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We propose the image pre-processor for robust deep neural network 
inference hardware resistant to adversarial attacks. We design and 
simulate three image filtering algorithms—2x2 median, 3x3 median, 
and non-local means denoising. To reduce the computation and increase 
the throughput of our image pre-processor, we adopt different 
optimization methods, such as data reuse, parallelism, and 
approximations. We further examine trade-offs in designing the image 
pre-processor with voltage scaling analysis and comparing different 
architectures. 
 
Ⅰ. Robust Deep Neural Network Inference  
Deep neural networks (DNN) are shown to be vulnerable to adversarial 
attacks [1], in which imperceptible manipulation of inputs results in 
wrong behaviors, such as wrong classification. Algorithm solutions to 
protect DNNs from adversarial attacks often require large model sizes 
[2] that are unsuitable for resource-constrained end devices. 
Alternatively, Feature Squeezing [3] proposed to utilize image 
pre-processing methods to detect adversarial attacks without changing 
the DNN itself. These methods include 2x2 median filtering, 3x3 
median filtering, and non-local means denoising (NL-means denoising). 
Image pre-processing stage can limit the throughput of DNN inference 
hardware, due to large number of computations and communication 
overhead between different chips, motivating the low-overhead 
hardware implementation of the image pre-processor that can be later 
integrated with the DNN accelerator. Overall system design is shown in 
Figure 1. 
 
Ⅱ. Median Filtering 
Median filtering is a non-linear algorithm that involves sorting for the 
exact computation. Naive implementation of median filtering has high 
computational complexity with the increasing window size mainly due 
to sorting. Many studies aimed to reduce the computational complexity 
of median filtering at the algorithm level [4] [5] by leveraging different 
data structures to store and process pixel values, such as histograms or 
trees. Alternatively, faster sorting algorithms, such as Quick sort or 
Radix sort, can be utilized to accelerate median filtering.  
 
However, these algorithm-based methods can increase memory 
requirements in hardware. For instance, histogram-based median 
filtering requires a 256-bin histogram to be stored and updated for each 
operation to produce a single pixel value. In hardware, the histogram 
can be implemented as registers or a SRAM, and frequent read and 
write access for these memory elements will increase the power 
consumption. Furthermore, faster sorting algorithms often show 
irregular computational pattern due to the splitting of the array, which 
makes them unsuitable for parallelization in hardware.  
 
We aim to reduce the computational complexity of median filtering 
with 1) data reuse from previous window, and 2) removing 
computations that are unnecessary to produce a median value. As a 
window is sliding across the image, only one column changes for each 
computational step. Therefore, pixels in a window are partially-sorted 
with data reuse, and computation complexity of partially sorted arrays 
can be small even with basic sorting algorithms, such as selection sort. 
Also, only few comparisons on pixels can determine the median value 
for partially-sorted pixels, and we can eliminate unnecessary 
computations. These computational optimizations can reduce the area 
and the power consumption of the hardware, but hardwire the 
characteristics of median filtering with fixed window size, reducing the 
reconfigurability. 

 
Furthermore, we aim to increase the throughput with 1) unrolling the 
sequential sorting operation to parallel comparison and mux-trees, and 
2) pipelining. Comparison of different elements can be executed in 
parallel, and the comparison results can be used as control signals for 
mux-trees to generate a sorted array and a median value. This increases 
the combinational logic, but reduces the cycles for one sorting operation, 
and removes the storage of intermediate values during the sorting. 
Pipelining can be achieved for the modules that have sequential 
dependency. For example, preparing the next new column can be done 
while the other module is calculating the median value for the current 
window. Pipelining can increase the throughput, but the timing has to be 
carefully managed especially at the edge of images.  
 
2x2 median filter (Figure 2) takes two pixels from the new column as 
inputs, and produces the median value of the 2x2 window as the output. 
It is implemented with two submodules, which sorts the new pixels 
(sort_new) and generates the median value (generate_median), 
respectively. Sorting the new pixels requires only a single comparison 
and two 2-1 multiplexers. Generating median uses the current and the 
previous cycle’s sorted new pixels, and four comparisons and three 2-1 
multiplexer operations to get the output. These two modules are 
implemented with two-stage pipeline.  
 
3x3 median filter (Figure 3) has three submodules, which sorts the three 
pixels from the new column (sort_new), generates the median value of 
the current window (generate_median), and sorts two rightmost 
columns in the current window for the next cycle operation 
(generate_res). Submodule sort_new and submodule generate_res 
prepare the pixels to be partially-sorted, so that computations for 
generating the median value can be simplified. Submodule sort_new 
and submodule generate_median are similar to those in 2x2 median 
filter, except that the number of comparators and the multiplexers has to 
be adjusted to the new window size. Submodule generate_res takes the 
current and the previous cycle’s new three pixels, and sorts them to 
produce a 6-element sorted array, which then is used for submodule 
generate_median. These three modules are implemented as three-stage 
pipeline.  
 
Ⅲ. Non-Local Means Denoising 
In NL-means denoising [6] [7], given a discrete noisy image, the 
estimated value for a pixel is computed as a weighted average of all the 
pixels in the image, where the weights depend on the similarity between 
two pixels. The similarity between two pixels depend on the similarity 
of the intensity gray level vectors of square neighborhoods of pixels. 
This similarity is measured as a decreasing function of the weighted 
Euclidean distance. Therefore, NL-means not only compares the grey 
level in a single point but the geometrical configuration in a whole 
neighborhood. This fact allows a more robust comparison than 
neighborhood filters. 
 
Three are two main issues in the hardware implementation: 1) Trade of 
among computation complexity, power and area, 2) exponential and 
division implementation. For one pixel in image, we adopt the size of 7 
and 3 for search window and patch window separately. Therefore, we 
need to calculate 3ⅹ3ⅹ7ⅹ7 Euclidean distances to denoise one pixel, 
which will cost much in hardware. To reduce computation complexity, 
we come up with an optimized NL-means denoising method by 
distance reusing. For pixels in the first row of input image, we store the 
distances of each row of patch window in the memory. When denoising 
pixels at the second row of input image, we reuse two distances stored 
before for the specific pixel pairs with the same relative location. So we 
only need to calculate distances of one row in each patch widow. Then 
we store the newly calculated distance and one old distance in the 
memory, and reuse them when we denoising pixels at the third row. By 



iterating this procedure, we can get the whole denoising image. In this 
way, we denoise each pixel in the first row with calculating 3ⅹ3ⅹ7ⅹ7 
distances, and 3ⅹ7ⅹ7 distances for other rows, so the computational 
complexity decreases by 2/3. However, frequent read and write access 
for these distance memory elements will increase the power 
consumption and the memory area.  A detailed comparison will be 
showed in section Ⅵ. 
 
To calculate weight of each pixel in search window, we need to use 
exponential and division function, which are expensive in hardware 
implementation. Considering the accuracy of limited order Taylor 
expansion is not enough, we adopt look-up table method for 
exponential function. And we use minus and shift to achieve 22-bit 
division function. Design of NL-means denoising hardware is shown in 
Figure 4.  
 
We design two main submodules for the conventional NL-means 
denoising without the distance data reuse: 1) weight calculation for one 
patch window, 2) weight calculation for one search window and 
denoising for one pixel. For one patch submodule, we take 18 pixels 
from two compare patch windows as input and calculate the distance, 
serving as the similarity between the centered pre-denoising pixel and 
one of pixels in search window. Then we output the weight of pixel in 
search window by exp conversion. For one search window submodule, 
we take 49 weights of all pixels in search window and output the 
estimated value of centered pixel by averaging as well as normalization, 
which achieve denoising for one pixel. 
 
For the optimized NL-means denoising method with the distance data 
reuse, we design three main submodule: 1) distance calculation for one 
row in patch window, 2) weight calculation for one patch window, 3) 
weight calculation for one search window and denoising for one pixel. 
In one row of patch window submodule, we take 6 pixels from the same 
row of two comparable patch windows as input per cycle, calculate the 
distance and write them into memory. In one patch window submodule, 
we use the newly calculated distance and reuse two distances read from 
memory to calculate the weight of pixels in search window. The 
denoising module is similar with the previous method. 
 
Ⅳ. Simulation Results 
The performance of 2x2, 3x3 median filter, and non-local means 
denoising is summarized in Figure 5. We use Cadence 90nm technology 
for both synthesis and layout. For median filters, the area is measured 
after place and route using Cadence Encounter, and the energy is 
measured with Synopsys Nanosim simulation after the layout. For 
non-local means denoising, the area and the energy is measured after 
the synthesis. Note that the area and the energy is only simulated for the 
computation module, not including the memory for storing input image 
or I/O. We extrapolate the area and the power associated with the 
memory with the estimated read/write power of 90nm technology 
SRAM. We verify the correct functionality of 2x2, 3x3 median filter, 
and non-local means denoising by feeding the real images with varying 
sizes to the HDL testbench (Figure 6). Since 2x2 and 3x3 median filter 
exactly compute the median value, the output of the HDL testbench 
should match with the software-processed image. For non-local means 
denoising, we use approximation in the weight and division calculation, 
and the output of the HDL testbench might not exactly match with the 
output of software. Nevertheless, for the sufficient functionality, the 
testbench and the software outputs should be similar. We also report the 
speedup of our hardware implementation in comparison to the CPU 
runtime.  
 
Ⅴ. Effect of Voltage Scaling on Median Filters 
We examine the effect of voltage scaling on the energy and the clock 
frequency (Figure 7). Reducing the operation voltage at the expense of 

the clock frequency can be beneficial for 2x2 and 3x3 median filters 
when combined with the subsequent deep neural network (DNN) 
accelerator module, because 2x2 and 3x3 median filters have higher 
throughput when compared with the typical throughput of DNN 
accelerators [8]. Reducing the clock frequency and reducing the energy 
consumed by 2x2 and 3x3 median filters can reduce the energy of the 
overall system. We observe that our 2x2 and 3x3 median filter can 
operate at 0.35V without an error at 10MHz, which gives the 
throughput of 67 ImageNet-sized images per second. 
 
Ⅵ. Comparison of Different NL-means Architectures 
In hardware implementation, we explore three different NL-means 
architectures: 1) conventional NL-means with 18-pixel input per cycle, 
2) conventional NL-means with 6-pixel input per cycle, 3) optimized 
NL-means with 6-pixel input per cycle. We compare these three 
methods from 3 aspects: 1) area, 2) energy consumption per image, 3) 
operation cycles and speed up compared with software (Figure 8). For 
total area, 6-pixel input conventional NLM is smaller, because it doesn’t 
have extra circuit for other 12 pixels operation and doesn’t use distance 
memory to read and write. Accordingly, 18-pixel input conventional 
NLM is largest. For energy consumption without memory, the 
optimized NLM architecture is most energy saving, because it reuses 
distance and only compute 3 pixel pairs’ distance for one pixel in search 
window. But with memory, the optimized NLM will read and write 
74088 times from memory for one image. Considering the read/write 
power for the memory, the energy consumption of optimized NLM is 
about 1.8 times of 18-pixel input conventional NLM. For operation 
cycles, optimized NLM and 18-pixel input conventional NLM is about 
2.8 times faster than 6-pixel input conventional NLM, and can speed up 
about 8 times compared with software. 
 
Ⅶ. Future Work and Conclusion 
In this work, we present the hardware implementation of 2x2 median 
filter, 3x3 median filter, and NL-means denoising, which are shown to 
be effective at detecting adversarial attacks in DNNs. Our key 
contributions are 1) efficient implementation of median filters with data 
reuse and unrolled sorting operations, 2) energy and resource aware 
implementation of NL-means denoising with approximation on 
expensive calculations such as exponential units, and 3) exploring 
diverse trade-offs in designing the image-preprocessor with voltage 
scaling analysis and architecture comparisons.  
 
We think further work on efficient I/O design can reduce the energy 
consumption of median filters. SRAM read/write accounts for large 
proportion of the energy for median filters, and implementing I/O as 
streaming instead of SRAM can improve energy-efficiency. 
Furthermore, the effect of approximation in NL-means denoising can be 
studied for real adversarial attacks to ensure the robustness of our image 
pre-processor. Also, there can be diverse application of our image 
pre-processor other than robust DNN inference, such as texture 
synthesis where non-local algorithms are widely used.  
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Figure 1: Overall system design of robust DNN hardware 

 
Figure 2: Design of 2x2 median filter and its submodules 

 
Figure 3: Design of 3x3 median filter and its submodule 

 
Figure 4: Design of NL-means denoising and its submodule 

 
Figure 5: Performance summary table 

 
Figure 6: Functionality on noisy image 

 
Figure 7: Effect of voltage scaling on median filters 

 
Figure 8: Comparison of different NL-means architecture 


