
Image Pre-processor for Robust Deep Neural
Network Inference Hardware
Zishen Wan, Kyungmi Lee

We propose the image pre-processor for robust deep neural network
inference hardware resistant to adversarial attacks. We design and
simulate three image filtering algorithms—2x2 median, 3x3 median,
and non-local means denoising. To reduce the computation and increase
the throughput of our image pre-processor, we adopt different
optimization methods, such as data reuse, parallelism, and
approximations. We further examine trade-offs in designing the image
pre-processor with voltage scaling analysis and comparing different
architectures.

Ⅰ. Robust Deep Neural Network Inference
Deep neural networks (DNN) are shown to be vulnerable to adversarial
attacks [1], in which imperceptible manipulation of inputs results in
wrong behaviors, such as wrong classification. Algorithm solutions to
protect DNNs from adversarial attacks often require large model sizes
[2] that are unsuitable for resource-constrained end devices.
Alternatively, Feature Squeezing [3] proposed to utilize image
pre-processing methods to detect adversarial attacks without changing
the DNN itself. These methods include 2x2 median filtering, 3x3
median filtering, and non-local means denoising (NL-means denoising).
Image pre-processing stage can limit the throughput of DNN inference
hardware, due to large number of computations and communication
overhead between different chips, motivating the low-overhead
hardware implementation of the image pre-processor that can be later
integrated with the DNN accelerator. Overall system design is shown in
Figure 1.

Ⅱ. Median Filtering
Median filtering is a non-linear algorithm that involves sorting for the
exact computation. Naive implementation of median filtering has high
computational complexity with the increasing window size mainly due
to sorting. Many studies aimed to reduce the computational complexity
of median filtering at the algorithm level [4] [5] by leveraging different
data structures to store and process pixel values, such as histograms or
trees. Alternatively, faster sorting algorithms, such as Quick sort or
Radix sort, can be utilized to accelerate median filtering.

However, these algorithm-based methods can increase memory
requirements in hardware. For instance, histogram-based median
filtering requires a 256-bin histogram to be stored and updated for each
operation to produce a single pixel value. In hardware, the histogram
can be implemented as registers or a SRAM, and frequent read and
write access for these memory elements will increase the power
consumption. Furthermore, faster sorting algorithms often show
irregular computational pattern due to the splitting of the array, which
makes them unsuitable for parallelization in hardware.

We aim to reduce the computational complexity of median filtering
with 1) data reuse from previous window, and 2) removing
computations that are unnecessary to produce a median value. As a
window is sliding across the image, only one column changes for each
computational step. Therefore, pixels in a window are partially-sorted
with data reuse, and computation complexity of partially sorted arrays
can be small even with basic sorting algorithms, such as selection sort.
Also, only few comparisons on pixels can determine the median value
for partially-sorted pixels, and we can eliminate unnecessary
computations. These computational optimizations can reduce the area
and the power consumption of the hardware, but hardwire the
characteristics of median filtering with fixed window size, reducing the
reconfigurability.

Furthermore, we aim to increase the throughput with 1) unrolling the
sequential sorting operation to parallel comparison and mux-trees, and
2) pipelining. Comparison of different elements can be executed in
parallel, and the comparison results can be used as control signals for
mux-trees to generate a sorted array and a median value. This increases
the combinational logic, but reduces the cycles for one sorting operation,
and removes the storage of intermediate values during the sorting.
Pipelining can be achieved for the modules that have sequential
dependency. For example, preparing the next new column can be done
while the other module is calculating the median value for the current
window. Pipelining can increase the throughput, but the timing has to be
carefully managed especially at the edge of images.

2x2 median filter (Figure 2) takes two pixels from the new column as
inputs, and produces the median value of the 2x2 window as the output.
It is implemented with two submodules, which sorts the new pixels
(sort_new) and generates the median value (generate_median),
respectively. Sorting the new pixels requires only a single comparison
and two 2-1 multiplexers. Generating median uses the current and the
previous cycle’s sorted new pixels, and four comparisons and three 2-1
multiplexer operations to get the output. These two modules are
implemented with two-stage pipeline.

3x3 median filter (Figure 3) has three submodules, which sorts the three
pixels from the new column (sort_new), generates the median value of
the current window (generate_median), and sorts two rightmost
columns in the current window for the next cycle operation
(generate_res). Submodule sort_new and submodule generate_res
prepare the pixels to be partially-sorted, so that computations for
generating the median value can be simplified. Submodule sort_new
and submodule generate_median are similar to those in 2x2 median
filter, except that the number of comparators and the multiplexers has to
be adjusted to the new window size. Submodule generate_res takes the
current and the previous cycle’s new three pixels, and sorts them to
produce a 6-element sorted array, which then is used for submodule
generate_median. These three modules are implemented as three-stage
pipeline.

Ⅲ. Non-Local Means Denoising
In NL-means denoising [6] [7], given a discrete noisy image, the
estimated value for a pixel is computed as a weighted average of all the
pixels in the image, where the weights depend on the similarity between
two pixels. The similarity between two pixels depend on the similarity
of the intensity gray level vectors of square neighborhoods of pixels.
This similarity is measured as a decreasing function of the weighted
Euclidean distance. Therefore, NL-means not only compares the grey
level in a single point but the geometrical configuration in a whole
neighborhood. This fact allows a more robust comparison than
neighborhood filters.

Three are two main issues in the hardware implementation: 1) Trade of
among computation complexity, power and area, 2) exponential and
division implementation. For one pixel in image, we adopt the size of 7
and 3 for search window and patch window separately. Therefore, we
need to calculate 3ⅹ3ⅹ7ⅹ7 Euclidean distances to denoise one pixel,
which will cost much in hardware. To reduce computation complexity,
we come up with an optimized NL-means denoising method by
distance reusing. For pixels in the first row of input image, we store the
distances of each row of patch window in the memory. When denoising
pixels at the second row of input image, we reuse two distances stored
before for the specific pixel pairs with the same relative location. So we
only need to calculate distances of one row in each patch widow. Then
we store the newly calculated distance and one old distance in the
memory, and reuse them when we denoising pixels at the third row. By

iterating this procedure, we can get the whole denoising image. In this
way, we denoise each pixel in the first row with calculating 3ⅹ3ⅹ7ⅹ7
distances, and 3ⅹ7ⅹ7 distances for other rows, so the computational
complexity decreases by 2/3. However, frequent read and write access
for these distance memory elements will increase the power
consumption and the memory area. A detailed comparison will be
showed in section Ⅵ.

To calculate weight of each pixel in search window, we need to use
exponential and division function, which are expensive in hardware
implementation. Considering the accuracy of limited order Taylor
expansion is not enough, we adopt look-up table method for
exponential function. And we use minus and shift to achieve 22-bit
division function. Design of NL-means denoising hardware is shown in
Figure 4.

We design two main submodules for the conventional NL-means
denoising without the distance data reuse: 1) weight calculation for one
patch window, 2) weight calculation for one search window and
denoising for one pixel. For one patch submodule, we take 18 pixels
from two compare patch windows as input and calculate the distance,
serving as the similarity between the centered pre-denoising pixel and
one of pixels in search window. Then we output the weight of pixel in
search window by exp conversion. For one search window submodule,
we take 49 weights of all pixels in search window and output the
estimated value of centered pixel by averaging as well as normalization,
which achieve denoising for one pixel.

For the optimized NL-means denoising method with the distance data
reuse, we design three main submodule: 1) distance calculation for one
row in patch window, 2) weight calculation for one patch window, 3)
weight calculation for one search window and denoising for one pixel.
In one row of patch window submodule, we take 6 pixels from the same
row of two comparable patch windows as input per cycle, calculate the
distance and write them into memory. In one patch window submodule,
we use the newly calculated distance and reuse two distances read from
memory to calculate the weight of pixels in search window. The
denoising module is similar with the previous method.

Ⅳ. Simulation Results
The performance of 2x2, 3x3 median filter, and non-local means
denoising is summarized in Figure 5. We use Cadence 90nm technology
for both synthesis and layout. For median filters, the area is measured
after place and route using Cadence Encounter, and the energy is
measured with Synopsys Nanosim simulation after the layout. For
non-local means denoising, the area and the energy is measured after
the synthesis. Note that the area and the energy is only simulated for the
computation module, not including the memory for storing input image
or I/O. We extrapolate the area and the power associated with the
memory with the estimated read/write power of 90nm technology
SRAM. We verify the correct functionality of 2x2, 3x3 median filter,
and non-local means denoising by feeding the real images with varying
sizes to the HDL testbench (Figure 6). Since 2x2 and 3x3 median filter
exactly compute the median value, the output of the HDL testbench
should match with the software-processed image. For non-local means
denoising, we use approximation in the weight and division calculation,
and the output of the HDL testbench might not exactly match with the
output of software. Nevertheless, for the sufficient functionality, the
testbench and the software outputs should be similar. We also report the
speedup of our hardware implementation in comparison to the CPU
runtime.

Ⅴ. Effect of Voltage Scaling on Median Filters
We examine the effect of voltage scaling on the energy and the clock
frequency (Figure 7). Reducing the operation voltage at the expense of

the clock frequency can be beneficial for 2x2 and 3x3 median filters
when combined with the subsequent deep neural network (DNN)
accelerator module, because 2x2 and 3x3 median filters have higher
throughput when compared with the typical throughput of DNN
accelerators [8]. Reducing the clock frequency and reducing the energy
consumed by 2x2 and 3x3 median filters can reduce the energy of the
overall system. We observe that our 2x2 and 3x3 median filter can
operate at 0.35V without an error at 10MHz, which gives the
throughput of 67 ImageNet-sized images per second.

Ⅵ. Comparison of Different NL-means Architectures
In hardware implementation, we explore three different NL-means
architectures: 1) conventional NL-means with 18-pixel input per cycle,
2) conventional NL-means with 6-pixel input per cycle, 3) optimized
NL-means with 6-pixel input per cycle. We compare these three
methods from 3 aspects: 1) area, 2) energy consumption per image, 3)
operation cycles and speed up compared with software (Figure 8). For
total area, 6-pixel input conventional NLM is smaller, because it doesn’t
have extra circuit for other 12 pixels operation and doesn’t use distance
memory to read and write. Accordingly, 18-pixel input conventional
NLM is largest. For energy consumption without memory, the
optimized NLM architecture is most energy saving, because it reuses
distance and only compute 3 pixel pairs’ distance for one pixel in search
window. But with memory, the optimized NLM will read and write
74088 times from memory for one image. Considering the read/write
power for the memory, the energy consumption of optimized NLM is
about 1.8 times of 18-pixel input conventional NLM. For operation
cycles, optimized NLM and 18-pixel input conventional NLM is about
2.8 times faster than 6-pixel input conventional NLM, and can speed up
about 8 times compared with software.

Ⅶ. Future Work and Conclusion
In this work, we present the hardware implementation of 2x2 median
filter, 3x3 median filter, and NL-means denoising, which are shown to
be effective at detecting adversarial attacks in DNNs. Our key
contributions are 1) efficient implementation of median filters with data
reuse and unrolled sorting operations, 2) energy and resource aware
implementation of NL-means denoising with approximation on
expensive calculations such as exponential units, and 3) exploring
diverse trade-offs in designing the image-preprocessor with voltage
scaling analysis and architecture comparisons.

We think further work on efficient I/O design can reduce the energy
consumption of median filters. SRAM read/write accounts for large
proportion of the energy for median filters, and implementing I/O as
streaming instead of SRAM can improve energy-efficiency.
Furthermore, the effect of approximation in NL-means denoising can be
studied for real adversarial attacks to ensure the robustness of our image
pre-processor. Also, there can be diverse application of our image
pre-processor other than robust DNN inference, such as texture
synthesis where non-local algorithms are widely used.

Acknowledgements:
The authors gratefully acknowledge and Prof. Vivienne Sze and Utsav Banerjee
for helpful discussion.

References:
[1] I. Goodfellow, J. Shlens and C. Szegedy, “Explaining and Harnessing

Adversarial Examples,”International Conference on Learning
Representation, 2015.

[2] A. Madry, A. Makelov, L. Schmidt, D. Tsipras and A. Vladu, “Towards Deep
Learning Models Resistant to Adversarial Attacks,”International
Conference on Learning Representation, 2018.

[3] W. Xu, D. Evans and Y. Qi, “Feature Squeezing: Detecting Adversarial
Examples in Deep Neural Networks,”Network and Distributed Systems
Security Symposium, 2018.

[4] T. Huang, G. Yang and G. Tang, “A Fast Two-Dimensional Median Filtering
Algorithm,” IEEE Transactions on Acoustics, Speech, and Signal
Processing, Vol. ASSP-27: 1, 1979.

[5] B. Weiss, “Fast Median and Bilateral Filtering,” ACM Transactions on
Graphics, Vol. 25: 3, pp. 519-526, 2006.

[6] A. Buades, C. Bartomeu and J.-M. Morel, “A non-local algorithm for image
denoising,”Computer Vision and Pattern Recognition, 2005.

[7] J. Froment, “A Parameter-Free Fast Pixelwise Non-Local Means
Denoising,” Image Processing On Line, Vol. 4, pp. 300-326, 2014.

[8] Y.-H. Chen, T. Krishna, J. Emer and V. Sze, “Eyeriss: An Energy-Efficient
Reconfigurable Accelerator for Deep Convolutional Neural Networks,”
Journal of Solid-State Circuits, Vol. 52: 1, pp. 127-138, 2017.

Figure 1: Overall system design of robust DNN hardware

Figure 2: Design of 2x2 median filter and its submodules

Figure 3: Design of 3x3 median filter and its submodule

Figure 4: Design of NL-means denoising and its submodule

Figure 5: Performance summary table

Figure 6: Functionality on noisy image

Figure 7: Effect of voltage scaling on median filters

Figure 8: Comparison of different NL-means architecture

