob-
lem. Given input videos, the goal is to train a model
which the conditional distribution of the synthesized
videos resembles that of real videos. In this way, we
can learn a conditional generative adversarial model
given input and output video pairs. With carefully-
designed generators and discriminators, we aim to syn-
thesize a protorealistic and temporally coherent video.

Tentatively, we plan to adopt the following steps to
achieve this goal. First, we plan to use pose estimation
method to extract the motion of a person, and repre-
sent it by pose stick figures. Then we use the extracted
pose in the template video and apply it to one movie
character using a pose transfer model. The pose trans-
fer model is trained to learn the relations between our
body and movie characters, so that each human body
joint can be well aligned from one person to another.
Finally, we generate new actions of the character and
make a new movie fragment, according to our aspi-
rations. We use the generative model which take the
character image and our pose as inputs and output a
new frame with the character having the poses in tar-
get video.

2. Related Work

2.1. General Adversarial Networks

Due to advances in image generation and sub-
stantial work on general image mapping framework,
we can learn a mapping from pose to target subject.
With the emergence of Generative Adversarial Net-
works (GANs) for approximating generative models
[1], GANs gradually has many applications including
image production [2], mainly because it can gener-
ate high quality images with sharp details [3]. Dur-
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Figure 1. Framework and work flow of the model. The left side shows the training of the generative model from the label
to the ground truth images. The right side shows the pose transferring from a source video to the target video using the
generative model trained.

ing GAN training, a generator and a discriminator play
a zero-sum game. The generator aims to produce re-
alistic generated image so that the discriminator can-
not differentiate between real and generated image.
Over the past few years there have been several frame-
work, one of which is Conditional GANs, in which the
generated output is conditioned on a structured input
[4]. Our project belongs to the category of conditional
GANs. However, we synthesize photorealistic videos
not conditioning on the current observed frames, but
conditioning on the extracted poses from source video.

2.2. Motion Transfer

There has been extensive study dedicated on motion
transfer. Some methods focused on creating new con-
tent by manipulating existing video footage [5], and
some approaches using 3D transfer motion for graph-
ics and animation purposes [6]. Recently, Villegas et
al. [7] apply deep learning techniques to retarget mo-
tion without supervised data. Cheung et al. come up
with an elaborate multi-view system to calibrate a per-
sonalized kinematic model and render images of hu-
man subject performing new motions. In contrast, Car-
oline Chan et al. [8] explore motion transfer between
2D video subjects where there is a lack of 3D informa-

tion. Avoiding both source-target data calibration and
lifting into 3D space, they achieve per-frame image-to-
image translation with spatio-temporal smoothing and
dance transfer between different people.

2.3. Video-to-video Synthesis

There are some existed video-to-video synthesis
method. Some of exiting approaches rely on the spe-
cial cases of synthesis problem, such as video super-
resolution [9, 10], video matting and blending[11, 12],
and video inpainting[13]. Video style transfer [14, 15,
16, 17] is also related, which transfer the style of a
reference painting to a natural scene video. Recently,
Ting-Chun Wang et al.[18] proposed a video-to-video
method outperforming a strong baseline that combines
a video style transfer and a state-of-art image-to-image
translation approach.

3. Model Overview

Given a video of a source person and another of
a target person, our goal is to achieve pose transfer.
That is we generate a new video of the person look-
ing like the source person but enacting the same mo-
tions as the target. To perform this task, we divide our
pipeline into three stages: pose extraction, pose nor-

2



Figure 2. Original image

Figure 3. Extracted pose

malization and mapping from pose stick figures to the
source subject. In the pose detection stage, we use a
pretrained state-of-art pose detector (e.g Densepose)
to extract pose stick figures from the source person.
In the pose normalization stage, we deal with the dif-
ferences between the source and target person due to
different body shapes and locations in each frame. In
the training stage, we design a system to map from the
extracted poses to the source images using generative
adversarial network.

4. Pose Extraction and Normalization

4.1. Pose Extraction

We use a state of the art pose detector P to cre-
ate images which can encode body position. The pose
detector can accurately estimates 2D coordinates. By
plotting the keypoints and drawing lines between con-
nected joints, we draw a representation of the resulting
extracted pose as Figure 3 shows.

The pipeline of pose detection stage is as
follows[19]. First, we analyze the image to generate

a set of feature maps that are the input to the pose
detector by using a convolution network . Then, we
use a feed-forward network to simultaneously predict
a set of 2D body location confidence maps S and a
set of 2D vector fields L of part affinities, which en-
code the degree of association between parts. The set
S = (S1, S2, . . . , SJ) has J confidence maps. The set
L = (L1, L2, . . . , LC) has C vector fields, each vector
corresponding to each limb. Each branch is an iter-
ative prediction architecture which refines the predic-
tions over successive stages. Finally, the affinity fields
and the confidence are parsed by greedy inference to
output 2D locations of keypoints in the image.

In the refinement stage, we refine the confidence
maps and affinity fields and apply two loss functions
for each one to guide the network to do iterative pre-
diction. We adopt an L2 loss between the estimated
prediction and the ground truth maps and fields:

f tS =

J∑
j=1

∑
p

W (p) ‖ Stj(p)− S∗
j (p) ‖22 (1)

f tL =

C∑
c=1

∑
p

W (p) ‖ Ltc(p)− L∗
c(p) ‖22 (2)

where S∗
j is the ground truth confidence map, L∗

c is the
ground truth affinity vector field. The intermediate su-
pervision at each stage addresses the vanishing gradi-
ent problem by replenishing the gradient periodically.
Therefore, the overall objective is

f =
T∑
t=1

(f tS + f tL) (3)

4.2. Pose Normalization

In different videos, subjects may have different limb
proportions or stand closer or farther to the camera
than one another. Therefore when transferring motion
between two subjects, it may be necessary to transform
the pose keypoints of the target person so that they ap-
pear in accordance with the source persons body shape
and proportion.

To perform a translation between the detected pose
to the targeting video, we have to take into account
the difference of character’s limb size and their dis-
tance to the camera. This asks us to find a mapping
between two poses with different sizes. At this stage
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of the work, we propose to adopt the linear mapping
method as described in [8]. Concretely, in each im-
age, the maximum and minimum foot positions are
first found to align a person’s position in the scene.
Then a transformation is made the locate the source
pose’s position into the target pose. Given an average
ankle position asource in the a source frame, the trans-
formation b is calculated for that frame according to
the following equation,

b = tmin +
asource − smin
smax − smin

(tmax − tmin)− fsource
(4)

where tmin and tmax are the minimum and maximum
ankle positions in the target image and smin and smax
are the positions in the source image.

After mapping the location of the foot, we then need
to map the scale of the two poses. To calculate the
scale, we plan to cluster the heights around the mini-
mum ankle position and the maximum ankle position
and find the maximum height for each cluster for each
video. Call these maximum heights tclose for the max-
imum of the cluster near the target persons maximum
ankle position, tfar for the maximum of the cluster
near the target persons minimum ankle position, and
sclose and sfar respectively. We obtain the close ra-
tio by taking the ratio between the targets close height
and the sources close height, and similarly for the far
ratio. Given average ankle position asource, the scale
for this frame is interpolated between these two ratios
in the same way as the translation is interpolated as
described in the following equation,

scale =
tfar
sfar

+
asource − amin
smax − smin

(
tclose
sclose

−
tfar
sfar

) (5)

5. Video to Video Synthesis

5.1. Set up

Let xT1 = {x1, x2, . . . , xT } be a sequence of ex-
tracted pose from the source video frames. Let yT1 =
{y1, y2, . . . , yT } be the sequence of corresponding real
images. Our goal is to learn a mapping function which
can convert xT1 to a sequence of output video frames,
G(x)T1 = G(x)1, G(x)2, . . . , G(x)T , so that the con-
ditional distribution of G(x)T1 given xT1 is identical to
the conditional distribution of yT1 given xT1 . That is

p(G(x)T1 |xT1 ) = p(yT1 |xT1 ) (6)

Through matching the above conditional distribu-
tions, the model can learn to generate photorealis-
tic and temporally coherent output sequences, which
seems to be captured by a video camera.

For the conditional distribution matching task, we
adopt a conditional generative adversarial network
framework. Let G be a generator that can map an in-
put source image sequence to a corresponding output
image sequence: G(xT1 ). We train the generator by
solving the minimize-maximize optimization problem
given by

max
D

min
G
EyT1 ,xT1

[logD(yT1 , x
T
1 )]

+ ExT1
[log(1−D(G(xT1 ), xT1 ))]

(7)

where D is the discriminator and G is the gen-
erator. To solve this equation, we should minimize
the Jensen-Shannon divergence between p(G(x)T1 |xT1 )
and p(yT1 |xT1 ) [20].

5.2. Sequential generator

To simplify this video-to-video synthesis problem,
we make a Markov assumption where we factorize
the conditional distribution p(G(x)T1 |xT1 )) to a prod-
uct form as follows:

p(G(x)T1 |xT1 ) =
T∏
t=1

p(G(x)T1 |G(x)t−1
t−L, x

t
t−L) (8)

which means we assume the video frames can
be generated sequentially. The generation of the
t-th frame G(x)t only depends on three input:
a)current source extracted poses xt, b) past L
source extracted poses xt−1

t−L, and c) past L gen-
erated images G(x)t−1

t−L. In order to model the
conditional distribution p(G(x)T1 |G(x)t−1

t−L, x
t
t−L), we

train a feed-forward network Q using G(x)T1 =
Q(G(x)t−1

t−L, x
t
t−L). By applying the function Q in a

recursive manner, we obtain the final output G(x)T1 .
Considering the video contains much redundant in-

formation, we can use the optical frame to warp the
current frame to generate an estimated next frame, if
the optical frame from the current frame to the next
frame is known. Except for some occluding areas, this
estimation process would be largely correct. We model
Q based on the observation:

Q(G(x)t−1
t−L, x

t
t−L) = mt�h(t)+(1−mt)wt−1(G(x)t−1)

(9)
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The definitions of Equation (9) are:
1: an image with all ones.
�: the element-wise product operator.
ht: the hallucinated image, which is the image

generated from the scratch. It can be expressed as
ht = H(G(x)t−1

t−L, x
t
t−L)

mt: the occlusion mask, which can be expressed
as mt = M(G(x)t−1

t−L, x
t
t−L), with continuous values

between 0 and 1. M is the mask prediction function.
wt−1: optical flow from G(x)t−1 to G(x)t, which

can be expressed as wt−1 = W (G(x)t−1
t−L, x

t
t−L). W

is the optical flow prediction function.
Therefore, the first part mth(t) is used to gener-

ate hallucinate new pixels. The second part (1 −
mt)wt−1(G(x)t−1) corresponds to the pixels that
warped from the previous frames. Here, our occlusion
mask M is soft, which can better handle the zoom in
and zoom out scenario. To be specific, if we only warp
the previous frames, the object will become blurrier
when the source person is moving closer to the camera.
We need to synthesize new details in order to increase
the resolution of the person. Therefore, we can add de-
tails by gradually blending the warped pixels and the
newly synthesized pixels through using a soft mask.

5.3. Image to Image Translation

In image to image translating stage, we design a
system to learn the mapping from the normalized pose
stick figures to images of the source person with ad-
versarial training.

Now we detail our training system as shown in the
Training setup of Figure 1. We use pose detector P
to obtain a corresponding pose stick figure x = P (y)
given frame y from the original source video. Dur-
ing training, we use corresponding (x, y) pairs to learn
a mapping G which synthesizes images of the source
person given pose stick x.

Through adversarial training with discriminator D
and a perceptual reconstruction loss distance using a
pretrained VGGNet, we optimize the generated output
G(x) to resemble the ground truth target subject frame
y. Discriminator D attempts to distinguish between
real image pairs (i.e. (pose stick figure x, ground truth
image y)) and fake image pairs (i.e. (pose stick figure
x, model output G(x)).

Our transfer process is also shown in Figure 1. Sim-
ilarly to training, pose detector P extracts pose infor-

mation from target frame y yielding pose stick figure
x. Then we adopt pose normalization to transform the
targets original pose x to be more consistent with the
poses in the source video x. We then pass the nor-
malized pose stick figure x into our trained model G
to obtain an image G(x) of our target person which
corresponds with the original image of the source y.

5.4. Objective Function

We train the sequential video synthesis function Q
by solving

min
F

max
DI

LI(Q,DI) + max
DV

LV (Q,DV )) + λWLW (Q)

(10)

where LI is the loss on images defined by the image
discriminator DI , LV is the loss on video defined by
the video discriminator DV , and LW (Q) is the flow
estimation loss.

The image-conditional GAN loss LI is

LI = EφI(yT1 ,xT1 )[logDI(yi, xi)]

+ EφI(G(x)T1 ,x
T
1 )[log(1−DI(G(x)i, xi))]

(11)

Similarly, the video-conditional GAN loss LV is

LV = EφV (wT−1
1 ,yT1 ,x

T
1 )[logDV (yi−1

i−K , w
i−2
i−K)]

+ EφV (wT−1
1 ,G(x)T1 ,x

T
1 )[log(1−DV (G(x)i−1

i−K , w
i−2
i−K))]

(12)
Recall that we synthesize the video G(x)T1 by ap-

plying Q recursively. The flow loss LW consists of
two parts. One is the warping loss during the flow
warps from the previous frame to the next frame, the
other is the endpoint error between the ground truth
and the estimated flow.

5.5. Feature Matching Loss

In equation (12), in addition to the loss terms, we
use the discriminator feature matching loss[21] and
VGG feature matching loss[22] since they can improve
the convergence speed and training stability.

Through adversarial training with discriminator D
and a perceptual reconstruction loss dist using a pre-
trained VGGNet, we optimize the generated output
G(x) to resemble the ground truth target subject
frame x. For VGG feature matching loss, we use
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Figure 4. Two stages coarse to fine training

the VGG network as a feature extractor and mini-
mize L1 losses between the extracted features from
the real and the generated images. In particular, we
add

∑
i

1
Pi

[||Ψ(i)(x)−Ψ(i)(G(x))||1] to our objective,
where Ψ(i) denotes the i-th layer with Pi elements of
the VGG network.

6. Network Architecture

The neural network consists of two main parts, i.e.
Generator and Discriminator. The generator tries to
produce fake images to fool the discriminator and the
discriminator learns to distinguish the real and fake
images. In this paper, we adopt an course-to-fine train-
ing mechanism to train the generate images. In the
first round, we set the densepose labels and real im-
age as input and send them to the generative model
to generate fake images. The fake image should have
similar appearance as the real images. Since the fake
images contain more detailed information about the
person and background than openpose labels, in the
second round, we treat both the openpose labels and
first-round generated images as input and retrain the
whole model. The stage-round results should much
better than the first-round results.

6.1. Generator

We divide our training process in two stages. In
the first stage, the network takes in a number of ex-
tracted poses xtt−L and generated frames G(x)t−1

t−L in
last L steps as input. The extracted poses are concate-
nated together and undergo several residual blocks to
form intermediate high-level features. We apply the
same processing for the previously generated images.
Then, these two intermediate layers are added and fed
into two separated residual networks to output the in-
termediate image h̃t as well as the flow map w̃t and the

Figure 5. Pose generated for the face and the ground truth
face image. The Densepose extracted pose provided the la-
bel for the left and rigth face.

mask m̃t. The flow map is used to warp the previous
frames, and then combine with the intermediate frame
to output the final frame. The final image then used
as input to generate next frame and so on. In the sec-
ond stage, we use the extracted pose, images generated
from last L steps and the output of the first stage (gen-
erated image) as the new input. Training the model in
the similar way as aforementioned method, we can get
well-trained generator.

6.2. Discriminator

As using multiple discriminators has been shown
beneficial in mitigating the model collapse problem in
GAN training [23][24][25]. We use two types of dis-
criminators in our approach, one for images and one
for video. The purpose of image discriminator DI is
to ensure that each output frame resembles a real im-
age given the same source image. For DI , we adopt
the multi-scale PatchGAN architecture, it takes both
input maps and output images and evaluate multiple
feature scales similar to pix2pixHD. This conditional
discriminator should output 1 for a ”true” pair (yt, xt)
and 0 for a ”fake” pair (G(x)t, xt). The purpose of
video discriminator DV is to ensure that consecutive
output frames resemble the temporal dynamics of a
real video given the same optical flow. It is also a
conditional discriminator. While DI conditions on the
source image, DV conditions on the flow. Let wt−2

t−K
be K − 1 optical flow for the K consecutive real im-
ages xt−1

t−K . This conditional discriminator DV should
output 1 for a ”true” pair (xt−1

t−K , w
t−2
t−K) and 0 for a

”fake” one (G(x)t−1
t−K , w

t−2
t−K).
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Figure 6. Generated image without face transferring (left)
and with face transferring (right). Transferred face from
ground truth gives much more details.

7. Face Transferring

As most details are lost in the face in the gener-
ated video, we add another trick to directly transfer the
face image from the ground truth video in the test set
to the generated video. The intuition of this transfer-
ring is that with different poses, the details on the face
is not changed. The only difference on face between
different poses is the direction of the face. So if we
can search among the ground truth images for the face
with most similar direction, we can directly transfer
the ground truth face to substitute the generated face.
The similarity defined for two faces is:

r =
Sleft
Sright

which is the ratio of the area between the left and right
faces. And this ratio can define the direction of the
face, as can be seen in Figure 5.

Figure 7. (a)-(c) shows three different examples of gener-
ated figures. On the left side are the images generated by
the model after the first-round training. On the right side
are the images generated by the model after the 2 rounds
training.

Some examples of the transferred image are shwon
in Figure 6

8. Experiments

8.1. Course-to-fine Training

We jointly train the generator and discriminator.
During evaluation, we extract the densepose of the
source person and take the densepose as input to gen-
erate fake images. The fake images show the target
person but the pose is extracted from the target person.

In our first-round training, we take the densepose
labels and ground images of the source person as input
to generate fake images. In the second-round training,
we send the generated fake images, densepose labels
and ground images of the source person to the model
to train the whole network.

8.1.1 Qualitative Comparison

We compare the results generated by first-round train-
ing and second-round training. Some examples are
shown in Figure 8. The left column is the pose ex-
tracted from the true image, the middle column is the
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Figure 8. Evaluation based on the IoU of the generated pose. (a) shows the source video and the extracted pose. (b) and (c)
show the generated figure by model after round 1 and round 2 respectively and below are there extracted pose. We use the
IoU of the generated pose to evaluate the generated images.

pose of the first-round results and the right column is
the second-round pose results. In the first-round pose
result, the arms, especially the right arm, of the girl are
not detected. But we can see the second-round results
contains both arms which is closer to the real pose.
The results show the boundaries are clearer and the
poses are more accurate in the second-round results.

8.1.2 Quantitative Comparison

To quantitative evaluate our proposed course-to-fine
mechanism, we propose a new evaluation metric to
measure the distance between the generated poses and
ground truth poses.

We first extract the densepose labels x0 for the
source person. After first-round training, we transfer
the pose from the source person to the target person
using our generative model. For the generated target
person who has the same pose as the source person, we
use densepose again to extract the pose labels x1. We
compute the IoU (Intersection over Union) between
the original densepose and the generated pose.

IoU =
x0 ∩ x1
x0 ∪ x1

(13)

We use the same strategy to compute the IoU be-
tween the original densepose and densepose result
generated in the second-round. The larger the IoU
is, the closer between the generated pose and ground

truth pose. In our experiment, we found that the IoU
of the second-round is 10% higher than the first-round
which verify the efficiency of our proposed course-to-
fine training method.

9. Conclusion

In this project, we proposed a course-to-fine train-
ing methods for human pose transferring. We train a
generative model to generate images according to the
input human poses. To accelerate the training pro-
cess of the generative model, we use low-resolution
images as input and output to train the model. Dur-
ing test stage, we extract poses from source person
and apply this pose to the target person. We quanti-
tatively and qualitatively compare our results gener-
ated by the first-round and second-round training. The
second-round training improve the accuracy by 10%
which shows the efficiency of our proposed course-to-
fine method. We refine the result by proposing a face
transfer method from the ground truth images to the
generated images. Some generated results are shown
in this paper.
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