Machine Learning

2022
Automatic Domain-Specific SoC Design for Autonomous Unmanned Aerial Vehicles
Srivatsan Krishnan, Zishen Wan, Kshitij Bhardwaj, Paul Whatmough, Aleksandra Faust, Sabrina M. Neuman, Gu-Yeon Wei, David Brooks, and Vijay Janapa Reddi. 2022. “Automatic Domain-Specific SoC Design for Autonomous Unmanned Aerial Vehicles.” In 2022 55th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). [IEEE Micro Top Picks 2023 Honorable Mention]: IEEE. Full TextAbstract

Building domain-specific accelerators is becoming increasingly paramount to meet the high-performance requirements under stringent power and real-time constraints. However, emerging application domains like autonomous vehicles are complex systems, where the constraints extend beyond just the computing stack. Manually selecting and navigating the design space to design custom and efficient domain-specific SoCs (DSSoC) is tedious and expensive. As such, there is a need for automated DSSoC design methodologies. In this paper, we use agile and autonomous UAVs as a case study for understanding how to automate the design of domain-specific SoCs for autonomous vehicles. Architecting a UAV DSSoC requires considering parameters such as sensor rate, compute throughput, and other physical characteristics (e.g., payload weight, thrust-to-weight ratio) that affect overall performance. Iterating over the many component choices results in a combinatorial explosion of the number of possible combinations: from 10s of thousands to billions, depending on implementation details. To navigate the DSSoC design space efficiently, we introduce AutoPilot, a framework that automates full-system UAV co-design. AutoPilot uses machine learning to navigate the large DSSoC design space and automatically select a combination of autonomy algorithm and hardware accelerator while considering the cross-product effect across different UAV components. AutoPilot consistently outperforms general-purpose hardware selections like Xavier NX and Jetson TX2, as well as dedicated hardware accelerators built for autonomous UAVs. DSSoC designs generated by AutoPilot increase the number of missions on average by up to 2.25x, 1.62x, and 1.43x for nano, micro, and mini-UAVs, respectively, over baselines. We also discuss how AutoPilot can be extended to other closely related autonomous vehicles.

Closing the Sim-to-Real Gap for Ultra-Low-Cost, Resource-Constrained, Quadruped Robot Platforms
Jason Jabbour, Sabrina M. Neuman, Mark Mazumder, Colby Banbury, Shvetank Prakash, Brian Plancher, and Vijay Janapa Reddi. 2022. “Closing the Sim-to-Real Gap for Ultra-Low-Cost, Resource-Constrained, Quadruped Robot Platforms.” 3rd Workshop on Closing the Reality Gap in Sim2Real Transfer for Robotics, at Robotics: Science and Systems (RSS) 2022. Full TextAbstract
Automating robust walking gaits for legged robots has been a long-standing challenge. Previous work has achieved robust locomotion gaits on sophisticated quadruped hardware platforms through the use of reinforcement learning and imitation learning. However, these approaches do not consider the strict constraints of ultra-low-cost robot platforms with limited computing resources, few sensors, and restricted actuation. These constrained robot platforms require special attention to successfully transfer skills learned in simulation to reality. As a step toward robust learning pipelines for these constrained robot platforms, we demonstrate how existing state-of-the-art imitation learning pipelines can be modified and augmented to support low-cost, limited hardware. By reducing our model’s observational space, leveraging TinyML to quantize our model, and adjusting the model outputs through post-processing, we are able to learn and deploy successful walking gaits on an 8-DoF, $299 (USD) toy quadruped robot that has reduced actuation and sensor feedback, as well as limited computing resources. A video of our current results can be found at: https://youtu.be/jloya0TOzWA.
Tiny robot learning: challenges and directions for machine learning in resource-constrained robots
Sabrina M. Neuman, Brian Plancher, Bardienus P. Duisterhof, Srivatsan Krishnan, Colby Banbury, Mark Mazumder, Shvetank Prakash, Jason Jabbour, Aleksandra Faust, Guido C. H. E. de Croon, and Vijay Janapa Reddi. 2022. “Tiny robot learning: challenges and directions for machine learning in resource-constrained robots.” In 2022 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS). IEEE. Full TextAbstract
Machine learning (ML) has become a pervasive tool across computing systems. An emerging application that stress-tests the challenges of ML system design is tiny robot learning, the deployment of ML on resource-constrained low-cost autonomous robots. Tiny robot learning lies at the intersection of embedded systems, robotics, and ML, compounding the challenges of these domains. Tiny robot learning is subject to challenges from size, weight, area, and power (SWAP) constraints; sensor, actuator, and compute hardware limitations; end-to-end system tradeoffs; and a large diversity of possible deployment scenarios. Tiny robot learning requires ML models to be designed with these challenges in mind, providing a crucible that reveals the necessity of holistic ML system design and automated end-to-end design tools for agile development. This paper gives a brief survey of the tiny robot learning space, elaborates on key challenges, and proposes promising opportunities for future work in ML system design.