In vivo Perturb-Seq reveals neuronal and glial abnormalities associated with Autism risk genes

Citation:

Xin Jin, Sean K Simmons, Amy X Guo, Ashwin S Shetty, Michelle Ko, Lan Nguyen, Elise B Robinson, Paul Oyler, Nathan Curry, Giulio Deangeli, Simona Lodato, Joshua Z Levin, Aviv Regev, Feng Zhang, and Paola Arlotta. 2019. “In vivo Perturb-Seq reveals neuronal and glial abnormalities associated with Autism risk genes.” bioRxiv. bioRxiv Preprint

Abstract:

The thousands of disease risk genes and loci identified through human genetic studies far outstrip our current capacity to systematically study their functions. New experimental approaches are needed for functional investigations of large panels of genes in a biologically relevant context. Here, we developed a scalable genetic screen approach, in vivo Perturb-Seq, and applied this method to the functional evaluation of 35 autism spectrum disorder (ASD) de novo loss-of-function risk genes. Using CRISPR-Cas9, we introduced frameshift mutations in these risk genes in pools, within the developing brain in utero, and then performed single-cell RNA-Seq in the postnatal brain. We identified cell type-specific gene signatures from both neuronal and glial cell classes that are affected by genetic perturbations and pointed at elements of both convergent and divergent cellular effects across this cohort of ASD risk genes. In vivo Perturb-Seq pioneers a systems genetics approach to investigate at scale how diverse mutations affect cell types and states in the biologically relevant context of the developing organism.
Last updated on 10/09/2019