Abadie, A., & Spiess, J. (In Preparation).

Robust Post-Matching Inference.

Abstract
Nearest-neighbor matching (Cochran, 1953; Rubin, 1973) is a popular nonparametric tool to create balance between treatment and control groups in observational studies. As a preprocessing step before regression analysis, matching reduces the dependence on parametric modeling assumptions (Ho et al., 2007). Moreover, matching followed by regression allows estimation of elaborate models that are useful to describe heterogeneity in treatment effects. In current empirical practice, however, the matching step is often ignored for the estimation of standard errors and confidence intervals. That is, to do inference, researchers proceed as if matching did not take place. In this article, we show that ignoring the matching first step produces valid standard errors if matching is done without replacement and if the regression model is correctly specified relative to the population regression function of the outcome variable on the treatment variable and all the covariates used for matching. However, standard errors that ignore the matching step are not valid if matching is conducted with replacement or, more crucially, if the second step regression model is misspecified in the sense indicated above. We show that two easily implementable alternatives, (i) clustering the standard errors at the level of the matches, or (ii) a nonparametric block bootstrap procedure, produce approximations to the distribution of the post-matching estimator that are robust to misspecification, provided that matching is done without replacement. These results allow robust inference for post-matching methods that use regression in the second step. A simulation study and an empirical example demonstrate the empirical relevance of our results.

Spiess, J. (2018).

Optimal Estimation when Researcher and Social Preferences are Misaligned.

AbstractEconometric analysis typically focuses on the statistical properties of fixed estimators and ignores researcher choices. In this article, I approach the analysis of experimental data as a mechanism-design problem that acknowledges that researchers choose between estimators, sometimes based on the data and often according to their own preferences. Specifically, I focus on covariate adjustments, which can increase the precision of a treatment-effect estimate, but open the door to bias when researchers engage in specification searches. First, I establish that unbiasedness is a requirement on the estimation of the average treatment effect that aligns researchers’ preferences with the minimization of the mean-squared error relative to the truth, and that fixing the bias can yield an optimal restriction in a minimax sense. Second, I provide a constructive characterization of all treatment-effect estimators with fixed bias as sample-splitting procedures. Third, I show how these results imply flexible pre-analysis plans for randomized experiments that include beneficial specification searches and offer an opportunity to leverage machine learning.

alignedestimation.pdf Ludwig, J., Mullainathan, S., & Spiess, J. (2017).

Machine Learning Tests for Effects on Multiple Outcomes.

arXiv.orgAbstractA core challenge in the analysis of experimental data is that the impact of some intervention is often not entirely captured by a single, well-defined outcome. Instead there may be a large number of outcome variables that are potentially affected and of interest. In this paper, we propose a data-driven approach rooted in machine learning to the problem of testing effects on such groups of outcome variables. It is based on two simple observations. First, the 'false-positive' problem that a group of outcomes is similar to the concern of 'over-fitting,' which has been the focus of a large literature in statistics and computer science. We can thus leverage sample-splitting methods from the machine-learning playbook that are designed to control over-fitting to ensure that statistical models express generalizable insights about treatment effects. The second simple observation is that the question whether treatment affects a group of variables is equivalent to the question whether treatment is predictable from these variables better than some trivial benchmark (provided treatment is assigned randomly). This formulation allows us to leverage data-driven predictors from the machine-learning literature to flexibly mine for effects, rather than rely on more rigid approaches like multiple-testing corrections and pre-analysis plans. We formulate a specific methodology and present three kinds of results: first, our test is exactly sized for the null hypothesis of no effect; second, a specific version is asymptotically equivalent to a benchmark joint Wald test in a linear regression; and third, this methodology can guide inference on where an intervention has effects. Finally, we argue that our approach can naturally deal with typical features of real-world experiments, and be adapted to baseline balance checks.

mlmultipletesting.pdf Spiess, J. (2017).

Bias Reduction in Instrumental Variable Estimation through First-Stage Shrinkage.

arXiv.orgAbstractThe two-stage least-squares (2SLS) estimator is known to be biased when its first-stage fit is poor. I show that better first-stage prediction can alleviate this bias. In a two-stage linear regression model with Normal noise, I consider shrinkage in the estimation of the first-stage instrumental variable coefficients. For at least four instrumental variables and a single endogenous regressor, I establish that the standard 2SLS estimator is dominated with respect to bias. The dominating IV estimator applies James–Stein type shrinkage in a first-stage high-dimensional Normal-means problem followed by a control-function approach in the second stage. It preserves invariances of the structural instrumental variable equations.

jsiv.pdf Spiess, J. (2017).

Unbiased Shrinkage Estimation.

arXiv.orgAbstractShrinkage estimation usually reduces variance at the cost of bias. But when we care only about some parameters of a model, I show that we can reduce variance without incurring bias if we have additional information about the distribution of covariates. In a linear regression model with homoscedastic Normal noise, I consider shrinkage estimation of the nuisance parameters associated with control variables. For at least three control variables and exogenous treatment, I establish that the standard least-squares estimator is dominated with respect to squared-error loss in the treatment effect even among unbiased estimators and even when the target parameter is low-dimensional. I construct the dominating estimator by a variant of James–Stein shrinkage in a high-dimensional Normal-means problem. It can be interpreted as an invariant generalized Bayes estimator with an uninformative (improper) Jeffreys prior in the target parameter.

jscontrol.pdf