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Web Traffic Time Series Forecasting 

INTRODUCTION 
Time series data are gathered everywhere in our daily life, from online webpage traffic to 

airline passenger volume. Time series data are not only prevalent but also priceless; correct 
usage of them could make the future foreseeable and hence lead to big success. Big technology 
companies like Facebook invest a large amount of time and money into developing tools, such as 
Prophet, to forecast time series data (Taylor and Letham). Each member of our group is intrigued 
by the value of forecasting time series data and wants to master the techniques to perform it. We, 
therefore, select a dataset that contains web traffic time series data from Wikipedia and use part 
of it to predict the rest. We use symmetric mean absolute percentage error (SMAPE) to measure 
our forecasting accuracy.  We investigate different models and techniques of forecasting time 
series data and try to learn why they work or not work.  

 
DATA 

We gather our data from a Kaggle competition. The dataset contains web traffic views of 
approximately 145 thousand Wikipedia pages from July 1, 2015, until September 1, 2017. After 
an exploratory analysis on our data, we find that the dataset counts web traffic for Wikipedia 
articles in seven different languages. It also differentiates web traffic based on devices (desktop 
and mobile-web) and accessing types (spider and all agents).  

We wonder whether the language that each article is in will affect the view counts of that 
article. From Figure 1, we confirm that the total numbers of views per day do depend on 
languages. In particular, articles in English has higher views than other languages. We also see 
that Spanish articles have strong weekly patterns and that English and Russian plots show large 
spikes around day 400. 

 
Figure 1.  The total number of views per day for different languages 



Since Figure 1 shows some periodic structures, we use Fast Fourier Transform (FFT) to 
further explore weekly pattern. The peaks in FFT show us the strengths of periodicity. We see 
that Spanish articles, shown in Figure 2, share the strongest periodic features. All the languages 
have periodic features at 1 and 1/2 week. This is not surprising since browsing habits may differ 
on weekdays compared to weekends. 

 
Figure 2.   Fast Fourier Transform for Spanish Web Traffic 

 
Yearly patterns in these view counts can also be discovered by autocorrelation. After 

random shuffling the data and splitting them into five batches, we graph the average 
autocorrelation of each batch with respect to the lags, shown in Figure 3. All five batches exhibit 
large autocorrelations at lags around 365 and 730, which are multiples of the number of days in 
one year. Therefore, the data also have yearly seasonal effects. 

 
Figure 3.  The average autocorrelation of each batch with respect to the lags 

 
Stationarity is an important feature of time series data. Using Dickie-Fuller test, we find 

87.54% data to be stationary, meaning that they each have a constant mean, variance and also 
autocorrelation overtime. This contradicts with Figure 3, which shows strong time-dependent 
autocorrelation for all data. After inspecting both our code and data, we figure out the cause of 



Figure 3 showing changing autocorrelation. It is due to the shuffling of our data before we take 
the average of the autocorrelation. The approximate 13% data which are not stationary probably 
have strong trend and seasonality, and they are spread out in the five batches affecting the 
average autocorrelation.  

METHODOLOGY 
The setup of the modeling problem is: given web traffic of each Wikipedia article from 

July 1, 2015 until July 31, 2017, we forecast the web traffic of each article from August 1, 2017 
until September 1, 2017. We then compare our forecasts with the true data in these two months 
using SMAPE, which is defined as: 

. 
SMAPE is favored here instead of Mean Squared Error (MSE) or Mean Absolute Error (MAE) 
because MSE and MAE will penalize base on the absolute error which will effectively ignore the 
prediction error of articles with little views. This is not what we want since most of the articles in 
our dataset don’t have large numbers of views.  

 
1. Baseline 

We start with setting up a baseline model so that we have a sense of what 
minimum prediction performance we should strive for. Our baseline model is that we use 
the median of an article’s past two months’ traffic to forecast its traffic in the next two 
months. Here we choose the median rather than the mean because we have many random 
spikes in our dataset which are essentially outliers. These spikes can distort the mean 
traffic and result in positive bias in our forecasting while the median is less affected by 
these spikes. We choose the last 2 month instead of the last 2 years as the window to 
calculate the median because the traffic last 2 months are more indicative of the current 
popularity of an article. As an example, some articles of trending events may have had 
high numbers of views in the past but have lost their popularity. For these articles, using a 
smaller window for the median calculation results in more accurate future traffic 
estimation. The following table shows the accuracy of each of the baseline models. 

 
Table 1. Comparing the baseline models 

Baseline Models Mean of  
the past 2 years 

Median of  
the past 2 year 

Median of  
the past 2 month 

SMAPE 69.5 52.8 39.7 

 
2. ARIMA 



If our objective is to predict the change in the web traffic so that we can make 
preparation for its future increase/decrease, then we need a model that can capture the 
trend and seasonality in our dataset rather than predicting a single value all the time. We 
choose Auto-Regressive Integrated Moving Average (ARIMA) as the first model to 
explore. Auto-Regressive Moving Average (ARMA)  assumes the time series has the 
following property: 

 
where is our variable of interest at time t in the time series and is the noise at time t.X t εt  

is assumed to be a linear combination of its p previous historical values and its qX t  
previous noise. ARIMA is like ARMA applied to the difference ( - ) of a timeX t X t−1  
series rather than the time series itself ( ). In our model, we choose the hyperparameterX t  
p and q to be 7 because we want the model to focus on the traffic of the past week. 
Estimating the parameters for ARIMA is time-consuming because we have 145 thousand 
articles and we have to fit an ARIMA model for each article. Therefore, we only tested 
ARIMA on 1% of the articles that have the highest number of views (in terms of the 
median views from the past 2 years). Unfortunately, the prediction accuracy of ARIMA 
is less accurate than our baseline model on the same subset of articles. 
 

Table 2. Comparing ARIMA and the baseline model 
Models Median of the past 2 month ARIMA 

SMAPE (on a subset) 38.8 55.4 

 
ARIMA-based methods do not outperform our baseline model. We think the 

reason is that the most-viewed time series in our dataset are nonstationary so that the 
assumptions of ARIMA are not met. 

 
3. Encoder-Decoder GRU 

We notice in our exploratory analysis that most of the web traffic time series in 
our dataset do not exhibit a strong trend or seasonality. Another thing we notice is that for 
those web traffic time series that do have obvious patterns, their patterns are very 
different from each other. In other words, they are generated by different processes. 
Therefore, we need to take into account this observation, which means that either (1) we 
need to use some predefined criteria to categorize the time series in our dataset, or (2) we 
need to use a model that is flexible enough to learn different patterns for different data. 
We go for the second path and the model of our choice is encoder-decoder RNN. We end 
up using an encoder-decoder GRU with 200-dimensional latent space. We use the data of 



the past 200 days as the input and try to predict the traffic of the next 60 days. The reason 
for choosing GRU instead of vanilla RNN or LSTM is that: (1) compared to vanilla 
RNN, GRU can better capture the long term dependency in the time series (2) compared 
to LSTM, GRU is computationally cheaper (Keras even has a GRU optimized for GPU 
which is even faster).  

For the input, we use the following features: 
● the web traffic of this particular article on this particular day 
● the median web traffic of this particular article 
● the web traffic of this particular article a week ago 
● the web traffic of this particular article a quarter ago 
● the web traffic of this particular article a year ago 
● all categorical features (accessing device and type, language) one-hot encoded. 

We use the median traffic as one of our features because articles with very high and very 
low views show different patterns. For example, articles with very high views are more 
likely to show a strong weekly pattern.  We also add all categorical one-hot encoded 
values as features because time series of different accessing devices, accessing types and 
languages behave differently as well. We use web traffic a week/quarter/year ago as our 
features because we want the neural network to notice the seasonality in our data. 
Theoretically, GRU should be able to detect those patterns by itself, but in practice, it 
works better if those features are provided to GRU.  

Before feeding our data to the neural network, we first log-transform the daily 
views so that the long-tailed distribution of the daily views become more ‘normal’. We 
then normalize the log-daily-views to make the optimization faster and reduce the chance 
of being stuck in local minima. We choose to use MAE as our loss function to 
approximate SMAPE. 

Our encoder-decoder GRU model reaches a SMAPE of 38.2. 
4. Prophet 

Prophet is a model for predicting time-series data released by Facebook. It is 
based on a self-additive model that is used to fit nonlinear trends such as year, week, 
season and vocation. After shuffling our data and randomly choose 1000 article, we 
implement Prophet model on them and find the SMAPE is 97.43, which is larger than our 
baseline and aforementioned model. We consider that the reason for high SMAPE of 
Prophet is most of our data have low traffic and no strong seasonality, however, Prophet 
is more suitable for data with strong periodicity.  

 

CONCLUSION AND FUTURE WORK 
Our project aims to forecast the web traffic of Wikipedia. We start with a baseline that 

uses the median of the previous 2 months as the prediction. We then explore ARIMA and 



encoder-decoder GRU to capture the seasonality and trend in our data. ARIMA performs worse 
than our baseline in this dataset because most of our series don’t show a strong simple pattern. 
Encoder-decoder GRU reaches a SMAPE of 38.2, which is higher than our baseline but the 
improvement is limited (from 39.7 to 38.2). The first place solution in the Kaggle competition 
where we get our dataset reached a SMAPE of 35.5 with a model similar to the encoder-decoder 
GRU we use (but with more complex feature engineering and hyperparameter tuning). This 
implies that forecasting web traffic is not an easy problem. We think part of the reason of why 
this is so difficult is that many of the changes in web traffic are by nature unpredictable. For 
example, we cannot predict what time in the future will someone web-scrape Wikipedia. Another 
part of the reason is that some of the predictions require prior knowledge of the mechanism 
which generates the views. For example, if we know the next season of some popular TV show 
will premiere next month, then the the traffic to its related articles is sure to rise. Therefore, we 
think one improvement that can be made in the future is to bring external data source into the 
models. Even though there are things to be improved upon, we think we have learned a lot from 
this project. During the process of applying statistical tools and building neural networks, we 
achieve our goal of forecasting time series data.  
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Appendix I 
 
Our code for this project is available on GitHub: https://github.com/feiyu-chen96/am231-project 
 
Description of files: 

1. EDA.ipynb: exploratory analysis of our web traffic data 
2. Autocorrelation.ipynb: Implement autocorrelation to analyze weekly and yearly pattern 
3. Baseline.ipynb: Baseline model (median model) 
4. ARIMA.ipynb: Auto-Regressive Integrated Moving Average (ARIMA) model 
5. Encoder-decoder GRU.ipynb: encoder-decoder RNN(GRU) model 
6. Prophet.ipynb: Prophet model 
7. Moving-average.ipynb: moving average (MA) model 

 

https://github.com/feiyu-chen96/am231-project

