
2019 Spring CS141 Final Report

Deep Learning & Optimizing Matrix Multiplication

Zishen Wan

May 2019

1 Introduction

Neural networks have become ubiquitous in applications including computer vision, speech recognition and natural language
processing. Matrix-Matrix multiplication (M×M) is a basic building block in these wide range of neural networks and deep
learning applications.

In convolutional neural networks (CNN), fully connected layers are implemented with matrix multiplication, and more
than 96% of the connections are in the FC layers [1]. Figure 1 shows how a matrix multiplication is used for the FC layer.
The height of the filter matrix is the number of 3-D filters(M) and the width is the number of weights per 3-D filter (input
channels(C) × width (W) × height (H)); the height of the input feature maps matrix is the number of activations per 3-D
input feature map (C ×W ×H), and the width is the number of 3-D input feature maps (N); finally, the height of the
output feature map matrix is the number of channels in the output feature maps (M), and the width is the number of 3-D
output feature maps/batch size (N). Similarly, the CONV layer in a DNN can also be mapped to a matrix multiplication
using a relaxed form of the Toeplitz matrix.

Figure 1: Mapping to matrix multiplication for fully connected layers.

In recurrent neural network (RNN), M×M are performed on the new input and the hidden state at each time step,
producing a new hidden state and the output. LSTM is a widely used structure of RNN cell that provides more complex
hidden unit computation. Each LSTM cell can be decomposed into eight Matrix Multiplication operations, two for each:
input gate, forget gate, output gate, and one temporary memory cell.

During M×M, the operation time and memory access is usually the bottleneck[2], especially when the matrix is larger
than the cache capacity. Considering the case that B ×C = A, if each matrix is 4096×4096 and each element is 4-byte,
then each matrix is 64MB. With a naive M×M implementation, it will take hours to get the result with 16MB cache.
Such speed is unacceptable for deep learning applications, especially for real-time applications that are latency-sensitive,
such as pedestrian detection in an autonomous vehicle. Therefore, optimizing and speedup matrix-multiplications is very
important and something we should consider when building AI-enabled systems.

2 Baseline: Naive Matrix Multiplication

source code: void naivemm
Our baseline is Naive Matrix Multiplication. Figure 2 [3] shows how rows of B are combined with columns of C. This

combination involves the element-wise multiplication of the values from B’s row and the C’s column and final summing of
all the elements of the resulting vector, i.e., doing an inner product. Each such inner product produces the value for one
element of A. The pseudo-code is listed below.

1

Figure 2: Naive Matrix Multiplication

Algorithm 1 Naive Matrix Multiplication

Input: Matrix B, C
Output: Matrix A
1: for (i = 0; i < out rows; i + +) do
2: for (j = 0; j < out cols; j + +) do
3: for (k = 0; k < in cols; k + +) do
4: A[i][j] = B[i][k] ×C[k][j]

We test the execution time of naive M×M on different input matrix sizes, the results are summarized in Table 1.

Table 1: Execution time of naive M×M of different sizes

8x8 32x32 128x128 256x256 512x512 1024x1024
naive 0.000004 0.000222 0.009652 0.086646 0.852689 16.331204

We can find that the execution time is short when the size of matrix is small, but will increase dramatically when the
size of matrix becomes larger. If the naive computation is ordered such that a single row of B is combined successively
with each of the columns of C, then there is apparently good reuse of the elements of the row of B. However, considering
the memory hierarchy in Figure 3[3], the size of a row in B is often larger than the memory, e.g., cache, closest to the
compute units. This results in poor reuse, because values from B in the small memory cannot be held long enough to be
available to be reused for computation on the next column of C. Therefore they must be reloaded from the next level of
the memory hierarchy resulting in significant inefficiency.

Figure 3: Memory Hierarchy of Computer

Through examining the algorithm, we can find: in the first loop, we read row i of B into memory; in the second loop, we
read A(i, j) into memory and read column j of C into memory; in the third loop, we do multiply-and-add (MAC) operation
and write A(i, j) back to slow memory. Based on previous analysis and assuming we fetch and write through DRAM, the
total slow memory fetches we actually have are N3(C)+N2(B)+2N2(Write & Read A) = N3+3N2, where N is the size of
input square matrix. If N = 1024, we totally fetch 1076887552 (˜1077 Million) times from DRAM. Assuming each DRAM
fetch cost 100 cycles and the frequency is 2GHz, then 1077 Million DRAM fetches will take 1077×106×100× (1/(2×109))
= 53.85s. If N = 4096, we will have about 68 Billion slow memory fetches, which will take 1 hour to run task under the
same computer condition.

3 Tiled Matrix Multiplication

source code: void tiling
To ameliorate the memory inefficiencies that result from calculating the inner products (naive method) on full rows

and columns, we can partition or tile the computation to fit in the various levels of the memory hierarchy. The principle
behind tiling is illustrated in Figure 4[3], where the inner products are done on a 2-D partition, or tile, of the full matrices.
For each pair of tiles in the matrices, the same naive approach can be employed on the partial rows of matrix B and partial
columns in the matrix C to create a tile of partial results in the matrix A. As computations for all the pairs of tiles are
done the subsequent partial results are added to the partial results in A from previous partial result computations. If

2

a single tile of B is used repeatedly to create a series of partial results, and if the tile is small enough to be held in the
memory closest to the compute units, then reuse in that memory will be higher.

Figure 4: Tiled Matrix Multiplication

Algorithm 2 Naive Matrix Multiplication

Input: Matrix B, C
Output: Matrix A
1: for (it = 0; it < out rows; it+ = T) do
2: for (jt = 0; j < out cols; jt+ = T) do
3: for (kt = 0; k < in cols; kt+ = T) do
4: for (i = it; i < it + T ; i + +) do
5: for (j = jt; j < jt + T ; j + +) do
6: for (k = kt; k < kt + T ; k + +) do
7: A[i][j] = B[i][k] ×C[k][j]

We test the execution time of tiling matrix multiplication on different input matrix sizes and tile sizes. The results are
summarized on Table 2 and Figure 5.

Table 2: Execution time of tiled M×M of different input sizes and tile sizes

8x8 32x32 128x128 256x256 512x512 1024x1024
naive 0.000004 0.000222 0.009652 0.086646 0.852689 16.331204

tiling (tile size=N/2) 0.000003 0.000211 0.009269 0.078224 0.851741 7.519277
tiling (tile size = N/4) 0.000004 0.000212 0.009382 0.076737 0.740546 7.444965
tiling (tile size = N/8) 0.000006 0.000214 0.009281 0.075443 0.628263 7.345624

Figure 5: Speed up for tiled matrix multiplication under different matrix sizes

We can find that when the size of input matrix are small, the execution time for naive and tiled method are almost
same, but when size = 1024, tiled method has significant advantages and can achieve 2.2x speed up. As analyzed before,
this is because after titled the partition data can be stored in cache and we don’t have to fetch them from DRAM, which
can reduce execution time. For different tile sizes, we find that N/8 is most efficient, because in a certain range, the smaller
partitioned data, the higher probability they can be all stored in cache, resulting in less execution time.

3

4 Extra Credit: Permutation Matrix Multiplication

source code: (1)void permutation; (2)void tiling permutation
In naive and tiled M×M method, we find every time we fetch different elements of B and C and do MAC operation,

which leave space for us to explore more efficient data reuse method. To further optimize M×M efficiency, we can fetch the
same element from B every time and perform multiplication with all the elements in C. After that, we fetch the second
elements from B and do the same operation as before.

Looking at the code, it’s obvious that the index of matrix has nothing with the order of for loop. So we can exchange
the last two for loops, in this case, index of B will keep the same inside the innermost loop and we don’t need to fetch it
from memory, which increase the efficiency. The results are summarized in Table 3 and Figure 6.

Algorithm 3 Permutation Matrix Multiplication

Input: Matrix B, C
Output: Matrix A
1: for (i = 0; i < out rows; i + +) do
2: for (k = 0; k < in cols; k + +) do
3: for (j = 0; j < out cols; j + +) do
4: A[i][j] = B[i][k] ×C[k][j]

Table 3: Execution time of permutation M×M of different input sizes

8x8 32x32 128x128 256x256 512x512 1024x1024
naive 0.000004 0.000222 0.009652 0.086646 0.852689 16.331204

permutation 0.000003 0.000222 0.009127 0.070145 0.552844 4.412685
permutation + tiling* 0.000007 0.000217 0.009215 0.069065 0.540312 4.391978

* tile size = N/8

Figure 6: Speed up for permutation matrix multiplication under different matrix sizes

From 3 and Figure 6, we can find permutation M×M method have significant advantages over naive and tiling, which
can achieve 3.70x speed up than naive method when N=1024. Combining permutation and tiling, we can achieve highest
3.71x speed up for N=1024 now. Therefore, optimizing data reuse will significantly reduce execution time.

5 Extra Credit: Loop Invariant Matrix Multiplication

source code: (1) void naivemm invariants v1; (2) void permutation invariants v1; (3) void tiling invariant v1; (4) void
naivemm invariants v2; (5) void permutation invariants v2; (6) void tiling invariant v2;

Apart from multiplication of elements in matrix, the calculation of matrix’s index will also take up execution time.
Looking into the code of naive method, we find that a index keeps the same inside innermost loop. However, we still
calculate it every time, which is useless and time consuming. Therefore, we can move a index into the second loop so we
don’t need to calculate it in the innermost loop. We call it loop invariant v1 algorithm.

4

Algorithm 4 Loop Invariant v1 Matrix Multiplication

Input: Matrix B, C
Output: Matrix A
1: for (i = 0; i < out rows; i + +) do
2: for (j = 0; j < out cols; j + +) do
3: a index = i ∗ out cols + j
4: for (k = 0; k < in cols; k + +) do
5: b index = i ∗ in cols + k
6: c index = k ∗ out cols + j
7: A[a index]+ = B[b index] ×C[c index]

Inspired by loop invariant v1 algorithm, we can minimize unnecessary index calculations to the greatest extent. So we
come up with loop invariant v2 algorithm, making sure we only calculate the index parameters when they changes.

Algorithm 5 Loop Invariant v2 Matrix Multiplication

Input: Matrix B, C
Output: Matrix A
1: for (i = 0; i < out rows; i + +) do
2: a i outcols = i ∗ out cols
3: b i incols = i ∗ in cols
4: for (j = 0; j < out cols; j + +) do
5: int a index = a i outcols + j
6: for (k = 0; k < in cols; k + +) do
7: b index = b i incols + k
8: c index = k ∗ out cols + j
9: A[a index]+ = B[b index] ×C[c index]

We test the execution time of loop invariant algorithm on naive, titled and permutation method, the results are
summarized in Table 4 and Figure 7. We can find loop invariant algorithm can further reduce run time and improve
efficiency. We can achieve highest 4.54x speed up for N=1024 now.

Table 4: Execution time of loop invariant M×M of different input sizes

8x8 32x32 128x128 256x256 512x512 1024x1024
naive 0.000004 0.000222 0.009652 0.086646 0.852689 16.331204

naive + loop invariant v1 0.000003 0.000187 0.008808 0.065088 0.768943 14.361044
naive + loop invariant v2 0.000004 0.000183 0.008617 0.063601 0.715668 12.711219

tiling* 0.000006 0.000214 0.009281 0.075443 0.628263 7.345624
tiling*+ loop invariant v1 0.000007 0.000188 0.008681 0.067209 0.547763 6.512802
tiling*+ loop invariant v2 0.000004 0.000182 0.008632 0.064516 0.527266 6.297586

permutation 0.000003 0.000222 0.009127 0.070145 0.552844 4.412685
permutation + loop invariant v1 0.000003 0.000186 0.008034 0.057647 0.447837 3.715339
permutation + loop invariant v2 0.000003 0.000183 0.007951 0.057388 0.450879 3.596119

* tile size = N/8

6 Extra Credit: Loop Unrolling Matrix Multiplication

source code: (1) void naivemm unrolled; (2) void tiling unrolled; void permutation unrolled; (3) void tiling invariant v2 unrolled;
(4) void permutation invariants v2 unrolled

Considering the assembly code of M×M implementation, MACs operation/cycle ≈ 1/6, which means we have loop
iteration overhead. The loop overhead can be amortized over more computation, so we can perform two MACs computation
in the innermost loop every time. Now MACs operation/cycle ≈ 2/8 = 1/4. We call it loop unrolling algorithm.

We measure execution time of loop unrolling algorithm on naive, tiling, permutation and loop invariant method. We
test it for unrolling step size=2 and 4 separately, the results are summarized in Table 5 and Figure 8. We can find loop
unrolling algorithm can significantly reduce run time, and s=4 is better than s=2 because it can further reduce loop

5

Figure 7: Speed up for loop invariant matrix multiplication under different matrix sizes

Algorithm 6 Loop Unrolling Matrix Multiplication

Input: Matrix B, C
Output: Matrix A
1: for (int i = 0; i < out rows; i + +) do
2: for (int j = 0; j < out cols; j + +) do
3: for (int k = 0; k < in cols; k = k + 2) do
4: int a index = i ∗ out cols + j
5: int b index = i ∗ in cols + k
6: int c index = k ∗ out cols + j
7: A[a index] = A[a index] + B[b index] ×C[c index] + B[b index + 1] ×C[c index + out cols]

iteration overhead. Combining all permutation, invariant v2 and unrolling method, we finally achieve 1.846584s for
N=1024 matrix multiplication, which is 8.844x speed up compared with naive method!

Figure 8: Speed up for loop unrolled matrix multiplication under different matrix sizes

7 Summary and Further work

Matrix multiplication is ubiquitous in deep learning and optimizing it is very important for AI-enabled systems. In this
project, we employ tiling, permutation, loop invariant and loop unrolling method to maximize data reuse and minimize
unnecessary multiplication operation. Compared with N=1024 naive implementation (16.331204s), we finally achieve
1.846584s execution time and 8.844x speed up.

6

Table 5: Execution time of loop unrolled M×M of different input sizes and unrolled sizes

8x8 32x32 128x128 256x256 512x512 1024x1024
naive 0.000004 0.000222 0.009652 0.086646 0.852689 16.331204

naive + unrolled (s*=2) 0.000003 0.000187 0.008808 0.065088 0.768943 14.361044
naive + unrolled (s=4) 0.000002 0.000098 0.005702 0.039117 0.463527 9.501525

tiling** 0.000003 0.000211 0.009169 0.078224 0.881741 7.519277
tiling + unrolled (s=2) 0.000008 0.000156 0.007094 0.048602 0.417193 4.813046
tiling + unrolled (s=4) 0.000009 0.000119 0.005507 0.037015 0.312987 3.876697

tiling + invariant v2 + unrolled (s=4) 0.000009 0.000121 0.005262 0.034388 0.296961 3.589833
permutation 0.000003 0.000222 0.009127 0.070145 0.552844 4.412685

permutation + unrolled (s=2) 0.000003 0.000131 0.006746 0.432880 0.336451 2.637761
permutation + unrolled (s=4) 0.000003 0.000119 0.005208 0.033122 0.258809 2.029511

permutation + invariant v2 + unrolled (s=2) 0.000002 0.000115 0.005817 0.037329 0.290623 2.263806
permutation + invariant v2 + unrolled (s=4) 0.000002 0.000109 0.004771 0.030176 0.235661 1.846584

* s: unrolling step size
** tile size = N/8

There are lots of other tricks we can use to optimize matrix multiplication, such as pruning, quantization, precision
and computation transform optimizations (e.g Gauss’ transform, Strassens transform and Winograd transform).

References

[1] I. Sutskever A. Krizhevsky and G. E. Hinton. Imagenet classifica- tion with deep convolutional neural networks. In
NIPS, 2012.

[2] S.Yao K.Guo B.Li E.Zhou J.Yu T.Tang N.Xu S. Song Y. Wang J.Qiu, J.Wang and H. Yang. Going deeper with
embedded fpga platform for convolutional neural network. In FPGA, 2016.

[3] U.Gupta L.Pentecost J.Zuckerman Z.Yedidia D.Brooks, V.Reddi. Cs141 lecture notes. 2019.

7

